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Abstract: To enhance sensor capabilities, sensor data readings from different modalities
must be fused. The main contribution of this paper is to present a sensor data fusion approach
that can reduce KinectTM sensor limitations. This approach involves combining laser with
KinectTM sensors. Sensor data is modelled in a 3D environment based on octrees using
a probabilistic occupancy estimation. The Bayesian method, which takes into account the
uncertainty inherent in the sensor measurements, is used to fuse the sensor information and
update the 3D octree map. The sensor fusion yields a significant increase of the field of view
of the KinectTM sensor that can be used for robot tasks.

Keywords: sensor fusion; laser; KinectTM ; 3D octree map; collaboration

1. Introduction

Fusion of sensory information is essential in the field of mobile robots. The former is necessary in
order to achieve full autonomy and consequently widen the range of its applicability. In this context,
it is also necessary to develop more reliable systems which can operate in structured and unstructured
environments. The result of the fusing process from the sensory information can be used to reconstruct
the environment of the robot, and the robot can plan its own path and avoid obstacles. The robot can
also adapt to unexpected environments. In other words, in the process of building the map by fusing
sensory information of different sources, a more reliable map is obtained. Therefore, if the mobile robot
is suddenly facing unexpected situations in the environment, e.g., people moving around, the robot can
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update the map taking into account the new entities. Consequently, fusion of different sensor readings
must be applied in the hierarchical architecture of the robot.

When dealing with sensor data fusion, one of the requirements to take into account is the choice
of the internal representation. This internal representation must be chosen so that it is common to all
sensors. This means that sensor readings of different modalities must be converted to the common
internal representation in advance before the fusion process is carried out. Occupied as well as empty
areas of any arbitrary environments must also be modelled without a prior knowledge of it. It must also
represent the estimation and the certainty values of the confidence of the true parameters. The fusion
process for different sensors must be feasible under this internal representation. Conversion of sensor
data from the physical measurements to the internal representation should be easy to carry out. In this
context, the map should be expanded as needed and must have multiple resolution for different mobile
robot tasks.

Over the years, several approaches for modelling 3D environments have been proposed.
Wurm et al. [1] makes a proper review of the previous techniques and also propose a 3D internal
representation that fulfils the above requirements. This approach is the OctoMap, which is a library
that implements a 3D probabilistic occupancy grid mapping approach.

It is worth mentioning the importance of 3D models for mobile robot tasks. A 3D model has for
instance manifold features and can therefore facilitate the disambiguation of different places. Another
important fact is that when a mobile robot has to be used in rescue actions and a 3D model of the
environment has to be known in advance before any action is taken [2].

The KinectTM sensor from Microsoft has become quite utilised and has recently become very popular
in various mobile robot tasks. However, the narrow field of view and the close range are limitations of
the KinectTM . The depth image on the KinectTM has a field of view of 57.8◦. To this end, a good field of
view is important in mobile robots, because the wider the field view, the more precise the map, e.g., the
robot can catch more features from the environment in a single sensor reading. On the other hand, a
mobile robot with poor field view must constantly maneuver to fill up the missing map. One possible
solution to this problem is to add one more KinectTM to increase the field of view. This approach has the
disadvantage, however, of dealing with an increase of data and thus becoming a computational burden.
Another solution is to rotate the KinectTM sensor by means of a servo. This again may limit the robot’s
ability to scan local maps successfully. The minimum range of the KinectTM is about 0.6 m. This limited
range might be a problem when navigating. More precisely, the robot may crash with objects that are
situated between the KinectTM sensor and the minimum range.

The main contribution of this paper is to focus on the problem of fusing range readings from a laser
device with a depth KinectTM image in order to increase the field of view and reduce the minimum range
of the KinectTM sensor. The Hokuyo URG−04LX−UG01 laser range finder [3] was selected because
of its size and price. It has a sensing range from 0.06 m→ 4 m. Measurement accuracy is within ±3%
tolerance of the current reading for most of the sensors range. The scanning rate is 100 milliseconds
across a 240◦ range. These specifications make the laser ideal for this research in indoor applications.

The current system setup, as shown in Figure 1 serves as an experimental testbed. It provides data
by a Hokuyo laser range finder and a Microsoft KinectTM . Section 2 is concerned with the octree
representation. Section 3 describes how the binary Bayes filter can be applied to the octree map in order
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to fuse and update sensor readings. Section 4 shows the results of the fusion process. Finally, Section 5
gives the conclusion and future research direction.

Figure 1. System setup which consists of the Microsoft KinectTM sensor and the
URG− 04LX − UG01 laser range finder.

2. 3D Map Making Based on Octree

Octrees are the three-dimensional generalisation of quadtrees [4]. In other words, an octree is a
hierarchical data structure for spatial subdivision in 3D. They have been successfully used to represent
3D maps [1,5–8]. It mainly consists of recursively subdividing the cube into eight octants. Each octant
in every division represents a node. The process ends when a minimum voxel size is reached. Figure 2
shows a single occupied voxel and its octree representation.

Figure 2. (a) The cube has been subdivided into tree depths, where the black cube represents
an occupied voxel; (b) Octree representation.

(a) (b)

Sensors suffer from inaccuracies due to noise, hence uncertainties inherited in sensor data readings
must be interpreted in a probabilistic fashion. The approach presented in [1] offers a means of combining
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the compactness of octrees that use discrete labels with the adaptability and flexibility of probabilistic
modelling. For this reason, this paper has taken the previous approach.

3. Sensor Fusion

Range sensor readings are modelled by probability sensor functions [9] and binary Bayes filter is
used to update the occupancy grid [1,7,10,11]. It is mainly used when the state is both static and binary.
Equation (1) presents the Odds form of the filter, whereas Equation (2) represents the logOdd (L) ratio.

P (n|z1:t)
1− P (n|z1:t)

=
P (n|zt)

1− P (n|zt)
P (n|z1:t−1)

1− P (n|z1:t−1)

1− P (n)

P (n)
(1)

lt(n) = L(n|z1:t) = L(n|zt) + L(n|z1:t−1)− Lo(n) (2)

P (n|z1:t) is the probability of a leaf node n being occupied given the sensor measurements z1:t. P (n|zt)
is the inverse sensor model. The term Lo(n) = log

(
P (n)

1−P (n)

)
is the prior probability of the node and it

also defines the initial belief before processing any sensor measurement, e.g., P (n) = 0.5. It mainly
represents how the distribution of the node is given by an observation. The probabilities P (n|z1:t) can
be recovered from the logOdds radio as stated in Equation (3).

P (n|z1:t) = 1− 1

1 + exp{lt(n)}
with: lt(n) = log

( P (n|z1:t)
1− P (n|z1:t)

)
(3)

A new sensor reading introduces additional information about the state of the node n. This
information is done by the inverse sensor model P (n|zt) and it is combined with the most recent
probability estimate stored in the node. This combination is done by the binary Bayes filter readings
z1:t = (zt, . . . , z1) to give a new estimate P (n|zt). It is worth noting that when initialising the map, an
equal probability to each node must be assigned. In other words, the initial node prior probabilities are
P (n) = 0.5.

4. Experimental Results

The experiments presented in this work was done using real world data. Moreover, the experiment
results verify the problem formulation stated in the introduction, that is, the problem of increasing the
field of view and reducing the minimum range of the KinectTM sensor. In other words, this approach
demonstrates that by fusing the KinectTM with laser sensor data sets, the KinectTM improves its field of
view as well as its minimum close range detection.

The system setup shown in Figure 1 is used to run the simulation, which results are shown in this
section. During the simulation, two indoor data sets from the same environment were recorded using
two different sensors. Later on, these two data sets are fused to get a single representation of the 3D
scenario. The environment together with the sensor system is shown in Figure 3.

The first data set was recorded using the KinectTM sensor. In order to get the KinectTM ’s depth
image from the sensor, the OpenniTM [12] framework libraries were installed in Windows 7. Moreover,
the KinectTM Matlab [13] framework is used to get the 3D (X, Y, Z) coordinates from the depth image.
Figure 4 visualises the depth image, which resolution is (640× 480) pixels.
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Figure 3. The environment seen by the KinectTM and the laser range finder, which is placed
on the top of the KinectTM .

Figure 4. The depth image from the KinectTM sensor. The units are represented in mm.

The second data set was recorded using a Hokuyo URG− 04LX − UG01 laser range finder, which
is placed on top of the KinectTM sensor, as seen in Figure 3. By means of the laser driver [14], laser
measurements can be obtained. Each single measurement consists of a total of 682 laser scans and
are taken over a range of 240◦. Each scan represents the Euclidian distance (d) from the center of the
laser to the detected object. 2D (X, Y ) laser coordinates can be obtained using a mapping function
f : d→ (X, Y ).
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Each previous recorded data set is represented probabilistically in a 3D occupancy map by means of
the OctoMap library [1]. Moreover, this library is also used to handle the fusion process between these
two 3D representations. The library is implemented in C++ and installed on Debian GNU/Linux 6.0.3
(squeeze), released on 8 October 2011.

A 3D octree map representation of the environment from the first data set that corresponds to the
KinectTM sensor is shown in Figure 5(a). For clarity, only the occupied volumes, which resolutions are
0.2 m, are shown in this Figure. Figure 5(b) shows the empty volumes. The narrow field of view of the
KinectTM ’s depth image can clearly be seen.

Figure 5. (a) First data occupied set volumes of the environment; (b) First data empty set
volumes of the environment.

(a) (b)

The second data set represents a 2D slide of the environment, which is represented as an occupied
octree maps, shown in Figure 6(a), whereas Figure 6(b) shows the empty and occupied voxels. The main
feature of this plot is the well-known wide field of view of the laser.

Figure 6. A 2D laser slide of the environment. (a) shows the occupied volumes; (b) shows
the empty volumes.

(a) (b)
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The occupied voxels that correspond to the fusion of the two data sets are shown in Figure 7(a).
This shows that fusion of sensory information from different sources can increase sensor reliability, in
this case by enhancing the field of view of the KinectTM sensor. The empty volumes are depicted in
Figure 7(b). This Figure clearly shows that the robot may have more confidence in its side space. This
fact helps the mobile robot to avoid constantly maneuvering to get the missing map, and it can easily
react if there is an obstacle in the vicinity of the robot that is not detected by the KinectTM sensor, but
by the laser.

Figure 7. Shows the increased field of view of the KinectTM sensor. (a) Two fused occupied
volumes data sets; (b) Two fused empty volumes data sets.

(a) (b)

The laser octree data set representation is compared with the true map as shown in Figure 8. The
walls, the objects, the corridor and the door are very well detected. This result just confirms the good
accuracy tolerance of the current reading for most of the sensor’s range.

Figure 8. The laser range readings are compared with the true map.
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A 2D slide representation of the two octree fused data sets are also compared with the true map—this
can be seen in Figure 9. This result shows the accuracy of the fused maps when compared with
the actual environment’s map. What is important to notice in this simulation is how the two sensors
complement each other. This is achieved as mentioned previously by increasing the poor field of view
of the KinectTM sensor.

Figure 9. The two fused data sets are compared with the true map.

In order to test the minimum close range, an object has been placed 38cm in front of the testbed. This
object is placed after the minimum close range detection of the laser, but it is situated before the minimum
close range detection of the KinectTM , which means that the object is between the two minimum range
detections. The outcome of the KinectTM ’s simulation is depicted in Figure 10. It can clearly be seen
that the object is not detected due to the mentioned minimum close range limitations of the KinectTM

sensor. However, the laser can detect the object as it was expected, and as shown in Figure 11.

Figure 10. The obstacle is not detected because it has been placed before the minimum
range detection of the KinectTM sensor.

(a) (b)
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Figure 11. The obstacle is detected because it has been placed after the minimum range
detection of the laser sensor.

(a) (b)

The fusion of the two previous data set readings is presented in Figure 12. The important fact to
be noticed in this simulation result is that the laser really improves the minimum close range detection
limitation of the KinectTM sensor. In doing so, the robot can react and avoid an obstacle that is close and
that is not detected by the KinectTM , making the obstacle avoidance and hence the navigation safer and
more reliable.

Figure 12. Improvement of the minimum range detection of the KinectTM sensor.

(a) (b)

5. Conclusions and Future Research

It is very rare that a single sensor can provide sufficient information for the reasoning component. In
this sense, the current research in this paper has been focusing on fusing information from two different
sources in order to increase the capabilities of a single sensor. To this end, the fusion of a laser readings
with features extracted from a depth image using the KinectTM sensor has come up with good results. It
can be observed in Figures 7 and 12 that the two limitations of the KinectTM sensor, which are (a) the
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poor field of view and (b) the close range, are overcome by the fusion process. The field of view
increments significantly and the close range is reduced; hence objects can be detected closer.

It is believed that the approach of fusing data provided by a laser range and the depth image constitutes
an appropriate starting point for a new framework for mobile robots, which tasks of combining the
KinectTM with other sensors are demanding.

A starting point of this framework could be experiments of a dynamic fused 3D map of the
environment, where sensor transformation frames are taken into account in order to build the map with
respect to a world reference frame. The previous successful results can be used for localization and
navigation. It is also the intention of this research to investigate further the applicability of the framework
to the combination of different sensors for mobile robot nonlinear control tasks.
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