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Abstract: This paper proposes the Top-View Transformation Model for image coordinate 
transformation, which involves transforming a perspective projection image into its 
corresponding bird’s eye vision. A fitting parameters searching algorithm estimates the 
parameters that are used to transform the coordinates from the source image. Using this 
approach, it is not necessary to provide any interior and exterior orientation parameters of 
the camera. The designed car parking assistant system can be installed at the rear end of 
the car, providing the driver with a clearer image of the area behind the car. The processing 
time can be reduced by storing and using the transformation matrix estimated from the first 
image frame for a sequence of video images. The transformation matrix can be stored as 
the Matrix Mapping Table, and loaded into the embedded platform to perform the 
transformation. Experimental results show that the proposed approaches can provide a 
clearer and more accurate bird’s eye view to the vehicle driver. 

Keywords: top-view transformation; bird’s eye view; inverse perspective mapping 
 

1. Introduction 

The parameters of interior and exterior cameras are necessary to process images for coordinate 
transformation and calibration, but it is not easy obtain to those parameters, video frames especially. 

Parking a vehicle safely is an important issue, but not an easy task for some drivers. Installing 
sensors at the rear of the vehicle is helpful when driving the vehicle in reverse. A video-based 
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auxiliary system provides the driver with images from the rear of the vehicle, the driver can know the 
environment of the desired parking area very well, and further actions then depend on driver decisions. 
In recent years, manufacturers have equipped many vehicles with rearward-facing cameras to improve 
driving safety. Most of these cameras only display captured images on an in-vehicle screen. The driver 
cannot easily judge the depth and positioning from these images. For example, the images do not 
convey the distance between the vehicle and any obstacles located behind the vehicle. 

Therefore, this study proposes a TVTM (Top-View Transform Model) approach to apply to a 
video-based auxiliary parking assistant system that provides drivers with a clearer bird’s eye view of 
the rear-end area around a vehicle. The main contribution of this paper is to propose a coordinate 
transformation model that does not need any interior and exterior camera parameters and can adapt the 
setup position of the camera. In addition, the proposed approach could speed up the processing 
performance on an embedded platform. 

The remainder of this paper is organized as follows: Section 2 surveys some related works about 
perspective transformation. Section 3 describes first the proposed top-view transform model approaches 
to a single image and then how to extend them to process video frames is explained. The experimental 
results and some discussions are given in Section 4. Finally, a brief conclusion is provided in Section 5. 

2. Related Works 

Currently, most video-based vehicle assistant systems focus on the forward direction of the vehicle. 
Schreiber [1] proposed a robust scheme to detect and track lane markings to delimit road boundaries, 
using a forward-looking single camera. McCall and Trivedi [2] designed a video-based driver’s 
assistant system to estimate and track lane markings on the road. Jung [3] used a monocular vision 
based parking-slot-markings recognition algorithm to find the parking space, which transforms source 
images into a bird’s eye view image and uses the Hough transform to find the edge of parking  
slot-lines. Jung [4] used a light stripe projection based free parking space recognition method to 
overcome the common drawbacks of existing vision based target position designation methods in dark 
indoor parking sites. Scheunert [5] proposed a park-slot finding auxiliary system, which combines a 
camera and a non-visual sensor to find any available park-slot in the area while the vehicle is passing 
by. Liu [6] proposed a bird’s eye view vision system for vehicle surrounding monitoring which 
installed six cameras on a vehicle and stitched the views from those six cameras. Ehlgen [7] combined 
the images of four cameras to obtain a view of the whole surrounding area of vehicle with the purpose 
of eliminating the driver’s blind spots. 

The inverse perspective mapping scheme is another method for obtaining a bird’s eye view of the 
scene from a perspective image. The inverse perspective mapping technique can also be used to 
removes the perspective distortion caused by the perspective projection of a 3D scene into a 2D image. 
In general, each proposed inverse perspective mapping method uses different transformation 
mechanisms. Based on the linear mapping of homogeneous coordinates, Muad [8] addressed the 
mathematical theory of inverse perspective mapping. In another study, Tan, Dale, Anderson and 
Johnston [9], provide the basic geometrical transformation structure and formulas for inverse 
perspective mapping. The reconstructed “median plane” links the two transformed objects. This 
method depends on three parameters: θ0, the rotation angle between the image plane and the median 
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plane; Z0, the distance between the image plane and the median plane; and c0, the distance between the 
image plane and the X axis on the world coordinate system. This method can be applied when these 
parameters are available. Unfortunately, these three parameters are unknown in most cases. Bertozzi [10] 
proposed a heuristic search method to find homologous points. Some researchers have also used the 
vanishing point phenomenon to calculate the inverse perspective mapping model [11,12]. 

3. Top-View Transformation Model 

The objective of the proposed top-view transformation model is to provide a clearer top-view image 
than traditional inverse perspective mapping. Figure 1 shows the rotation model for each of the 
coordinate axes in a 3D Cartesian coordinate system. Assume that the rotation occurs in a clockwise 
direction (the X-axis is pointing out) and the X-axis, Y-axis, and Z-axis rotate ω, φ, and κ degrees, 
respectively. Then the rotation matrices, in homogeneous coordinates form, for X-axis, and Y-axis,  
Z-axis can be represented as Rω, Rφ, and Rκ respectively, as the Equation (1). In Rω matrix, the 
coordinate X-axis is invariant and Y-axis and Z-axis rotated ω angle. Similarly, in Rφ matrix, the 
coordinate Y-axis is invariant, and in Rκ matrix, the coordinate Z-axis is invariant: 

1 0 0 0 cos 0 sin 0 cos sin 0 0
0 cos sin 0 0 1 0 0 sin cos 0 0;   ;  0 sin cos 0 sin 0 cos 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

R R Rω ϕ κ

ϕ ϕ κ κ
ω ω κ κ
ω ω ϕ ϕ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−
−= = =−

 (1)  

Figure 1. The rotation model on X, Y and Z coordinate axes. 
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Homographic mapping method [13] is used to illustrate the relationship between two different 
views of the same real world scene. Let p and p' be the corresponding projected image points on the 
image plane of two different views of the same point located in the 3D real world coordinates system. 
Assume the coordinates of this pair of matching points, p and p', in inhomogeneous form are denoted 
as (x1, y1)T and (x2, y2)T, respectively, where T denotes the vector transpose. Without loss of generality, 
the homogeneous coordinate representations of these two points are (x1, y1, z1)T and (x2, y2, z2)T, 
respectively. The homographic mapping of the two points is then a planar projective transformation, 
and can be expressed as Equation (2) for a homogeneous form. This homographic mapping is a linear 
transformation. The nonsingular 3 × 3 matrix H is called the homogeneous transform matrix. To obtain 
the inhomogeneous form representation (x2, y2) of the vector (x1, y1, z1)T of Equation (2) and  
Equation (3) are adopted. A homographic transformation can also be used to remove the projective 
distortion due to the perspective projection from a 3D scene into a 2D plane image. The main problem 
is how to select the points, the (x1, y1, z1)T vectors applied in Equation (2), to perform the 
transformation, as different selected points produce different solutions: 

'
2 211 12 13 1 1

2 21 22 23 1 2 1

31 32 33 1 12 2

x xh h h x x
y h h h y y H y

h h h z zz z
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3.1. The Camera Model 

The camera model structure is the basic theory and concept for developing a computer vision 
application. In this application, the 3-D real world coordinate system is adopted by assuming that a 
Right Hand Cartesian coordinate system is used, the Y-axis extends out in the forward direction of the 
vehicle; the X-axis points out to the right of the vehicle; and the Z-axis is perpendicular to the ground. 
The camera used to capture the rear-end images of the vehicle is mounted at the center of the bumper 
of the vehicle.  

Figure 2 shows two views of the camera model used in the proposed method. Figure 2(a) shows the 
model viewed from the Y-Z plane (projected on the Y-Z plane), where H denotes the distance between 
the camera and the ground and the tilt angle θ is defined as the angle between the Normal line (the 
optical axis) of the camera and the Horizontal line. Figure 2(b) shows the model viewed from top to 
the ground, where the angle γ represents the pan angle of the camera in the coordinate system. The 
angle γ can be viewed as the angle between the projection line of the camera’s optical line on the X-Y 
plane and the Y-axis. If the pan angle γ = 0, the projection line of the camera’s optical line on the X-Y 
plane is parallel with the Y-axis. In this case, the image captured by the camera is just the perspective 
projection image of the real world at the rear of the vehicle. If γ is not zero, the captured image is 
skewed to the left or right of the rear of the vehicle. 
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Figure 2. The camera model used in this paper. (a) View of the Y-Z plane for height and 
tilt; (b) View of the X-Y plane. 

    
           (a)             (b) 

 
A camera’s FOV (Field Of View) defines the pyramid field. The apex located at the center of the 

image plane of the camera, of the real world in front of the camera that can be captured by the camera 
and projected onto its image plane. The amount of the scene within this pyramid space region that will 
be projected onto the camera image plane depends on both the FOV and the “block plane” in front of 
the camera. In this application, the “block plane” is the ground. The truncated pyramid is called a 
frustum. Due to the camera can be located at different height and/or with different tilt angle θ, the 
frustum is skewed depending on which conditions applied. For simplifying the description, in Figure 3, 
the effective “block plane” projected on the Y-axis is used to denote the effective FOV for different 
case, for example, FOV1 is used to represent the frustum for the camera located at virtual position of 
camera 1. 

Figure 3. Related positions of the camera in TVTM that view from the Y-Z plane. 
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Figure 3 illustrates the same camera located at three different positions, showing the effective FOV 
in the direction of the Y-axis. The real position one is denoted the camera that is installed on the car 
with distance H above the ground and with effective FOV, FOV2. If the camera is located at virtual 
position 1, the height of the camera is higher than H but less than that of virtual position 2, which 
reduces the effective FOV of the camera at virtual position 1 to FOV1. If the camera is located at the 
virtual position 2, then its effective FOV is as same as that of the real camera position. In this study, 
the basic requirement of the equipment is to provide the driver with clear images that represent the 
reality behind the car to assist with car parking. Therefore, it is desired to show the image captured 
closer to the rear of the vehicle and include full information about the parking spot. From this 
viewpoint, it is fitter to show the driver the image obtained by effective FOV1 instead of FOV2 that 
just displays the area that the driver is most concerned. FOV1 can also display a large and clear image 
on the screen. 

In the following subsection, the proposed top view transform model will be described. The TVTM 
transforms the image captured at the real camera position into an image equivalent to that captured at 
the virtual camera position 2, and both of these images are displayed on the same size (due to the two 
cases with the same effective FOV). Figure 3 shows that, for practical applications, the three images 
with different effective FOV’s share the same end point, which corresponds to the nearest end of the 
car where the camera captures its image. As illustrated in Figure 3, the effective FOV1 can be reduced 
from that of FOV2 by discarding the portion denoted by s. This means that FOV1 = FOV2 – s. 

3.2. Top-View Transformation Model 

Based on the rotation transformation described above Equation (1) in Section 3, and the camera 
model in the Section 3.1, the TVTM formula can be described as Equation (4), where (x, y) are the 
original image coordinates, and (x*, y*) are the destination image coordinates, H is the distance 
between the camera and ground, f is the focal length of the camera, and θ is the camera tilt angle. 
Equation (4) shows that the transformed component values of x* and y* may be less than or equal  
to zero. To ensure that the transformed component values of x* and y* are not the less than zero  
and keep the condition that the coordinate point on the original source image is mapped into the 
coordinate point in the destination image coordinate. In Equation (5) a constant d is defined as  
|H(sinθ + cosθ)/(fsinθ − cosθ)|. This means that the coordinate point in the original source image has 
been mapped into the point of the destination image coordinate system. Equation (5) gives the 
proposed formulas for the TVTM transformation: 

* *sin cos sin cos;   
cos sin cos sin

x f y fx H y H
y f y f

θ θ θ θ
θ θ θ θ
+ += =

− + − +
 (4)  

* *sin cos sin cos (sin cos )+   ,  ,  where 1
cos sin cos sin sin cos

x f y f H fx H d y H d d
y f y f f

θ θ θ θ θ θ
θ θ θ θ θ θ
+ + += = + = +

− + − + − (5)  

As previously stated, to provide the driver with clearer images that represent the reality behind the 
car, it is better to only show images captured close to the rear end of the car, including the full 
information about the parking spot. This goal can be reached by first discarding the portion of the 
captured image that represents the far side of the camera’s field of view. The upper side of the image 
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represents the far end of the camera’s field of view. The upper portion above the dashed horizontal line 
can be discarded without affecting the information provided to the driver. This also improves the 
processing time and helps provide a clearer image. The area of the image to be discarded depends on 
the value of parameter s. Here, the parameter s is a dynamic parameter that is used to tune the effective 
FOV1 field.  

Figure 4 depicts the TVTM processing flow by showing the processed result of each step for easy 
understanding. Figure 4(a) shows a source perspective image containing the two side line sections of a 
parking spot. Figure 4(b) shows the corresponding image after TVTM transformation of the image in 
Figure 4(a). In Figure 4(b), only the rectangle region bounded by X* and Y* represents the 
information contained in the original image. This rectangle region with side lengths X* and Y* is then 
extracted in Figure 4(c). The image in those figures is then resized to the same size as the original 
image.  

Figure 4. Procedures of TVTM. (a) Source perspective image; (b) Image after TVTM 
transformation; (c) Image after discard non-information part of (b); (d) Image resized  
from (c). 

Y

X X*

Y*

 

                       (a)                                    (b)                                   (c)                                   (d) 

3.3. Optimal Searching Algorithm for TVTM Parameters 

Based on the provided source image, this subsection estimates the parameters of H, f and θ used in 
Equation (5). For an installed image captured system that can provide the installed system values of H, 
f and θ as the input initial values for the proposed searching algorithm to find the fittest parameters set 
used for the given source image. Even when the installed system values of H, f and θ are not provided, 
the proposed searching algorithm can determine the fittest parameter values of H, f and θ for the given 
source image. However, this requires significantly more processing time. 

Figure 5. Example of TVTM transformed image. 
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Before finding the three parameters, H, f and θ used in Equation (5) from a given source image, let 
us consider some transformed results under different parameter values. Figure 5 gives one possible 
TVTM transform result. Assume that the image size is m × n pixels. The horizontal axis and the 
vertical axis in Figure 5 point out in the rightward direction and the backward direction, respectively. 
The colored trapezoid area in Figure 5 represents the same content included in the source image. Let a, 
b, and c be the length of the three segments as shown in Figure 5. Then, if a = b is true, then the angle 

1φ  is equal to the angle 2φ . Equation (6) illustrates the values of 1φ  and 2φ : 

1 1
1 22 2 2 2

cos ( ),  cos ( )a b
n a n b

φ φ− −= =
+ +

 (6)  

Figure 6(b–e) shows four TVTM transformation results from the same source image shown in 
Figure 6(a) with varying parameter values. The transformed result shown in Figure 6(b) is skewed to 
the left. In this case, the condition a < b is satisfied and it is caused by both of the parameters θ and H 
with too small value. Figure 6(c) shows the case that the transformed result is skewed to the right.  
It results that a > b is satisfied and the reason is that both of the parameters θ and H are with too large 
value. Figure 6(d) gives the transformed result that the conditions a = b and c > b are met. This case is 
caused by a large value of the parameter f. Figure 6(e) illustrates the transformed result under the 
condition that a = b and c < b are satisfied. It results from too small a value of the parameter f. 

Figure 6. Example of TVTM transformed images with different parameter values of H, f 
and θ; (a) Source image; (b) Skewed to left side; (c) Skewed to right side; (d) Too wide in 
the bottom side ; (e) Too short in the bottom side. 

   
(a)    (b)    (c) 

 

  
(d)    (e) 

 
In order to provide the driver with the best quality of the transformed image, according to our 

experience, the condition of Equation (7) must be satisfied. Under this condition, the transformed 
image is always displayed at the center area of the screen and the entire image contained in the original 
source image, especially for these providing the parking slot area is kept on the transformed version. 
Due to the fact the data is processed in digital form; the condition of Equation (7) is not always 
satisfied. To conquer this problem, the testing condition was modified to test if all of the three 
conditions as Equation (8), where ε, and ε' are given very small positive values; ω and ω' are given 
interval values, are satisfied: 
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a = b = c = (m / 3) (7)  

|a − b| < ε, ω < c / m < ω', and ω' = ω + ε' (8)  

Figure 7 illustrates the flow chart for obtaining the fittest values of H, f and θ of the input source 
image. This flow chart works as follows: first, given a set of initial values for H, f and θ, then we 
perform the TVTM transformation via Equation (5). Next, the values of a, b, and c are calculated 
based on the transformed image, the output of TVTM transform. Then the relationships among the 
values of a, b, and c are examined. If the predefined condition is satisfied, it means that the ideal 
condition a = b = c = (m / 3) is met, then output the fittest values of H, f and θ.  

Figure 7. The flow chart of the fittest algorithm for parameters of TVTM. 

 
 
If the predefined condition is not satisfied then we must refine the H, f and θ values accordingly. 

Then, we use the refined parameters’ values to perform the TVTM transformation and enter the next 
loop searching for the fittest parameters’ values of the input source image. To avoid trapping the 
algorithm in infinite loops, a stop condition can be set, for example, the algorithm ends if it loops more 
than N times, where N is a given number. The evaluation process of a, c, b is to evaluate and obtain 
the new values of a, c, and b. Then the conditional testing block is used for finding the relationships 
among a, b, and c and the parameters again until they match the fitting conditions or the stop 
conditions. This algorithm keeps the results of H, f and θ along with some setup position of camera, 
for example, height, tilted angle and rotation angle. Therefore, the TVTM approach would be an auto 
adaptive calibration model. 

3.4. Implement TVTM into the Embedded Platform 

It is relatively easy to extend the single image processing scheme above to video frame images. 
Assume all of the images in a video image have the same resolution and the parameter values of H, f, 
and θ, remain unchanged for all video frames. Under this condition, only the parameter values of the 
first image frame must be estimated. The following frames can use the same parameter values 
evaluated from the first frame. This means that only the first image frame of the video image needs to 
execute the parameter searching algorithm described in the previous subsection. All information 
obtained from the coordinate transformation of a source frame image into the TVTM transformed 
image is stored in a matrix, called the Mapping Matrix Table (MMT), for later use. Using this 
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approach reduces the processing time for subsequent image frames. Since the transformation 
parameters are saved in the MMT, it can be implemented on a low computing power platform, such as 
the embedded platform. Figure 8 illustrates the processing flows of TVTM on the embedded platform. 
The first image frame of a video image is processed by a personal computer to obtain its TVTM 
transformation data, and this data is stored in the MMT matrix. The MMT matrix is then loaded and 
saved into the storage of the embedded platform. The embedded platform uses the MMT data to 
execute the TVTM transformation for the input image frames. The experiments in this study has been 
implemented an embedded platform. 

Figure 8. Processing flow of TVTM on an embedded platform with LCD screen. 

 

4. Experimental Results and Discussion 

The experiment environment was set up as follows: the parking spot locations included the right 
rear, left rear and backward as Figure 9 indicates. Three different camera tilt angles, θ = 40°, θ = 45°, 
and θ = 50°, were considered for each scenario. The camera was installed on the back bumper of the 
vehicle at a height of 80 centimeters above the ground. The camera panned angle γ is small and 
assumed to be zero. The source video image is color, with 720 × 480 resolutions. The parameter s used 
in TVTM to discard a portion of the image was fixed to 100 pixels. The experiments were first 
conducted on the MATLAB software package. Finally, the proposed scheme has been implemented in 
c-language and run under an embedded platform. 

Figure 9. The considered parking cases; (a) Right rear; (b) Left rear; (c) Backward. 

               
                               (a)                                  (b)                                                   (c) 
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4.1. Evaluation of TVTM 

The camera used to capture video images was installed above the rear bumper of the vehicle and 
equipped with a 124° wide field lens at a height of 80 cm above the ground. Therefore, each video 
image shows the bumper of the vehicle in the bottom area. The frame rate is 30 frames per second.  
As indicated in Section 3, the first image frame of the captured video image is extracted and processed 
to derive the transformation matrix. The transformation matrix will be stored in the MMT matrix that 
used to process the following image frames.  

Figure 10. Experimental results for direct backward parking with θ = 45°. In each image 
frame, the top one is the source image and its TVTM result is shown at the bottom. 

    

    
          frame #121                      frame #151                       frame #181                        frame #211 

 

    

    
           frame #241                       frame #271                      frame #301                      frame #331 

 
Figure 10 shows a sequence of eight sample video frames. In this scenario, the parking space is 

located just behind the vehicle. Those sub figures show two images for each sample image frame; the 
upper one is the original source image, and the lower one is its corresponding image transformed by 
the TVTM transformation. The broad curved white line located at the bottom of the image denotes the 
rear bumper of the vehicle. The transformed image also contains three auxiliary lines, marked with the 
ㄩ“ ” symbol, and colored red, yellow, and green, to help the driver determine the relative position of 

obstacles at the rear of the vehicle. If the image shows that an obstacle will touch the red line, it means 
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that an obstacle will touch the rear bumper of the vehicle. The yellow line indicates a distance of about 
60 cm from the rear end of the vehicle, while the green line represents a distance of about 120 cm. The 
rear bumper and auxiliary lines are always on the same position for each TVTM result frame image. 
They can help the driver recognize and understand the relative distance between the vehicle and 
obstacles.  

To change the tilt angle of the installed camera will change the depth of the scene to be included in 
the captured image. In this experiment, three different tilt angles are considered θ = 40°, θ = 45°, and  
θ = 50°. As shown in Table 1, the depths of the scene to be included in the captured image away from 
the rear bumper of the vehicle for θ = 40°, θ = 45°, and θ = 50° are more than 10 meters, more than  
9 meters, and about 5 meters, respectively.  

Table 1. The effective depth of source image and its TVTM image. 

 θ = 40° θ = 45° θ = 50° 
source image 

TVTM transformed image 
>10.0 m 

3.5 m 
>9.0 m 
2.5 m 

5.0 m 
1.5 m 

 
Table 1 also gives the corresponding effective depths for these three cases of the transformed 

TVTM image. Based on the data shown in Table 1, the final displayed image can provide the driver 
the scene of 2.5 meters depth away from the rear bumper of the vehicle. The tilt angle θ is set to 45° in 
our final system. 

4.2. Frame Rate Estimation on the Embedded Platform 

This study evaluates different approaches of the TVTM transformation on the embedded platform. 
Executing the TVTM transformation directly on the embedded platform requires 113 μs/frame,  
which allows 9 frames/s to be processed. The approaches fail to meet the practical requirement of  
15–30 frame/s. Pre-calculating and storing the transformation parameters and matrix for later  
use dramatically reduces the processing time. Performing the TVTM transformation on the embedded 
platform via MMT matrix, the performance is 36 ms/frame. The processing rate for this approach is  
27 frames/s. 

4.3. The Result Evaluation 

The similarity evaluation was performed using Normalized Cross Correlation (NCC) [14]. The 
NCC is a cosine-like correlation coefficient. Equation (9) lists, r(u,v), the function of correlation 
coefficient. If the value of NCC is closer to 1, then it presents the more similar between two images: 

,

0.5
2 2

,

( , ) ( , )
( , )

( , ) ( , )

u v
xy

u v
xy xy

f x y f t x u y v t
r u v

f x y f t x u y v t

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

− − − −
=

− − − −

∑

∑ ∑
 

(9)  

where f is source image, t  is the mean of the TVTM transformed image and ,u vf  is the mean of f(x, y) 

in the region under the TVTM transformed image.  
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Figure 11 shows the NCC values from 29 sub-frames source image and TVTM transformed image 
of backward middle parking video with θ = 50, 45 and 40 degree. The average of NCC of BMP50 
(Backward Middle Parking with θ = 50) is 0.2041, BMP45 (Backward Middle Parking with  
θ = 45) is 0.2043, and BMP40 (Backward Middle Parking with θ = 40) is 0.2030. The total average of 
NCC is 0.2038. 

Figure 11. The chart of NCC values of 29 sub-frames of backward middle parking video 
with θ = 50, 45 and 40 degree. 

 

The Peak Signal-to-Noise Ratio (PSNR) is used to evaluate noise between two images. Equation (10) 
illustrates the function of Mean Squared Error (MSE) that is one of many ways to quantify the 
difference between two images, where I (I, j) and K (I, j) are two image matrices. Based on MSE, the 
PSNR presented as Equation (11), where MAX is the maximum of image and its value equals 255. 
Figure 12 shows that the PSNR values from 29 sub-frames source image and TVTM transformed 
image of backward middle parking video with θ = 50, 45 and 40 degree. The average of PSNR of 
BMP50 is 27.2615, BMP45 is 27.3322, and BMP40 is 27.3346. The total average of PSNR is 27.3094: 
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Figure 12. The chart of PSNR values of 29 sub-frames of backward middle parking video 
with θ = 50, 45 and 40 degree. 
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4.4. Comparison with other IPM Methods 

Usually, the image quality is not good after inverse perspective mapping [8,9,11,12] transformation. 
The proposed approach is clearer than those. Table 2 lists the NCC and PSNR value comparison 
between the proposed method and the other inverse perspective mapping schemes. The average NCC 
of the proposed method is the largest one of those listed in Table 2. The average PSNR of the proposed 
method is less than [8] and [9], but our NCC is twice that. 

Table 2. The NCC and PSNR of references and our proposed method. 

 [8] [9] [11] [12] Proposed method 
NCC 
PSNR 

0.1013 
27.5253 

0.1046 
27.5319

0.1285 
25.0977

0.1940 
24.9304

0.2038 
27.3094 

4.5. Discussions 

The proposed TVTM method clipped the vague and remote image part. According to the data in 
Table 2 and the transformed images, the view of the TVTM result image is clearer than traditional 
IPMs [8,9,11,12] and the processing time is less. The distance of view is shorter than traditional IPMs. 
The clipped image part, need not be displayed, because it is not clear. The proposed TVTM method is 
stable. According to the results of NCC and PSNR, there is little difference between the maximum and 
minimum of NCC and PSNR, respectively. 

The exterior orientation parameters of camera are not measured easily, and the interior orientation 
parameters of camera must usually be calibrated. The proposed fitting parameter searching algorithm 
is used to obtain the optimal fitting parameters of TVTM, which can tune those parameters 
automatically to adapt the changes of the camera setup angle and height. On the other hand, the 
proposed algorithm does not need to calibrate the exterior or interior orientation parameters of  
the camera. The proposed algorithm can obtain the parameters of TVTM to do the coordinate 
transformation automatically.  

The Mapping Matrix Table method is used to speed up the system performance on an embedded 
platform, but the MMT scheme is only allowed for the case where the parameters of TVTM are fixed. 
If the parameters of TVTM have been changed, the MMT data must be produced again. The 
capabilities of the proposed approach are as follows. 

• The proposed approach could easy run on an embedded platform with high computing 
performance for a vehicle parking assistant system. 

• The transferred image is clearer than the other IPM methods. 
• The parameters of the proposed transform model could be found and tuned automatically. 
• The proposed approach does not need to calibrate the exterior and interior orientation 

parameters of camera. 

The limitations of the proposed approach are as follows: 

• In order to provide a good view to the driver, the position of the camera is fixed. For example, 
the camera is installed on the back bumper of the vehicle. 

• The MMT data must be reproduced when the TVTM parameters are changed. 
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5. Conclusions  

This paper proposes a Top-View Transform Model approach to transform a perspective projection 
image into its corresponding bird’s eye vision. We have applied this technique to provide the driver 
with a clearer image of the area behind the car. The proposed searching algorithm for TVTM 
parameters does not need the exact interior and exterior orientation parameters of camera.  

To speed up the processing rate to meet practical requirements, this study proposes the parameter 
value s to determine how much of the original image should be included in the final bird’s eye view 
image. The TVTM transformation matrix is stored as the Matrix Mapping Table, and can be loaded 
into the embedded platform to transform video images based on the embedded platform.  

Experimental results show that the proposed approaches can provide clear and accurate bird’s eye 
view vision to the vehicle driver. A prototype system based on the proposed approaches was 
implemented on an embedded platform. In our future work, the proposed approach will be applied to 
solve various problems for vehicle applications, such as lane departure, providing the vehicle’s 
surrounding view, and eliminating driver’s blind spots. 
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