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Abstract: In previous attempts to identify aquatic vegetation from remotely-sensed images 
using classification trees (CT), the images used to apply CT models to different times or 
locations necessarily originated from the same satellite sensor as that from which the 
original images used in model development came, greatly limiting the application of CT. 
We have developed an effective normalization method to improve the robustness of CT 
models when applied to images originating from different sensors and dates. A total of 965 
ground-truth samples of aquatic vegetation types were obtained in 2009 and 2010 in Taihu 
Lake, China. Using relevant spectral indices (SI) as classifiers, we manually developed a 
stable CT model structure and then applied a standard CT algorithm to obtain quantitative 
(optimal) thresholds from 2009 ground-truth data and images from Landsat7-ETM+,  
HJ-1B-CCD, Landsat5-TM and ALOS-AVNIR-2 sensors. Optimal CT thresholds produced 
average classification accuracies of 78.1%, 84.7% and 74.0% for emergent vegetation, 
floating-leaf vegetation and submerged vegetation, respectively. However, the optimal CT 
thresholds for different sensor images differed from each other, with an average relative 
variation (RV) of 6.40%. We developed and evaluated three new approaches to normalizing 
the images. The best-performing method (Method of 0.1% index scaling) normalized the SI 
images using tailored percentages of extreme pixel values. Using the images normalized by 
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Method of 0.1% index scaling, CT models for a particular sensor in which thresholds were 
replaced by those from the models developed for images originating from other sensors 
provided average classification accuracies of 76.0%, 82.8% and 68.9% for emergent 
vegetation, floating-leaf vegetation and submerged vegetation, respectively. Applying the 
CT models developed for normalized 2009 images to 2010 images resulted in high 
classification (78.0%–93.3%) and overall (92.0%–93.1%) accuracies. Our results suggest 
that Method of 0.1% index scaling provides a feasible way to apply CT models directly to 
images from sensors or time periods that differ from those of the images used to develop 
the original models. 

Keywords: aquatic vegetation; remote sensing; classification tree; sensor systems 
 

1. Introduction 

Shallow freshwater lakes are some of the ecosystems most vulnerable to anthropogenic disturbance [1,2]. 
With the development of socio-economic uses, global water pollution is becoming increasingly 
serious; consequently, more and more aquatic vegetative habitats are lost, which results directly in 
changes to aquatic vegetative productivity, distribution and biodiversity [3,4]. Because of the 
important ecological and socio-economic functions of aquatic vegetation [5,6], dynamic monitoring at 
large spatial scales is important for lake management. To be effective and cost-efficient, such 
monitoring efforts require the development of aquatic vegetation maps using remotely sensed 
information [7–11]. 

However, mostly due to the low spectral signal for aquatic vegetation in remotely sensed images, 
aquatic vegetation is not as easily detectable as terrestrial vegetation in these images [8,12]. Although 
many successful classifications of aquatic vegetation have been achieved, with accuracies ranging 
from 67.1 to 96% [12–18], remote sensing techniques have not been used widely as a regular tool for 
monitoring aquatic vegetation changes, and more research is needed to help clarify the most 
appropriate and effective methods [1,12,19–21].  

Many remote sensing techniques have been developed to identify aquatic vegetation, including 
unsupervised isoclustering techniques, supervised maximum likelihood classifiers, Tasseled-Cap 
classification and remote sensing combined with ancillary environmental data [1,13,22–24]. However, 
most of these methods need either manual interpretation or abundant ground truth samples. A standard, 
less subjective method that is effective when ground truth samples are insufficient to evaluate the 
classification results is lacking. Classification trees (CT) have the potential to satisfy this need and 
have been used successfully [16,18,25–28]. However, in most previous studies the images used to 
create the CT models and those used to apply the CT model to other times or locations were generally 
from the same satellite sensors [16,18,26,29]. Mostly due to the differences in both band wavelengths 
and spectral response curves among satellite sensors, the spectral reflectance and spectral index (SI) 
values at the same time for the same target might be very different in different images [30,31]. This 
explains the difficulty associated with directly applying a CT model developed using images from a 
specific sensor to images from a different sensor, especially for the classification of aquatic vegetation 
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with inherently low spectral signals [8]. Therefore, the application of CT models may be greatly 
restricted in many situations, such as when it is difficult to collect sufficient images from the same 
sensors due to cloud cover (which is a common occurrence in rainy areas such as Taihu Lake, 
especially during the growth periods of aquatic vegetation) and when the objective is to map aquatic 
vegetation for past periods in which the satellite technology was less developed, resulting in a lack of 
images from the same sensor.  

To address the restrictions to using CT models to map aquatic vegetation, we have developed a 
simple normalization method for the application of CT modeling techniques to images from different 
sensors for Taihu Lake, China, using field measurements and satellite images from ETM+, TM, 
AVNIR-2 on the Advanced Land Observing Satellite (ALOS) and CCD on the Chinese environmental 
satellite of HJ-1B. In our effort to map aquatic vegetation of Taihu Lake using CT models, we used 
images normalized with selected pixels that incorporated the characteristics of the application image 
instead of the original remotely sensed images. We compared three different normalization methods to 
determine which gave the most consistent classification results across images.  

Our approach was based on several assumptions: (1) images from different sensors with similar but 
different bands contain the same information regarding aquatic vegetation or related environmental 
factors, and thus the spectral indices that are based on them are comparable by inter-calibration [7,8]; 
(2) due to the differences in band wavelength ranges, spectral response curves, weather conditions and 
other factors, the thresholds that delineate aquatic vegetation from other types in CT models developed 
using images from different sensors must be different from each other; and (3) by selecting typical and 
stable pixels characteristic of the application image as the standards by which to normalize the images, 
we can apply the CT model developed from the normalized images directly to images from different 
sensors to successfully delineate aquatic vegetation types. 

2. Materials and Methods 

2.1. Site Description 

Our study area consisted of Taihu Lake, the third-largest freshwater lake in China, where aquatic 
vegetation distribution has been experiencing a significant change during the past decades [32–34], as 
well as the surrounding area within 500 m of the lake boundary, where most of the reed vegetation 
(one of the most common types of emergent vegetation) was distributed. Taihu Lake is located in the 
core of the Yangtze Delta, one of the most developed areas in China, within the lower reaches of the 
Yangtze River Basin [35]. The lake, with an average depth of 1.9 m, occupies a surface area of 2,425 km2. 
Its catchment contains 3.7% of the country’s population and 11.6% of its gross domestic product (GDP) 
within its area of 36,900 km2, which accounts for only 0.4% of China’s land area [36]. Since the 1950s 
and especially since the 1980s, human activities have increasingly stressed the lake’s development. 
Currently, the primary water problem in Taihu Lake is eutrophication, which together with human 
activities, are changing and destroying the formerly healthy aquatic ecosystem of Taihu Lake [37].  

During our field visits in 2009 and 2010, we classified the aquatic vegetation into three types: 
emergent vegetation, floating-leaf and floating vegetation (because of the dominance of floating-leaf 
over floating vegetation in this class, we refer to it as floating-leaf vegetation in later text although it 
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includes both), and submerged vegetation. More than 11 species of aquatic plants were found, similar 
to other field surveys in recent years [32,33]. Phragmites communis, Nymphoides peltatum and 
Potamogeton malaianus dominated the emergent, floating-leaf and submerged vegetation, respectively. 
Because emergent vegetation has the highest signal intensity and submerged vegetation has the lowest, 
areas that consisted of emergent vegetation mixed with other aquatic vegetation types were classified 
as emergent vegetation, and areas with mixed floating-leaf and submerged vegetation were classified 
as floating-leaf vegetation.  

2.2. Field Surveys 

We conducted field surveys on 14–15 September 2009 and 27 September 2010. In 2009, a total of 
426 training or validation samples were obtained from: (a) 208 plots located along a transect from the 
east to the south of the lake; (b) 137 plots from 26 lake locations distributed nearly uniformly across 
the lake [36]; and (c) 48 plots of reed vegetation and 33 plots of terrestrial land cover (e.g., shoreline 
roads and buildings such as docks, businesses and factories) selected from a 1:50,000 land use and land 
cover map. Similarly, a total of 539 field samples were obtained in 2010, including 438 photographs 
taken along a transect from the east to the southeast of the lake and 101 plots from the 1:50,000 land 
use and land cover map. The field survey has been described in detail by Zhao et al. [29]. 

2.3. Image Processing 

Because they contain dynamic information concerning aquatic vegetation and related environmental 
factors, multi-seasonal images have the potential to provide higher classification accuracy than a single 
image [16,38]. Therefore, in this study we used a combination of two images for aquatic vegetation 
identification, one from winter and one from summer. A total of six image pairs were used:  
(1) ETM+ images dated 26 March and 17 August 2009 (SLC-off images downloaded from 
http://earthexplorer.usgs.gov/); (2) TM images dated 13 January and 10 September 2009; (3) AVNIR-2 
images from ALOS dated 30 December 2008 and 17 August 2009; (4) CCD images from HJ-1B dated 
15 March and 10 September 2009; (5) ETM+ images dated 13 March and 21 September 2010; and  
(6) CCD images from HJ-1B dated 10 March and 21 September 2010. Of these image pairs, the four 
from 2009 (including the AVNIR-2 image dated 30 December 2008 because no high quality AVNIR-2 
image could be obtained from the winter of 2009) were used to compare different normalization 
methods, while the other two pairs were used to validate the robustness of our recommended 
normalization method. The band wavelength ranges and resolutions of the images used in this study 
are shown in Table 1. For all the images used, cloud cover was no greater than 10% of the entire study 
area, following the recommended standard for aquatic remote sensing [39]. Before atmospheric 
correction, cloud-contaminated pixels were removed using interactive interpretation. The cosine 
approximation model (COST) described by Chavez, which has been used successfully in other aquatic 
remote sensing studies for atmospheric corrections of multi-temporal Landsat images [40,41], was 
used for the atmospheric corrections, and thus surface reflectance images were obtained for the 
calculation of spectral indices. 
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Table 1. Sensors, spatial resolutions, and band wavelengths of the remotely sensed images 
used in this paper.  

Sensor Resolution B1 B2 B3 B4 
Landsat7-ETM+ 30 0.45–0.52 0.52–0.60 0.63–0.69 0.76–0.96 

HJ-1B-CCD 30 0.43–0.52 0.52–0.60 0.63–0.69 0.76–0.90 
Landsat5-TM 30 0.45–0.52 0.52–0.60 0.63–0.69 0.76–0.90 

ALOS-AVNIR-2 10 0.42–0.50 0.52–0.60 0.61–0.69 0.76–0.89 

In order to reduce misclassification resulting from the presence of algae, cyanobacterial blooms 
must be detected before delineation of the aquatic vegetation classes. The method used here was 
similar to the procedure by Zhao et al. and is briefly summarized here. We first divided Taihu Lake 
into two parts: the eastern and southeastern portions, referred to as the grass type zone, and the 
remaining portions, referred to as the algae type zone [42]. The grass zone consisted of large areas of 
floating-leaf and submerged vegetation where the water clarity was significantly higher than the algae 
type zone, and nearly no cyanobacterial blooms were found. Conversely, almost no floating-leaf and 
submerged vegetation was found in the algae type zone. Because there is a high probability that a pixel 
with NDVI > 0.4 is vegetation, we next identified the pixels in the algae type zone where NDVI > 0.4, 
using the ETM+ image of 20 August 2010, which was taken soon after a rainfall event caused a near 
absence of cyanobacterial blooms on the water surface. We then removed from the images all the 
pixels in the algae type zone with a higher TM4 than TM3 reflectance [43], except where the pixels 
had NDVI > 0.4 in the ETM+ image of 20 August 2010. Pixels that were removed were not used in the 
subsequent efforts to delineate and identify aquatic vegetation. In the grass type zone, if a pixel had 
TM4 > TM3 at least twice between August and September, it was identified as potential aquatic 
vegetation and retained; if a pixel had TM4 > TM3 only once during that period, it was identified as a 
cyanobacterial bloom area and was removed. Besides the remote sensing images discussed previously, 
two additional ETM+ images (dated 2 September 2009 and 19 July 2010) were used to aid in detecting 
cyanobacterial blooms. Using ERDAS IMAGINE 9.2 (Leica Geosystems Geospatial Imaging, LLC), 
geometric corrections were applied to all the images using second-order polynomials with an accuracy 
higher than 0.5 pixel.  

2.4. Analytical Methods 

2.4.1. Classification Tree Model Structure 

Classification tree (CT) analysis, which partitions data dichotomously using thresholds determined 
from application of specified splitting rules, was used for the identification and mapping of aquatic 
vegetation. Considering the differences in both wavelength range and the spectral response curve 
among images from different sensors, we first developed CT model structures manually for emergent, 
floating-leaf and submerged vegetation based on known relationships between spectral indices and  
the aquatic vegetation in Taihu Lake, and, secondly, we obtained quantitative thresholds for  
specified remotely sensed images from CT analysis of the data in our statistical software package  
(PASW-Statistics v. 18) using the Chi-squared Automatic Interaction Detector (CHAID) algorithm. In 
this paper, the thresholds obtained from the quantitative analysis were considered optimal thresholds 
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based on field observations. This process differed from other studies in which the CT models, both 
structure and thresholds, were developed directly from specified images and ground measurements 
using quantitative algorithms [16,18,25,26]. Our process was based on the consideration that, if we 
obtained both structure and thresholds using a quantitative algorithm, different CT structures would be 
obtained for different images, and thus it would be difficult to compare the optimal thresholds for the 
images from different time periods and sensors and to evaluate the influence of different image time 
periods and sensors on the optimal thresholds of the CT model. To develop model structures, we 
selected three of the most sensitive and stable spectral indices for identification of emergent,  
floating-leaf and submerged vegetation: the Normalized Difference Vegetation Index (NDVI) [44], 
Normalized Difference Water Index of McFeeters (NDWIF) [45], and average reflectance of the blue, 
green and red bands from the remote sensing image (AVE123) [46]. The variables were calculated by 
season. For example, NDVI-(w), NDVI-(s) and NDVI-(s-w) are the NDVI of winter, NDVI of summer 
and NDVI of summer minus NDVI of winter, respectively.  

Figure 1 shows the basic CT model structures we developed for identification of emergent,  
floating-leaf and submerged vegetation, which differed slightly from those presented by Zhao et al., 
primarily because of the lack of a band corresponding to ETM+ band-5 in the ALOS and HJ images. 
The model structures here were developed in a progressive fashion (i.e., first emergent, then 
emergent + floating-leaf and then emergent + floating-leaf + submerged vegetation), treating the 
remaining types as “other”. For emergent vegetation, we assigned the primary spitting rule of  
NDWIF-w > T1 to obtain pixels of the lake, marsh and wasteland where emergent vegetation grew and 
to remove pixels representing agricultural fields and developed land. Because NDVI is generally larger 
for emergent vegetation than for floating-leaf vegetation, the secondary splitting rule, NDVI-s > T2, 
was assigned to segregate pixels of emergent vegetation and portions of the floating-leaf vegetation 
from pixels of open water, submerged vegetation and the bulk of the floating-leaf vegetation.  
NDWIF < T3 was assigned as a tertiary splitting rule to further segregate pixels of floating-leaf 
vegetation from pixels of emergent vegetation. At this point, some pixels of floating-leaf vegetation 
may still have been retained in the emergent vegetation grouping (i.e., the pixels with the densest 
floating-leaf vegetation). Therefore, we added a fourth-level spitting rule of DB < 500 m, where DB is 
distance to the nearest bank, based on our field observations that most of the emergent vegetation grew 
within 500 m of the lake bank.  

In order to separate floating-leaf vegetation from other types, only two levels of splitting rules were 
needed (Figure 1(B)), and these splitting rules were similar to those for emergent vegetation. The 
initial spitting rule of NDWIF-w > T4 was assigned to segregate the pixels of the lake where floating-
leaf vegetation grew from the land pixels. Compared with open water and submerged vegetation,  
floating-leaf vegetation has significantly different spectral characteristics, especially at near infrared 
(NIR) wavelengths, due to the strong absorption of water, and thus the secondary spitting rule of 
NDVI > T5 was assigned.  

For submerged vegetation, the initial splitting rule was again assigned to be NDWIF-w > T4 to 
segregate the lake pixels from the land pixels (Figure 1(C)). Because submerged vegetation can only 
grow in water with relatively high transparency, the water clarity of most submerged vegetation pixels 
is higher than that of open water pixels. AVE123 is used widely to estimate water clarity [46]; 
therefore, we used AVE123-(s-w) and AVE-(s) in our classification model to segregate pixels of 
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submerged vegetation from those of open water. These splitting rules were able to identify most pixels 
of submerged vegetation, but some pixels of submerged vegetation have similar but weaker spectral 
characteristics (i.e., higher reflectance of the NIR band and lower reflectance of the red band), 
especially where the vegetation has large leaves growing laterally near the water surface. For these 
pixels, AVE123 values are not substantially lower than in open water pixels, so the rules associated 
with these values cannot be used to effectively separate out submerged vegetation. Consequently, we 
assigned an alternative splitting rule of NDVI-s > T8 to identify submerged vegetation pixels with 
these characteristics.  

Figure 1. Classification tree model structure established for (A) emergent vegetation;  
(B) floating-leaf vegetation and (C) submerged vegetation. The numbers 3, 2 and 1 in the 
end nodes of the classification trees represent emergent, floating-leaf and submerged 
vegetation, respectively, whereas 0 represents other types. T1, T2, T3, T4, T5, T6, T7 and 
T8 represent the quantitative thresholds obtained using classification tree analysis of the 
field observations in PASW-Statistics v. 18. Variables used are the Normalized Difference 
Water Index of McFeeters (NDWIF), the Normalized Difference Vegetation Index 
(NDVI), the average reflectance of the blue, green and red image bands (AVE123) and the 
distance to the lake bank (DB). Variables were calculated by season (s = summer, w = winter) 
or differences among seasonal values (e.g., s-w). 

 

2.4.2. Normalization Methods 

One of the most important steps in determining the effectiveness of our CT procedure was to 
identify pixels within each remotely-sensed image that were fully characteristic of that image. To 
determine the best normalization procedure, we employed and compared three different methods that 
applied a series of pre-processing steps to the surface reflectance image:  
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Method of 5% DN scaling. We first normalized the surface reflectance image using pixels with 
extreme reflectance values (i.e., the highest and lowest 5% in the entire image) and subsequently 
created images for the spectral indices (SI).  

Method of 5% index scaling. We first created images for the spectral indices from the surface 
reflectance and then normalized the SI images using pixels with extreme SI values (i.e., the highest and 
lowest 5% in the entire image). This was similar to Method of 5% DN scaling except the normalization 
was applied to the SI images rather than the reflectance images.  

Method of 0.1% index scaling. Similar to Method of 5% index scaling, normalization was applied 
to the SI images rather than the surface reflectance images. However, instead of normalizing the 
images using the highest and lowest 5% of SI pixel values for all SI as in Method of 5% index scaling, 
the normalization used different percentages of extreme high and low values for different indices. For 
NDVI and NDWIF images, the normalization parameters were calculated using pixels with the highest 
and lowest 0.1% of values in the entire image. For the AVE123 image, the normalization parameters 
were calculated using the pixels with the lowest 0.1% and highest 10% of values.  

2.4.3. Comparison Methods 

To evaluate the relative differences in the optimal thresholds of the classification trees for the four 
image pairs from 2009, we computed Relative Variation (RV): ܴܸ ൌ ∑ ሺܵܫ െ ഥସ௡ୀଵܫܵ ሻ4 ൈ ሺܵܫ୫ୟ୶ െ ୫୧୬ሻ (1)ܫܵ

where SI is the optimal threshold obtained from quantitative analysis of field data for a certain image 
pair, SI  is the average of the optimal thresholds for the four 2009 image pairs, and SImax and SImin are 
average values of the spectral index for the 5% of pixels with the highest and lowest values, 
respectively, in the four image pairs.  

For comparison of CT models developed from SI images normalized by Method of 5% index 
scaling and Method of 0.1% index scaling, Equation (1) could be simplified as follows: ܴܸ ൌ ∑ ሺܵܫ െ ഥܫܵ ሻସ௡ୀଵ 4 ൈ 100 (2)

Classification accuracy and overall accuracy were used to assess the performances of different CT 
models in identifying aquatic vegetation. Classification accuracy was defined as the percentage of 
correctly classified samples for a certain cover type relative to the total number of actual samples of 
this type plus the samples mistakenly classified as this type. For example, assume there are a total of 
220 samples consisting of 100 submerged vegetation and 120 other type samples. Of these, 70 
submerged vegetation samples and 100 other type samples are correctly classified. Therefore, the 
classification accuracy for submerged vegetation is 70% (i.e., ଻଴ଵ଴଴ାଶ଴ ൈ 100 ൌ 58.3%). The overall 

accuracy was defined as the percentage of samples that were classified correctly (using the above 
numbers, overall accuracy is 77.3%, i.e., ଻଴ାଵ଴଴ଶଶ଴ ൈ 100 ൌ 77.3%) [13–18]. Generally, classification 

accuracy was lower than overall accuracy because of the difference in calculation method.  
The quantitative analyses were likely to result in differences in the optimal thresholds of the CT 

models for different image pairs. In other words, RV was not zero, generally. To assess the effect of 
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variability in the thresholds, we applied the optimal thresholds for each image pair as well as the 
thresholds developed for the other three image pairs to the CT models for each image pair and 
compared the resulting classification accuracies. 

Performance of each normalization method was assessed using the classification and overall 
accuracies of the vegetation maps resulting from the models applied to images from each method, and 
the method with the best performance was selected for further analyses. The optimal thresholds of the 
CT models from the four image pairs were averaged for the selected normalization method, and 
averages were used as thresholds in final CT models for 2009. To evaluate the robustness of the 
models, the 2009 CT models were applied to the two 2010 image pairs (ETM+ and CCD sensors) 
normalized by the selected normalization method. 

3. Results  

3.1. Traditional CT Models for Original Images 

We used CT analysis with our established model structures (see Figure 1) to obtain optimal 
thresholds for the original image pairs from each sensor (Table 2). With the optimal thresholds, CT 
models obtained classification accuracies ranging from 70.1% to 87.6% for emergent vegetation, from 
75.6% to 92.4% for floating-leaf vegetation, from 66.3% to 81.4% for submerged vegetation and from 
81.1% to 91.6% for other types, with respective averages of 78.1%, 84.7%, 74.0% and 86.2% (Figure 2). 
These results suggested that aquatic vegetation types in Taihu Lake could be distinguished using  
pre-developed CT model structures with optimal thresholds obtained from quantitative CT analysis of 
field observations. 

However, optimal thresholds of the models differed according to the sensor from which the image 
pair originated, with RV ranging from 2.50% to 13.4% (average 6.40%, Table 2). Despite relatively 
low values of RV, the variability in thresholds substantially affected the performance of the CT models 
in identifying aquatic vegetation (Figure 2). Applying thresholds developed for other image pairs 
(sensors) to CT models for a specific image pair (sensor) resulted in classification accuracies that 
averaged 59.5%, 68.0%, 62.1% and 67.8% for the images from ETM+, TM, AVNIR-2 and CCD 
sensors, respectively; these averages were significantly lower than the classification accuracies of CT 
models using the optimal thresholds for each sensor (p = 0.00). These results suggested that applying 
CT models using thresholds optimized for images from a particular sensor or date to images from 
different sensors or dates could reduce the classification accuracy significantly.  

Table 2. Optimal thresholds for the classification tree models (see Figure 2) developed for 
original, non-normalized images from different sensors using 2009 field observations and 
quantitative CT analysis. RV is the relative variation (%) in the values of a particular 
threshold. 

Sensor T1 T2 T3 T4 T5 T6 T7 T8 
Landsat7-ETM+ −0.238 0.508 −0.457 0.145 0.102 −0.023 0.074 0.012 

HJ-1B-CCD −0.109 0.411 −0.387 0.058 0.181 0.003 0.069 0.143 
Landsat5-TM −0.301 0.481 −0.471 −0.092 0.196 −0.034 0.063 0.148 

ALOS-AVNIR-2 −0.135 0.525 −0.410 0.071 0.045 −0.027 0.092 0.003 
RV (%) 7.42 2.65 2.50 6.92 4.32 13.4 9.83 5.19 
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Figure 2. Aquatic vegetation classification accuracy (CA) of the CT models using  
non-normalized images. For each sensor, T-G is the CA of models with optimal thresholds 
developed from field data and images from that sensor, whereas T-O is the average CA of 
the models using thresholds developed for the image pairs from the other three sensors. 

 

3.2. CT Models for Normalized Images 

Similarly, we used the field data and quantitative analysis to obtain optimal thresholds for the CT 
models based on the three sets of normalized images (Table 3). RV values ranged from 4.88% to 14.9% 
(average 9.40%) for Method of 5% DN scaling, 2.37% to 7.24% (average 5.12%) for Method of 5% 
index scaling and 0.28% to 3.96% (average 1.98%) for Method of 0.1% index scaling. Compared with 
both the RV values of the thresholds based on the original images that were not normalized and the RV 
values based on the normalized images for Method of 5% DN scaling and Method of 5% index 
scaling, the RV values for Method of 0.1% index scaling decreased significantly (p = 0.00). Therefore, 
Method of 0.1% index scaling was the best choice for resolving the problems inherent to application of 
CT models to images from different sensors or different dates. Classification accuracies of the CT 
models developed for images from a particular sensor that were normalized using Method of 0.1% 
index scaling (Figure 3) were very similar to those based on the original, non-normalized images 
(Figure 2). When applied to images from a particular sensor, the CT models developed for image pairs 
from other sensors achieved average classification accuracies of 76.0%, 82.8%, 68.9% and 84.4% for 
emergent vegetation, floating-leaf vegetation, submerged vegetation and other types, respectively, 
which was consistently slightly lower than that of the CT model developed specifically for that sensor. 
In other words, the slight variation in model thresholds among the different image pairs normalized by 
Method of 0.1% index scaling caused a decrease in classification accuracy. However, the magnitude of 
the decrease was significantly lower than that resulting from the models based on both the original 
images and the other normalization methods (with p values ranging from 0.00 to 0.01), consistent with 
the results associated with the RV values of the model thresholds.  
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Table 3. Optimal thresholds for the classification tree models (see Figure 2) developed for 
normalized images from different sensors using field observations and quantitative CT 
analysis. Results are shown for the three normalization methods presented in this paper. 
RV is the relative variation (%) in the values of a particular threshold.  

Method Sensor T1 T2 T3 T4 T5 T6 T7 T8 

Method of 
5% DN 
scaling 

Landsat7-ETM+ −0.225 0.656 −0.588 0.338 0.144 −0.507 0.438 0.019 
HJ-1B-CCD 0.011 0.794 −0.826 0.218 0.300 −0.713 0.341 0.219 
Landsat5-TM −0.138 0.681 −0.275 0.265 0.169 −0.619 0.393 0.038 
ALOS-AVNIR-2 −0.481 0.738 −0.631 −0.206 0.044 −0.546 0.414 −0.125 
RV (%) 14.6  4.88  14.9  14.8  7.03  6.98  2.94 9.08  

Method of 
5% index 
scaling 

Landsat7-ETM+ −0.218  1.077 −0.128  0.350  0.720  0.124 0.415 0.623  
HJ-1B-CCD −0.176  1.011 −0.074  0.322  0.827  0.056 0.351 0.786  
Landsat5-TM −0.120  1.036 −0.080  0.275  0.804  0.035 0.390 0.751  
ALOS-AVNIR-2 −0.359  1.149 −0.178  0.123  0.692  0.108 0.421 0.643  
RV (%) 7.01  4.46  3.81  7.24  5.49  3.77 2.37 6.81  

Method of 
0.1% index 
scaling 

Landsat7-ETM+ 0.286  0.757 0.156  0.508  0.572  0.143  0.506 0.526  
HJ-1B-CCD 0.323  0.749 0.161  0.504  0.647  0.101  0.465 0.619  
Landsat5-TM 0.301  0.752 0.154  0.459  0.632  0.128  0.484 0.583  
ALOS-AVNIR-2 0.310  0.756 0.166  0.442  0.558  0.145  0.525 0.516  
RV (%) 1.14  0.28  0.46  2.77  3.71  1.48   2.05 3.96  

Figure 3. Aquatic vegetation classification accuracy (CA) of the CT models using images 
normalized with Method of 0.1% index scaling. For each sensor, T-G is the CA of models 
with optimal thresholds developed from field data and images from that sensor, whereas  
T-O is the average CA of the models using thresholds developed for the image pairs from 
the other three sensors. 
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3.3. Application of 2009 Models to 2010 Images  

Applying CT models developed for normalized (Method of 0.1% index scaling) image pairs from 
2009 to image pairs from 2010 resulted in high classification accuracies for models based on both the 
ETM+ (78.0% to 90.6%) and CCD (80.7% to 93.3%) sensors (Tables 4 and 5).  

Table 4. The performance (classification accuracy, CA) of classification tree models 
developed for 2009 images normalized using Method of 0.1% index scaling when applied 
to ETM+ image pairs from 2010 (13 March and 21 September). Values are number of  
field observations.  

 Predicted 
CA 
(%) 

Omission 
Error 

Actual 
 

Emergent 
Vegetation 

Floating-Leaf 
Vegetation 

Submerged 
Vegetation 

Other 
Types 

Emergent vegetation 72 7 0 0 85.7 8.86  
Floating-leaf vegetation 5 130 6 2 83.9 9.09  
Submerged vegetation 0 5 96 8 78.0 11.93  
Other types 0 0 8 173 90.6 4.42  
Commission error 6.49  8.45  12.73  5.46    

Table 5. The performance (classification accuracy, CA) of classification tree models 
developed for 2009 images normalized using Method of 0.1% index scaling when applied 
to CCD image pairs from 2010 (10 March and 21 September). Values are number of field 
observations.  

 Predicted 
CA 
(%) 

Omission 
Error 

Actual 
 

Emergent 
Vegetation 

Floating-Leaf 
Vegetation 

Submerged 
Vegetation 

Other 
Types 

Emergent vegetation 75 4 0 1 90.4 6.25  
Floating-leaf vegetation 4 132 5 2 85.2 7.69  
Submerged vegetation 0 8 96 5 80.7 11.93  
Other types 0 1 5 168 93.3 3.45  
Commission error 5.06  8.97  9.43  4.55    

Overall accuracies were 92.0% and 93.1% for ETM+ and CCD images, respectively. Validation 
results also indicated that our normalization procedure using Method of 0.1% index scaling adequately 
resolved the typical problem of decreased classification accuracy when applying models developed for 
images from specific sensors or dates to images from other sensors or dates. Maps of the 2009 and 
2010 aquatic vegetation distribution in Taihu Lake were created by applying the 2009 models to the 
respective year’s images (Figure 4). These maps indicated that emergent, floating-leaf and submerged 
vegetation occupied 21.3 km2, 139.4 km2 and 148.9 km2 in 2009, respectively, which amounted to 
0.88%, 5.75% and 6.14% of the entire lake area. In 2010, the areas of emergent, floating-leaf and 
submerged vegetation were 33.1 km2, 145.3 km2 and 132.3 km2, respectively, corresponding to 1.36%, 
5.99% and 5.46% of the entire lake area.  
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Figure 4. The distribution of aquatic vegetation in Taihu Lake in 2009 (left) and 2010 
(right) as specified by CT models developed from 2009 images. 

 

4. Discussion 

4.1. Application of CT Models to Images from Different Sensors and Dates 

For original, non-normalized images, optimal thresholds for different image pairs varied by 6.40%, 
on average, which was probably due to the differences in the originating sensors and dates of the 
image pairs. First, because the characteristics of spectral bands and spectral response curves vary 
distinctly from sensor to sensor, vegetation indices derived from images originating from different 
instruments are necessarily different and not directly comparable [47]. Differences in NDVI obtained 
from different sensors in previous studies have ranged from 0 to 7% [30,31]. Second, additional factors 
such as solar and viewing angles, satellite altitude and atmospheric conditions necessarily differ among 
images from different sensors and dates and affect reflectance and spectral indices of images and thus 
comparability of reflectance and spectral indices among those images [47]. Therefore, inter-calibration 
of vegetation indices from different dates and sensors is necessary to improve comparability and 
application ability of remote sensing [30]. 

We found that CT models for aquatic vegetation were very sensitive to the variability in threshold 
values, which might be related to the low spectral signal of aquatic vegetation. Because of the strong 
absorption of light by water, the spectral signal of water bodies is very weak, and reflectance values 
are generally no more than 10% [8]; these issues add to the difficulties involved in aquatic vegetation 
classification and amplify the necessity for inter-calibration of indices derived from images originating 
from different dates and sensors, especially for submerged vegetation. More importantly, the existence 
of numerous mixed pixels of open water and the various aquatic vegetation types in our study further 
blurred the differences in reflectance and spectral indices, resulting in a strong sensitivity of the 
classification output to slight variations in the thresholds of the CT models, even when the spectral 
characteristics differed substantially between open water and the aquatic vegetation types.  
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4.2. Differences in Performance of the Normalization Methods 

An appropriate normalization method for improving the application of CT models among images 
from different sensors and dates should have at least two characteristics: (1) the range of minimum and 
maximum values used to normalize an image is wide enough to encompass the potential differences 
caused by factors that have a nearly uniform effect on an image and that may vary among images, such 
as atmospheric conditions (e.g., concentrations of carbon dioxide, ozone and water vapor), satellite 
altitudes, sensor features and vegetation growth periods; and (2) the normalization parameters for an 
image are insensitive to factors that are unevenly distributed in the image, such as thin haze stacks and 
turbid waters caused by localized or transient factors. These standards differ from those suggested by 
previous researchers [48], who have suggested that the normalization parameters should be based on 
man-made objects whose reflectance was independent of seasonal or biological cycles. The main 
reason for the different approach in our study is related to the objectives. We specifically sought to 
eliminate, using normalization, the slight differences among images that were caused by vegetation 
growth period, but this was not a focus of the other numerous relative radiometric normalization 
methods such as the statistical adjustments approach [49,50] and histogram matching integrated in 
some image processing software packages.  

Model performance was lowest using Method of 5% DN scaling for normalization, suggesting that 
the reflectance images were not especially useful as normalization objects to improve the ability of a 
CT model developed for a particular image to correctly classify aquatic vegetation types using images 
from different sensors and dates. The poor performance of Method of 5% DN scaling might be related 
to the effect of unevenly distributed factors (e.g., cloud stacks) on the maximum and minimum 
reflectance values used as normalization parameters. In other words, pixels with extreme reflectance 
values may have been located primarily in areas contaminated by clouds, cloud shadows or localized 
turbid waters. Although the pixels that were strongly contaminated by clouds were removed using 
interactive interpretation, less dense cloud cover remained in the images, leading to uncertainty in the 
normalization parameters as well as the spectral indices calculated from the normalized reflectance 
images. In fact, Method of 5% DN scaling is very similar in basic principle to the atmospheric 
correction model (COST) that we applied to the images [40,41]. Therefore, that analysis can also help 
explain why RV for the original images in Table 2 was relatively high.  

Method of 5% index scaling was based on the normalized spectral index (SI) images. Because 
spectral indices generally have a better ability to resist the effect of transient or localized factors than 
reflectance, the pixels with extreme SI values generally are not located in areas that are drastically 
contaminated by these transient or localized factors. Therefore, Method of 5% index scaling was able 
to partially compensate for the limitations of Method of 5% DN scaling and thus exhibited better 
performance. To clarify further using the individual spectral indices, pixels with the maximum values 
of NDWIF were generally located in areas dominated by submerged vegetation, and minimum 
NDWIF values were typical of emergent and floating-leaf vegetation [16]. Maximum NDVI values 
were generally found where emergent and floating-leaf vegetation was dominant, and minimum NDVI 
was typical of submerged vegetation. In other words, the pixels selected by Method of 5% index 
scaling to calculate normalization parameters typically were not located in areas that were strongly 
influenced by transient or localized factors such as cloud stacks. As a result, the pixels selected by 
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Method of 5% index scaling to calculate the normalization parameters better characterized the image 
than did those selected by Method of 5% DN scaling. The optimal CT thresholds for NDWIF and 
NDVI obtained using Method of 5% index scaling were consistently less variable (i.e., lower RV) than 
those obtained using Method of 5% DN scaling. AVE123, the average value of the three reflectance 
bands, was more stable than reflectance of one band. Consequently, the CT thresholds for AVE123 
obtained using Method of 5% index scaling performed slightly better than those obtained using 
Method of 5% DN scaling. 

Method of 0.1% index scaling, which was developed to compensate for the limitations of Method of 
5% index scaling, performed the best and is our recommendation for an effective normalization 
procedure. For NDWIF and NDVI images, normalization parameters were calculated using the most 
extreme 0.1%, instead of 5%, of pixel values. As mentioned previously, the pixels with the most 
extreme NDWIF and NDVI values were located primarily in areas of active growth of aquatic 
vegetation. However, aquatic vegetation in Taihu Lake was distributed across only 15.8–20.9% of the 
area of the entire lake, and emergent vegetation encompassed no more than 3.5% [37]. Using the 
highest and lowest 5% of values, the composition of the selected pixels was complex and often 
consisted of several different types, resulting in unstable average values of the spectral indices of these 
pixels. Conversely, using the highest and lowest 0.1% of values as in Method of 0.1% index scaling, 
the selected pixels consisted mostly of the most typical aquatic vegetation type and generally were 
those with the highest coverage or biomass. The pixels selected using Method of 0.1% index scaling 
tended to be more stable and resistant to transient and localized factors that affected reflectance. 
Similarly, thresholds of AVE123 normalized using Method of 0.1% index scaling performed better 
than those normalized using Method of 5% index scaling, as measured by decreased RV values.  
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