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Abstract: Reliable GPS positioning in city environment is a key issagtually, signals are
prone to multipath, with poor satellite geometry in mangsts. Using a 3D urban model to
forecast satellite visibility in urban contexts in ordeingorove GPS localization is the main
topic of the present article. A virtual image processing ttetects and eliminates possible
faulty measurements is the core of this method. This imagenmnerated using the position
estimated a priori by the navigation process itself, undadrconstraints. This position is
then updated by measurements to line-of-sight satellitdg orhis closed-loop real-time
processing has shown very first promising full-scale testlts.
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1. Introduction

Reliable GPS positioning in city environment is a key issaiually, signals are prone to multipath,
and satellite geometry, despite its improvement with GN&8roperability, remains poor in many
streets. Non-Line-Of-Sight (NLOS) satellites cause ingairreceiver-satellite range measuring errors,
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because the direct signal is blocked and only the reflectgdhbis tracked. Contrary to multipath where
direct and reflected signals interfere, errors with NLO®Iitgs grow unboundedly. The geometrical
properties of the local environment of the antenna can éxplaterministically the phenomena that
occur, which makes 3D city models of great interest in thekyr problem.

First, let us mention, even if there is no use of 3D modelsjritege processing approach like, e.g.,
that of the LocoPROL project (Low cost satellite based ttagation system for signalling and train
PROtection for Low density railway lines)]. This approach already uses an obstacle elevation model,
characterized from a fish-eye camera for both sides of aagjlin order to determine whether a received
signal should be considered or not, in which case the carreBpg satellite turns out to be masked from
the user.

Concerning 3D models, in 2007, Bradbuey al. [2] have investigated the possibility of using
building description in the vicinity of the antenna in ordemitigate multipath and occlusion. Suh and
Shibasaki 8] also make use of 3D data bases to predict GNSS quality ofcgerv

Well-founded results were shown with these first contritmgi but more recently, a full-scale
experiment of this concept applied to localization in a 3Ddelted urban center has been proposed
in CityVIP [4]: a 2008-2011 project that aims at designing a global managée system of a
fleet of autonomous individual transportation vehicles.n€&aning NLOS detection and city model,
a preliminary proof of concept has recently been publishedEEE Intelligent Transport System
Telecommunications (ITST) 2015][ In this article, the position from which the 3D model is safered
in order to compute the critical elevations at satelliterazihs was delivered by a high-grade kinematic
GPS and inertial navigation system. The success of the demation using, for satellites visibility, the
off-line “true” position of the vehicle confirmed the relexce of the concept. However, this could not
lead us to predict whether or not the idea would work when @es & standard GPS position in place of
an accurate reference point for the computation of thelgatetitical elevation. This is the aim of the
present article.

Similar approaches are proposed By’], with more simple map models, and 8] [with ray-tracing
algorithm. Last but not least, let us mention the approaet Was proposed by9[10], under the
name "shadow matching”: the investigations undertakenatitasting which one from a set of possible
localizations around a standard initial solution is the tpogbable with respect to the coherence between
a 3D model based prediction of LOS/NLOS satellites and theahsatellites in view. First results in
London are very promising in terms of street lane separaticnding sidewalk. Additionally, shadow
matching appears complementary to direct NLOS detecticdhods, as presented by1].

This article is divided into three main sections. We firstlaxpthe methodology and mention the
results obtained in the feasibility study based on a kinen@PS INS solution. In the second part, a
map-aided positioning filter is presented that takes adggnof the information given by the 3D model
in terms of road constraints. The third and last part analyle experimental results obtained by the
LOS/NLOS separation algorithm based on the previous cangtt solution. The efficiency of the road
constraints in this process will be demonstrated. Finay,will discuss the impact of the separation
algorithm and its interest with respect to the localizagpwablem, before and after a final map-aiding,
and we will compare this algorithm to a more usual satell@glection based on signal-to-noise ratio
(SNR). These comparisons are done from data registered ealaexperiment in the center of Paris



Sensor013 13 831

(France). The duration of this experiment is about 10 mmated the total length of the circuit is about
2 km in an archetypal European urban center.

2. Presentation of the NLOS Detection Method

The core of the method consists in checking whether a datéflat generates a signal received by
the GNSS receiver can be directly viewed (LOS) or not (NLO®}XHe receiver antenna. With this
aim in mind, one needs the predicted position of the recetherpredicted positions of the satellites,
and the map of the environment in the same reference frameD Aity model of the environment
is available in a Geographical Information System (GIS) edded software from BeNomad
company 2], SIVNav SDK™" (Software Development Kit), which is dedicated to augmemeslity,
3D map rendering and vision for robotics. It contains a geaos description of buildings, roads
(actually streets) and sidewalks. The 3D elements thanditeeivicinity of the receiver localization are
extracted from the database, and a virtual image is retudaction and image computation are basic
functions of the GIS. The availability of this software, dretCityVIP platform, has motivated the use
of a virtual image. Geographical data are provided by tha¢héational Geographical Institute (IGN),
in the national French plane projection (Lambert 93) pluamsea level (MSL) altitude (further called:
the GIS reference frame). Their accuracy is: 5 cm horizbngadd 25 cm vertically in Parisl3,14].

Figure 1. lllustration of the computation of the critical elevatiosing a virtual image.
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The method starts with the computation of a virtual image axfhesatellite, with a virtual camera
located at the antenna center, oriented with the azimutheo€onsidered satellite, with tilt angles (roll
and pitch) set to zero (Figug. An important parameter of the virtual camera is its fodsiahce. From
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an initial value, this is iteratively reduced until the skisible on top of the frontal building. The sky
visibility may not be obtained in case this building wouldusy close to the user, which entails NLOS
for the corresponding satellite.

Basic image processing functions provided by BeNomad makpossible to compute the
front building elevation. These functions are twofol@et dept h( pi xel ), which returns the
depth of the closest point corresponding to the input pixethe 3D model of the environment,
CGet _di st ance( pi xel .1, pixel 2), which returns the Euclidian distance between the closest
points of the 3D model that corresponds to pitednd pixel2. The geometrical computation of the
critical elevations, (1) by using the output of these functions applied onto therekand critical pixels
respectively is illustrated on Figufe

The comparison of the satellite elevatigrio this threshold makes the final decision on whether the
satellite is considered NLOS or not.

Get_distance(P,, P,,) ) )

Get_depth(Py,)

A more straightforward method consists in computing theéuailr image with the camera tilted
according to the elevation of the satellite, and, like ragiing, check whether or not a pixel is detected
along the optical axis (if noGet _dept h( pi xel ) returns—1 and the satellite is in LOS). The standard
focal distance is always suitable. Note that the criticalvation is no more available that way, but
actually not essential.

In practice, azimuth and elevation of satellites are dedisidby standard NMEA (National Marine
Electronics Association) GSV (Satellites in view) messagdote that the correction of the azimuthal
deviation (up to a few degrees) between the true north anchdhin of the map (the one using the
Lambert 93 plane projection) must be done.

Be = atan(

Figure 2. Cumulative distribution function of the horizontal positierror (HPE).
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The position of the user is in fact the most critical point ire tprocess. In a first step of this
research3], we used our Reference Trajectory Measurement (MR®))gystem to produce the accurate
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position that feeds our NLOS algorithm. The results we atgaiand published were very promising
(Figure2), but there was no error on the estimation of the positiomefuser that might bring an error
in the NLOS detection itself, with the risk of a possible dyence.

Here, the position of the antenna will come from a CityVIP iporing sub-system that combines
data from dead-reckoning sensors and GNSS, under the 3D onapraints.

Figure 2 shows the impact of ground-truth-based NLOS detection awtusion (for 2 receivers
U-blox LEA-4T and LEA-6T and for both least square (LS) anttexled Kalman filter (EKF) solutions):
solid lines (corresponding to NLOS filtered solutions) dweags closer to the y-axis than dashed lines
(non-filtered solutions), which proves the efficiency of H@S/NLOS separation algorithm.

3. Presentation of the Positioning Method with Road Constrants

The method consists in computing a 3D localization of a wéeekhicle based on a 3D kinematic
model and improved by map-aiding on the road layer of the 3proap. This functionality was a task
of the CityVIP project 4].

A state space formulation of the problem is used in order éstigte estimation techniques such as
variants of Kalman filtering. As it is usual in Robotics, trenfiguration is taken as a state vector. The
kinematic model then gives the progression part of the sigwation.

3.1. Definition of the Vehicle Configuration (Figusg

The world reference frame being the one where the traveldasied {.e., the GIS reference plane
in Lambert 93 coordinates), let us dendté ( 0, io, Jo, ,150) as this world reference frame and:

( M, iz, js, l%) as the vehicle reference frame (FigBe By definition, the vehicle configuration
states the pose of the vehicle reference frame with respéuot tworld frame. In the 3D Euclidian world,
it may be defined by:

g=lz,y, 2 ¢, 0, 0] (2)
Y 1 heading,
with: ¢ 0 : slope, and(z, y, z) the 3D coordinates of the middle of the rear axlé]|[
¢ : cross slope

In other words, the configuration may be defined as the tramsficon from)V to M by 4 elementary
operations: one translatioﬁ)(%) and 3 successive rotations,(f, ¢). Note that one considers here a
vehicle without suspension. The (@, ¢) orientation angles are thus only induced by the geometry of
the road and the path followed by the vehicle.

3.2. Kinematic Model Processing

The rationale of the model is based upon the motion of the islteat roll without slipping on a plane
surface. Here the plane is inclined and its inclination siased to evolve slower than the other variables
(in particular, slope and cross slope angles have slowetiars than the one of the yaw angle). Note
that such a model is coherent with the 3D map composed of ptatehes that is further used.
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Moreover, like in the usual 2D kinematic models, the longjital speed«) and the yaw angular rate
(w) in the evolution plane are assumed to be known from odonme¢tgsurements.
For a vehicle with two motorized wheels where:

o F denotes the track, e.g., the distance between the centérs lefit and right wheels,
o w, (resp.w;) is the measured rotation speed of the right (resp. leftlalvhe
o R, (resp.R;) is the radius of the right (resp. left) wheel, assumed tormin.

by measuring the rotation speed one gets the relaBpn (

1
v 3 R, .w,

N[

(3)

w

1
E Rl.&)l

&=

From the non-holonomic constraints linked to the rollingheut slipping rotations of the wheels on
the plane surface, the vector speedbfs aligned with the axis; of the vehicle (Figur) and its norm

is v given by Equation3d). In the same way, the axis of the yaw rotation is the locahmadiic; to the
road and its norm i given by EquationJ).

Figure 3. 3D vehicle configuration for a fixed rear axle model, with therl and mobile
reference frames a8’ and M respectively.
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Expressing those relations in the world reference frainee the GIS reference plane in Lambert 93
coordinates) gives the global kinematic state Equat®riX7]. This model appears to have common
features with a simplified dynamical modéay.

cos - cos 0
; sin e - cos 0
i =ca-| |cw=| L @
v 0 ing
0 tan @ - cos ¢

A discrete time versions) is deduced from Equationd) by the Euler formula for a real-time
implementation
dsy,
G1 = q+ Glqr) (5)
diy
In this expressionds, = vy, * (t41 — tx) (resp.diy = wy * (tkr1 — ty)) is the elementary travelled
distance (resp. elementary yaw rotatiom\) between the successive time sampleandi;. . ;.

3.3. Localization Method

In the CityVIP project, a localization task has been introehliin order to continuously update an
estimation of the configuration of the vehicle in a 3D worlgether with an accuracy statement. This
estimation is iteratively computed by combining 3 data sesar(Figure4), each one with a different
time scale:

Figure 4. Data fusion state chart.
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1. GPS localization is obtained by a positioning algorithmhet ipdate rate of the receiver (4 Hz).
A complete localization may be scarce in environments witbrsatellite visibility,

2. odometric data are generated by the wheel speed sensors BB (Anti-Blocking System).
When some data become available, the configuration is up&gtasing Equations),

3. geographic data, 3D polylines modelling the road networ&,gaven upon request but require a
map-matching procedure prior to using them for localizatio

In this research, an Extended Kalman Filtering (EKF) is usettie odometric/GPS fusion process.
Geographic data are used to constrain the localizationavitbllipsoidal set-membership methdd].
At any timet,, where some information becomes available, the algorithdatgs an estimatg together
with a symmetric positive matri®y, defining thus an ellipsoidal confidence dom&if]{

(q—a)" Pt (g—dn) < 1 (6)

Note that the symmetric positive matri, quantifies the magnitude of the ellipsoidal domain. The
square-roots of its eigenvalues are the measures of itsipairaxes.

Odometric and GPS Data Fusion

Each time odometric measurements are available (Figjui@new prediction is performed by using
the state propagation Equatids).(If GPS data are also available, an a posteriori updatealgzesl by
an EKF algorithm. The measurement noise covariance matoktained from GPS inaccuracy and the
state noise covariance matrix is deduced from the propagafi individual inaccuracies2fl]. These
noises are assumed to be Gaussian, unbiased, white witbrelqprown covariance matrices.

This gives an updated estimatignand an updated matri®, resulting from both odometric and GPS
measurements, when available.

Map-Aided Fusion

The use of the geographical data is based on the assumpdibtnéhwehicle moves on a road with a
known geometric specification stored in the GIS. It is a saqa®f two steps:

e Map-matching,.e., the selection of the road segment on which the vehicle ipasgd to be.
The segment should minimize a criterion calculated frontl§#)3D distance between the current
estimation of the localization and the segment and (2) thelan error between the velocity vector
of the state and direction of the segment.

e Exploitation of the geometric attributes of the road segmszlected as constraints of the
configuration ). Constraints are defined from the 3D polylines by taking mxtcount the width
of the way and the uncertainty on the altitude. The ellipabsgt-membership method computes
the minimum volume ellipsoid resulting from the intersentiof the current ellipsoidal domain
and constraints. The final map-aided solution is obtai@ef [
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4. Improving the NLOS Detection Method and Experimental Resllts

4.1. Experimental Set-Up and Test Data

For validation purpose, we use data that have been recordad experiment carried out for the
final demonstration of the cityVIP project in September 2@iParis. The data were collected on
13 September 2011, and two circuits, both with two laps, vpendormed at respectively 11:48 AM
and 12:08 PM (local time). The first lap was used by the City@#tners in charge of several image
processing localization tasks for their machine learnaftgrwards, the second and next laps could be
used for evaluation purpose.

The distance travelled per lap is around 1 kilometer. Thamdnvironment in the vicinity of the2”
district city hall is very dense, with high Haussmann stydddings.

The experimental vehicle of IFSTTAR/MACS (Monitoring, Assment, Computational Sciences) is
shown in Figureés. It has been used for the final demonstration of the CityVijgmt in September 2011
and was equipped with:

e a CAN (Controller Area Network) bus connection (for the o),

a low-cost automotive GPS receiver LEA-6T from U-blox (faxw data and NMEA GGAZ3],
Global Positioning System Fix Data, and GSV, Satellites@&wysequences at 4 Hz) and its patch
antenna,

the MRT (Reference Trajectory Measurement) dedicatedifspecjuipment, LANDINS of the
IXSEA society, from which the reference trajectory of theegent experiment is issued. Its
accuracy is about 10 centimeters,

a Marlin video camera (not used here).

Figure 5. The experimental vehicle of IFSTTAR/MACS.

Data were logged in real-time using the Aroccam multithisaftlvare architectur€f] and processed
off-line in “replay” mode. The minimum system requiremetdagerform these tests are: a multi-core
processor (quad core at 2.4 GHz used here), 2 GB of RAM andiawdeo card (1 GB Nvidia Quadro
FX 2880 M used here).
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4.2. NLOS Detection Based on Map-Aided Solutions

Typical errors of standard GPS solutions are so large (akteans of meters) that creating a virtual
image would be nonsense. As a consequence, the image extrascbased on the output of the map-
aided positioning process where road constraints havedggaied. To do so, the “Map-Aided Fusion”
task of the state chart (Figuy has been duplicated, and the duplicated process is, asttue, fed
with the NMEA GGA solutions where the data of the satelliteswased irrespective of their LOS/NLOS
status and coupled with the odometry data.

Afterwards, two different subsequent processes are gessib

e The LOS satellites are only fed to the GPS Positioning Alpponi and fused with the odometry.
It yields non-map-aided or “free” solutions. In this cases wollect the updated position and
covariance of the "GPS Fusion” task.

e The LOS satellites are only fed to the GPS Positioning Alponi, fused with the odometry, and
constrained again by the road map. It yields map-aided astcained solutions and we collect the
updated position and covariance of the “Map-Aided Fusiaskt This very last implementation
can run in closed-loop, since its solution can be returngbddomage extractor, which makes the
duplication of the “Map-Aided Fusion” task not necessary.

4.3. Comparison with the SNR-Based Selection

The purpose of this final section is to evaluate whether ortmotLOS/NLOS separation leads to
positions at least as accurate as a simple SNR-based eeleculd do.

The comparison has been made on oneilap,by using 5 minutes of data. A priori, with our GPS
receiver at 4 Hz, 1,200 GPS epochs are available, with up sati2lites available per epoch, depending
on the sky visibility. A few epochs have no visible satellite

Four replications (in Aroccam replay mode) have succelsbeen executed:

o 1 - SNR-based satellite selection, no final map-aiding,
o 2 -L0OS-based satellite selection, no final map-aiding,
o 3 - SNR-based satellite selection, and final map-aiding,
o 4 - LOS-based satellite selection, and final map-aiding.

Note that the last replication (item 4) has been operatetbsed-loop, whereas the second (item 2)
used GGA map-aided solutions.

The main tuning to do is the SNR threshold applicable to th& @Bsitioning Algorithm. We have
adjusted its value (40 dB-Hz) so that the average numbertefiigas actually used by both processes
(SNR and LOS) are similar. Figurésand7 show the satellite visibility corresponding to both tessng
GGA map-aided solutions (items 1 and 2) and in closed-ladep@ 3 and 4). The SNR test is always the
same, but the common epochs vary, which explains the sliffatehces in the number of satellites time
series for SNR items. The NLOS test is not repeated stricdysame way, since the position from where
the image is extracted varies. Anyway, both strategies (&@&f-aided or closed-loop) are coherent.
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The average number of satellites used during this 5 minastssaround 4, with 40 dB-Hz threshold or
NLOS detection and exclusion.
Statistics have been computed on the whole dataseion every common epoch.

Figure 6. Satellite visibility using GGA map-aided solutions.

Nb of Satellites in view
Nb of Satellites -LOS, mean :4.3
Nb of Satellites ~-SNR, mean :4.0

Nb of Satellites
S
T

355 3.555 3.56 3.565 3.57 3.575 3.58 3.585
UTC Time (s) x10*

Figure 7. Satellite visibility in closed-loop.

Nb of Satellites in view
Nb of Satellites -LOS, mean :4.4
Nb of Satellites ~-SNR, mean :4.0

Nb of Satellites

355 3.555 3.56 3.565 3.57 3.575 3.58 3.585
UTC Time (s) x10*

Absolute errors, in 2D and 3D, with respect to the refererggedtory have been computed and sorted
in a cumulative distribution function in Figur@and9 without final map-aiding and in Figurd® and
11 with final map-aiding.
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Figure 8. Cumulative distribution function of the absolute error iD fr “free” solutions

(without map-aiding).
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Figure 9. Cumulative distribution function of the absolute error iD ®r “free” solutions

(without map-aiding).
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The reference trajectory (provided by the LANDINS systesnihie fusion result of an INS (Inertial
Navigation System) based on a high-grade fiber optic gymsqéOG), a distance measurement
instrument and a PPK (Post Processed Kinematic) trajettmmy a high-performance GNSS receiver.

Considering the errors of the "free” solutions (Figu&sind 9), it appears that the LOS filter is
equivalent to the SNR filter for the horizontal dimension. aienhile, when the vertical dimension is
also considered, SNR filter seems to be better. This resnlbeaxplained by the fact that our circuit
get at the borders of the 3D model currently available. @etshese borders, indeed, neither trees nor
buildings are modelled and the NLOS test is performed olesfaee, which potentially causes satellites
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not in direct view to be considered as LOS. This is the caskambrthwest area and the south area of
our map, which is more penalizing when the vertical dimemsscconsidered.

For map-aided solutions (Figurd® and 11), conclusions are different in particular because map-
aiding enables to constraint the vertical dimension: erner2D and 3D are very similar, which shows
that the vertical dimension is well estimated. In this cassults are globally better than the "free”
solutions and the result of the fusion is even slightly beti¢h the LOS filter.

An overview of the trajectories is visible in Figur&2 and13respectively.

Figure 10. Cumulative distribution function of the absolute error iD 2or map-aided
solutions.
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Figure 12. 2D overview of "free” solutions (without map-aiding) for thostrategies.

Figure 13. 2D overview of map-aided solutions for both strategies.
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Since Figured2 and13 are overloaded, simplified representations of the begghafrihe estimated
trajectories are shown in Figurdgl and 15. These results show the various estimations of the path
together with the elements of the map.

On Figurel4, the displayed estimations of the path seem to be non-atineidsecause they are
often outside of the map. These estimations correspondtyalhcto the localization of the center
of the admissible ellipsoidal domai)(that always intersects at least one rectangular elemettieof
map. The estimated solutions are thus admissible althooghaturate. The accuracy of the estimation
is illustrated by the projection of the admissible elligtadidomain onto thé€z, y) plane for the last
estimated point.

On Figurelb5, the final map-aiding enhances the accuracy: the admissilypsoidal domain (its
projection onto thez, y) plane) for the last estimated point is, in both case, smallée constraints
bound to the width of the road appear clearly. Both LOS and ®ld&ed filtering give comparable
results. These results also show the prior importance ahidge-aiding.

Figure 14. 2D overview of "free” solutions (without map-aiding) for tho strategies.
Simplified representation.
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Figure 15. 2D overview of map-aided solutions for both strategies. [iied

representation.
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5. Conclusions and Future Works
5.1. Conclusions

This paper has shown that using NLOS detection and exclysion to incorporating data from a
GNSS receiver was efficient for the localization in densexaréreas. Such a test needs (1) 3D maps of
the urban environment, which are more and more easily dfailend (2) an a priori estimation of the
position and orientation of the vehicle.

The results have shown the prior importance of the 3D mapsefutban environment. First, it
constrains the position and orientation estimations ireceice with the streets network, thus enhancing
the accuracy of the localization. Moreover, it makes it gdsego check the direct visibility of a given
satellite from the estimated pose of the vehicle. The reshibwn in the paper lead to conclude that the
NLOS test gives an equivalent accuracy to the SNR test wheeestimated pose is not constrained by the
map-aiding procedure after being updated by GNSS data(sliggorse when the vertical dimension is
considered). In contrast, when the map-aiding procedwaepbed after having used the GNSS data with
the NLOS (or SNR) test, the NLOS test gives slightly betteuaacy than the SNR test. It thus confirms
the feasibility study previously exposed ib] where the accuracy of the localization was significantly
better.
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NLOS detection and exclusion based on virtual image praoogsand a 3D map seems to be
promising. This alternative to a simple SNR test on the Beltracked by a standard automotive
receiver has yielded better positioning.

5.2. Future Work

Given that this dataset corresponds to a relatively shqementation (5 min, 1 km in Paris), other
tests will be realized to confirm our first conclusions.

The GPS Positioning Algorithm was also very simple: no faldtection or exclusion of satellites
(FDE strategy) based on the predicted position (and comselyupredicted pseudo-ranges) was done
in addition to the SNR or LOS tests. A future version of ourcaitpm will improve this Positioning
Algorithm, including FDE through a2 test. Doppler measurements, which are not employed in the
current study, will also be used.
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