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Abstract: Unbalance in magnetically levitated rotor (MLR) can cause undesirable 

synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic 

balancing is an important way to solve these problems. However, the traditional balancing 

methods, using rotor displacement to estimate a rotor’s unbalance, requiring several  

trial-runs, are neither precise nor efficient. This paper presents a new balancing method for 

an MLR without trial weights. In this method, the rotor is forced to rotate around its 

geometric axis. The coil currents of magnetic bearing, rather than rotor displacement,  

are employed to calculate the correction masses. This method provides two benefits  

when the MLR’s rotation axis coincides with the geometric axis: one is that unbalanced 

centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that 

the magnetic force is proportional to the control current. These make calculation of  

the correction masses by measuring coil current with only a single start-up precise.  

An unbalance compensation control (UCC) method, using a general band-pass filter (GPF) 

to make the MLR spin around its geometric axis is also discussed. Experimental results 

show that the novel balancing method can remove more than 92.7% of the rotor unbalance 

and a balancing accuracy of 0.024 g mm kg
−1

 is achieved. 
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1. Introduction 

Active magnetic bearings (AMBs) have several advantages over traditional bearings, such as low 

power losses, very long life, the elimination of the oil supply, vibration control, and diagnostic 

requirements, hence, AMBs have been widely used in the fields of energy-storing flywheels, turbo 

machinery and machine tools [1,2]. 

Due to material non-homogeneity and manufacturing errors, a rotor’s inertia axis always misaligns 

with the geometric axis. This will inevitably result in rotor unbalance and produce centrifugal forces 

while the rotor is spinning. These centrifugal forces then transfer to the motor casing and generate 

vibration noises, which reduce the life of the machinery [3]. With respect to a magnetic levitated rotor 

(MLR), the rotor unbalance can even result in saturation of the magnetic actuator and lead to instability 

in the AMB control system [4]. 

Off-line balancing is a widely used method to eliminate rotor unbalance [5]. However,  

due to the limited precision of the balancing machines and the restrictions when changing from a 

balancing machine to the real working conditions, off-line balancing leaves considerable residual 

unbalances [6]. Based on the AMB’s active control abilities, much research has focused on the active 

vibration control (AVC) method for an MLR, including the notch filter method [7], generalized notch 

filter (GNF) method [8], least mean square (LMS) algorithm [9], double-loop compensation  

method [10,11], etc. These methods suppress the vibrations produced by the synchronous current,  

and control the rotor to rotate around its inertia axis. The double-loop compensation method even 

suppresses the vibrations produced by negative position stiffness [11]. However, the AVC method also 

has several shortcomings. First, it cannot simultaneously realize zero-vibration and the zero-displacement, 

which is essential in fields such as molecular pumps. Second, the AVC method must be active while 

the machine is working, which requires rigorous stability and robustness of the algorithm. 

The field balancing method employs correction masses to correct a rotor’s mass distribution.  

It makes the rotor’s inertia axis align with its geometric axis, removing the unbalance disturbance from 

the source [12]. It can simultaneously realize zero-vibration and zero-displacement. After balancing, 

there is no synchronous force between the rotor and the stator, and no vibration is transferred to the 

motor base. Meanwhile, the current consumption of AMBs will also be greatly reduced. Theoretically, 

a low-speed balancing can endow a rotor with balance throughout low-speed rotors, where the rigid 

rotor assumption is valid [13]. In addition, no particular control method is required after field 

balancing. Thus, field balancing is a one-time correction suitable for those rotors whose unbalance 

changes little during operation, such as energy-storing flywheels and vacuum pumps. 

In recent years, various field balancing methods have been developed. These methods fall into two 

major categories: influence coefficient methods and modal balancing methods [14,15]. The influence 

coefficient methods require no assumptions other than the linearity of the rotor system and the 

measuring system. Thus, this method is well suited to field balancing and can achieve nearly ideal 
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performance [16]. However, it has some unavoidable limitations, such as requiring a large number of 

test-runs, as influence coefficients are affected by rotating speeds [17]. Modal balancing methods 

separate the rotor vibration into a series of mode components. With the premise of learning the mode 

shape, only a single trial-run is required to gain the modal imbalance response. A full-speed range 

balance can be achieved after implementing balancing for all modal imbalances, but test-runs are 

indispensable. To overcome these limitations, several analytical methods, without trial weights, have 

been proposed in the recent literature [18,19]. Analytical methods have the advantage of requiring no 

trial runs, but they need to calibrate the rotor models very well, which is often not possible in industrial 

applications. Particularly for the AMB rotor, it is very difficult to establish an ideal mathematical 

model because of unmodelled dynamics, nonlinearities, and parameter uncertainties. 

Displacement sensor and angular-position sensor permit field balancing for MLR can be 

implemented without any additional instrumentation. More importantly, AMBs have the ability to 

actively control the rotor. Nevertheless, there is little research on field balancing for MLR in particular.  

Li et al. [20] and Zhang et al. [21] used the influence coefficient method to perform field balancing for 

a MLR. Han et al. [22] introduced the analytical method to MLR, obtaining the equivalent static and 

dynamic imbalances, respectively, by detectng the translations signal and the rotational signal of the 

rotor. They did not however overcome the shortcomings of conventional balancing methods of being either 

inefficient or imprecise. 

Based on an AMB rotor’s active control property, this paper proposes a novel field balancing 

method. The method can simultaneously meet the requirements of high-efficiency and high-accuracy. 

It requires neither trial runs nor the MLR’s precise model. In this method, the control current rather 

than rotor displacement is employed to calculate the correction masses, and no influence coefficients 

are required. After analysing the models of an unbalanced MLR, we find that the coincidence of a 

rotor’s rotation axis with its geometric axis will bring about two benefits. One is that the unbalanced 

centrifugal force/torque equals the synchronous magnetic force/torque generated by the control 

current, which enables computation of correction masses using the control current with only a single 

start-up. The other is that the magnetic force is proportional to the control current, which makes the 

balancing highly accurate. The unbalance compensation control (UCC) method using a general  

band-pass filter (GPF), which enables the MLR to spin around its geometric axis, is also discussed. 

2. Model of MLR Including Unbalance  

As the first bending-critical speed (650 Hz) is far beyond the balancing speed (80 Hz), the rotor can 

be regard as peer rigid. All models in this study are based on this assumption. 

2.1. Description of MLR System 

The main structure of the magnetic levitation motor (MLM) is a motor which drives a rigid rotor 

supported by three AMBs, one thrust bearing and two radial bearings (see the computer-aided  

design diagram in Figure 1). The AMBs and displacement sensors are non-collocated. In addition,  

two balancing planes are placed at both ends of the rotor. 
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Figure 1. Structure diagram of a MLM. 
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The AMB works in differential mode. Let fax denote the magnetic force of the AX-channel (other 

channels are similar to AX). We then have: 

0 0

0 0

( ) ( )

( ) ( )

2 2
c c

ax 2 2

I i I i
f K

S s S s

 + −
= − 

− + 
 (1)  

where I0 is the bias current, ic the control current, S0 the normal air gap, s the distance of rotor 

deviation from the magnetic center, and K is a characteristic constant of the electromagnet [1]. 

To intuitively model the unbalanced rotor, an unbalanced MLR supported by two radial AMBs is 

discussed here (Figure 2, referring to [23], but with two added sensor planes). Let C denote the rotor’s 

mass center, residing in the plane Π. The points O and N are the geometric center and rotation center of 

Π. The axes iaxis, gaxis and raxis are the rotor’s inertia axis, geometric axis, and rotation axis.  

Figure 2. Schematic of an unbalanced rotor supported by two radial AMBs. 
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We establish the ground reference frame Oxy, where x-axis points to the x pole shoe of AMB-A.  

Let α, β, Ùt denote the angles of the rotor spinning around Nx, Ny, Nz, respectively. lsa and lsb 

(respectively, lma and lmb) are the distances from C to the respective action planes of the two 
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displacement sensors (respectively, two radial AMBs); fax, fay, fbx, fby are the magnetic forces of the two 

radial AMBs in x and y directions. 

The unbalanced force is generated by the deviation of the inertia axis and rotation axis, which is 

divided into two parts. One is the deviation of the mass center and the rotation center, resulting in 

static unbalance. The other is the angle deviation of the inertia axis and rotation axis, resulting in 

dynamic unbalance. 

2.2. Static Unbalance and Dynamic Unbalance 

Static unbalance causes an unbalance force. The relative positions of the rotation center, geometric 

center and mass center when the rotor spins are shown in Figure 3. 

Figure 3. MLR’s rotation center, geometric center and mass center in ground and rotor-fixed 

reference frame. 
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The positions of the geometric center and mass center in Nxy are (X, Y) and (x, y). Point P is the 

absolute position measured by the Hall sensor. We establish the rotor-fixed reference frame Ouv, 

where the u-axis coincides with OP. e and φ denote the modulus and the angular position of the mass 

center C in Ouv, respectively. We have the following two relations about the static unbalance: 

cos( )

sin( )

e t x X

e t y Y

ϕ

ϕ

× Ω + = −


× Ω + = −
 (2)  

The rotor’s dynamic unbalance causes an unbalance torque. Figure 4 represents the relative angular 

positions of axis gaxis, raxis and iaxis, where raxisαβ is the static angular coordinate system and gaxisξη is 

the rotor-fixed angular coordinate system. Here, the angular coordinate system is employed to describe 

the relative angular position between the two axes. In the angular coordinate system, the position of an 

axis is determined by the included angle between this axis and the origin axis in directions of the two 

coordinate axes. (αrg, βrg) and (αri, βri) are the values of gaxis and iaxis in raxisαβ. Let egi and φgi denote the 

angular modulus and the initial angle (respect to gaxis in ξ direction) of iaxis in gaxisξη. The following 

relations about dynamic unbalance are gained: 

cos( )

sin( )

gi gi ri rg

gi gi ri rg

e t

e t

ϕ α α

ϕ β β

Ω + = −


Ω + = −
 (3)  
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Figure 4. MLR’s rotation axis, geometric axis and inertia axis in the ground and rotor-fixed 

angular coordinate system. 
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2.3. Model of the Unbalanced MLR 

For the purposes of this paper, the rotor is modeled as rigid. The control block diagram of the MLR 

system is shown in Figure 5. It is assumed that the vector [ ]
T

q x yα β=  indicates translations and 

transverse rotations of the rotor’s inertia axis about Point N, the vector 
T

rg rg rgq X Yα β =    indicates 

translations and transverse rotations of rotor’s geometrical axis about Point N, 

cos( ) cos( ) sin( ) sin( )
T

gi gi gi giE e t e t e t e tϕ ϕ ϕ ϕ = Ω + Ω + Ω + Ω +   indicates the rotor’s static and dynamic 

unbalance in the ground reference frame. Then, the dynamic equation for the rotor supported by 

magnetic bearings is: 

q q F+ Ω =M Gɺɺ ɺ  (4)  

The generalized mass matrix M, the gyroscopic matrix G and the generalized force vector F are 

defined as: 
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where m is the rotor mass, Jr is the transverse moment of inertia, Jz is the axial moment of inertia,  

fx and fy are the resultant forces in directions Nx and Ny, Px and Py are the moments about Ny and Nx. 

Figure 5. The control block diagram of the MLR. 
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The AMBs only provide forces at the locations indicated in Figure 2, and we define the magnetic 

force vector Fm = [fax fbx fay fby]
T
. F can be expressed with Fm: 



Sensors 2013, 13 16006 

 

 

_m f mF Fα= T  
(5)  

where 
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T  is the force transformation matrix. According to Equation (1),  

fax, fbx, fay, fby can be expressed as: 
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We denote 
T

m ax bx ay byq x x x x =    and 
T

ax bx ay byi i i i i =    as rotor vibration vector at bearings and 

coil current vector. Then, mF  can be described as a non-linear function: 

( , )m mF f i q=  (7)  

According to Equations (2) and (3), the relationship between q and qrg can be described as follows: 

rgq q E= +  (8)  

Substituting Equation (8) into Equation (4), dynamic equation of the unbalanced rotor becomes: 

( ) ( )rg rgq E q E F+ + Ω + =M Gɺɺ ɺɺɺ ɺ  (9)  

When we describe the magnetic force produced by rotor vibration, it is necessary to transform from 

the gravity-center coordinates to the bearing coordinates since the rotor dynamics are formulated in the 

gravity-center coordinate system. The matrix 
_m qTα  is used to realize the transform from rgq  to mq   

(see Figure 5), defined as: 
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(10)  

The sensors are non-collocated with the bearing center of action. To account for this, an additional 

transform is required to move from the sensors to the gravity center coordinate system. 

_
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3. Calculating the Correction Masses 

For traditional supported rotors, knowing the rotor unbalance E is conducive to calculate the 

correction masses. However, E cannot be directly measured, whereas, qrg can be measured using the 

displacement sensors, the rotation angle Ωt can be measured by the Hall sensor. Therefore, some 

methods estimate E through qrg, assuming that their relationships are linear, e.g., influence coefficient 

method. However, several trial-runs of influence coefficient method make the field to be inefficient. 

For a MLR, however, we can obtain the expression of E easily. The rotor’s unbalance response is 

synchronous with the rotor speed. Thus, only the synchronous component in Equation (9) is of interest, 

and the unbalance can be solved as: 

( ) ( )
1

2 2 2

rg rgE j F q j q
−

= −Ω + Ω + Ω − ΩM G M G  (12)  

When we use Equation (12) to solve the unbalance, F and qrg must be measured beforehand.  

In addition, it is found from Equation (7) that F is a function of qm and i, and the relationships between 

them are nonlinear (see Figure 6a). This procedure is complex, and it will produce a lot of calculation 

errors and nonlinear errors. When the rotor deviates heavily from the bearing centerline under a large 

unbalance, the nonlinear error cannot be ignored if high-accuracy balancing is demanded. Based on the 

MLR’s characteristic of active control, here, we try to control the rotor operate under a state that can 

simplify the above process and possess a linear magnetic force. 

Figure 6. Force-current/displacement characteristic of the radial AMB.  

  

(a) MLR’s rotation axis misaligns with the 

geometric axis. 

(b) MLR’s rotation axis aligns with the 

geometric axis. 

As the MLR’s control diagram shown in Figure 7, the control current can be described as: 

1

_ ( ) ( ) ( )c o amp amp si I i K L s K L s C s q
−

 = +   (13)  

where 
_s s q rgq T qα=  is the vector of sensor output, C(s) is the controller, L(s) is the transfer function of 

the AMB coil, i_co and Kamp the feedback-gain and forward-gain coefficients of the current control loop. 

We know that the value of i is finite. If the synchronous gain of the controller C(s) can be adjusted 

to be infinite at the promise that the MLR system is stable, the synchronous component in qs will 

reduce to be zero. qrg becomes to zero, too. We call the situation as the zero-displacement status, and 

the expression of the unbalance vector will be simplified as: 

( )
1

2E j F
−

= −Ω + ΩM G  (14)  
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Figure 7. The control block diagram of the MLR system. 
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Because the transformation from qm to qs is linear (shown in Equations (10) and (11)), we gain  

qm = [0,0,0,0]
T
 at zero-displacement status. Substituting qm = [0,0,0,0] into Equation (6), the expression 

of Fm = [ fax, fbx, fay, fby]
T
 can be simplified to: 
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(15)  

in which ki = 4kI0/s0
2
 is a constant. Now, we obtain the other ideal result: electromagnetic force Fm  

is proportional to the control current i, independent of the rotor’s displacement qs (see Figure 6b). 

Substituting Equations (5) and (15) into Equation (14), we have: 

( )
1

2

_m f iE j T k iα

−

= −Ω + ΩM G  (16)  

Theoretically, any unbalance distribution in a rigid rotor can be balanced in two different  

planes [24], which is the so-called double-plane balancing method. As illustrated in Figure 8,  

the inter-plane distances are denoted as L1, L2 and L3, and L1 + L2 + L3 = L.  

Figure 8. Schematic of the double-plane balancing method. 

tω

 

Assuming that the correction masses cam  and cbm  are placed at the azimuth angles φma and φmb on 

the two balancing planes, the generalized correction vector can be defined as: 
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(17)  

According to the double-plane balancing method, if Mc can balance the rigid rotor completely,  

the following formulation will be obtained: 

_ 0cE Mα+ =M  (18)  

For the slender rotor considered in this study, Jr is significantly larger than Jz, so the gyroscopic 

moment term in Equation (16) can be ignored, and then substitute Equation (16) into Equation (18),  

we have: 

2

_ _c m f iM T k iα αΩ =
 (19)  

The correction masses can be solved from Equation (19), and the result is: 

2 3 3
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(20)  

where L, L1, L2, L3 can be obtained precisely from the mechanical layout, rotor speed Ω can be 

measured by the Hall sensor. According to Equation (20), the unbalance mc will be calculated directly 

after obtaining the current stiffness Ki and control current i. Compared to the field balancing before 

adding the infinite gain control, the formulate here need not qm, qrg, lma and lmb, and the magnetic force 

is the linear function of the rotor vibrations. 

The correction masses on the two balancing planes can be solved further as: 
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[ ] ( )
[ ] ( )
[ ] ( )
[ ] ( )

2
2 3 3

2
2 3 3

2
1 1 2

2
1 1 2

( ) /

( ) /

( ) /

( ) /

au iax au ibx bu a

av iax av ibx bv a

bu iax au ibx bu b

bv i ax av ibx bv b

m k i L L k i L r L

m k i L L k i L r L

m k i L k i L L r L

m k i L k i L L r L

 = + + Ω

 = + + Ω


= + + Ω


= + + Ω

 (22)  

Field balancing under the zero-displacement status greatly improves calculation accuracy and 

reduces the computation process, requiring only a single start-up. In addition, rigid balancing just 

needs to be implemented at a low speed. The magnetic force is small in this case, and the AMB 

saturation will not take place, ensuring the magnetic force is in proportion to the control current. 
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4. Unbalance Compensation Control 

The advantages of field balancing under the zero-displacement status have been discussed in detail 

in the section above. In this section, we will discuss how to control the rotor to rotate under this status. 

It is known that the object of active vibration control is to make the rotor spin around its inertia 

axis, which requires the synchronous magnetic force between rotor and stator to be infinitesimal  

(equivalent to the synchronous support-stiffness being infinitesimal). Under the zero-displacement 

status, the rotor is forced to spin around its geometric axis. Its synchronous displacement is 

infinitesimal whereas the synchronous support-stiffness is infinite, a situation also called unbalance 

compensation control method. 

Field balancing described in this study is realized at a fixed speed, without guaranteeing the 

stability of the closed loop over the full-speed range, but requiring a high-accuracy algorithm. Thus, 

referring to the GNF discussed by Hezorg et al. [8], a generalized band-pass filter (GPF) is proposed 

to make the AMB controller’s synchronous-gain infinite. The diagram of the AMB control system 

including the GPF is shown in Figure 9, where A is the gain coefficient of the GPF. 

Figure 9. AMB control system including the GPF. 
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As the gyroscopic coupling of the slender rotor is weak, an SISO controller woke well. And the 

stability analysis is based on SISO controller. In Figure 9, we use a proportional-derivative (PD) 

controller to levitate the rotor. The GPF is in parallel with the PD controller, supplying a synchronous 

infinite gain to the PD controller (see the amplitude-frequency response characteristic of the controller 

shown in Figure 10).  

Figure 10. Amplitude-frequency response characteristic of the controller (GPF + PD). 
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The GPF is briefly described as follows. First, the cross-correlation coefficients between the control 

error signal e(t) and synchronous sin/cos signals are obtained by the correlation calculation: 

0

0

0

0

2
( ) sin( )

2
( ) cos( )

T t

t

T t

t

a e t t dt
T

b e t t dt
T

+

+


= Ω


 = Ω


∫

∫
 (23)  

Then; the synchronous component of the error signal is reconstructed: 

( ) ( sin cos )x t A a t b t= ⋅ ⋅ Ω + ⋅ Ω  (24)  

The synchronous component passes through integrators until it vanishes, and a constant 

synchronous control output is achieved through GPF channel. The control output cancels out the 

unbalance forces. 

To ensure the stability margin of the GNF, a transform matrix was strung behind the integral  

part [8]. Because the gyroscopic coupling of our MLR is weak, the transform matrix can be  

replaced by a phase correction φω, which simplifies the correction from a matrix to a variable. Thus,  

Equation (24) is converted to: 

( )( ) sin( ) cos( )x t A a t b tω ωϕ ϕ= ⋅ ⋅ Ω + + ⋅ Ω +  (25)  

Herzog utilized the root locus to analysis the GNF’s stability [8]. However, the parameters’ exact 

stable region was not obtained in his study. For the SISO case, Li et al. [10] assume a constant Ω,  

but use a Bode plot to give a stability property, which was straightforward and clarified the stability 

robustness against unknown high-frequency dynamics in H(s). However, their analysis about stability 

was established at the promise that A was arbitrarily small, which results in slow convergence.  

To simplify the stability analysis, Tang et al. [11] eliminated the transform matrix in GNF,  

which makes the GNF unstable near the critical speed. 

Following the analysis of GNF, the stability of the GPF will be discussed here. However, unlike the 

GNF, the stable region of the GPF will be solved exactly in this study. First, the AMB control system 

described in Figure 9 is simplified as shown in Figure 11a, in which the additional controller is set as 

N(s), the original controller is set as G(s), the controlled object including AMB and the rotor is set  

as H(s), e is the unbalance. Then, the control structure in Figure 11a is easily transformed into the 

structure in Figure 11b, in which the unbalance is equivalent to fr, N(s) is equivalent to an inside 

feedback of the controlled object. 

Figure 11. The simplified control diagram and its transformation of the MLR. 

  

(a) The simplified control diagram (b) The transformed diagram 
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N(s) also can be regarded as the model error of the controlled object H(s). Then, the actual 

controlled object is [ ]( ) / 1 ( ) (s)H s H s N+ . The model error described parallel to H(s) is: 

( ) ( ) ( ) (s)
( ) ( )

1 ( ) (s) 1 ( ) (s)

H s H s H s N
s H s

H s N H s N
∆ = − = −

+ +
 (26)  

Using the small gain theorem [25], the stability boundary for the system is: 

( ) ( ) / ( ) 1clH j j H jω ω ω∆ <  (27)  

That is: 

[ ]{ }
( ) ( ) ( ) ( )

1
1 ( ) ( )+ ( ) + ( ) ( ) ( ) ( )

H j G j H j N j

H j G j N j H j G j H j N j

ω ω ω ω

ω ω ω ω ω ω ω
<

+
 (28)  

It is found from Equation (28) that the control system is critical stable when N(jω) satisfies: 

[ ]1 ( ) ( )+ ( ) 0H j G j N jω ω ω+ =  (29)  

Substituting system parameters and the expression of N(s) defined in [8] to Equation (29), we have: 

( )
( )

( )
2 2 2

1
1 0

_

amp C S
p d

amp hh

k A j A
k k j

L j R i co k Km j K j

ω
ω

ωω ω

 × + ×Ω
+ × × + × + = 

× + + × −− +Ω  
 (30)  

where AC = Acos(φω), AS = Asin(φω), kp and kd are proportionality and differential coefficient. 

Equation (30) can be separated into the real part equation and the imaginary part equation: 

( ) ( )

( ) ( ) ( ) ( )

3 2 2

2 2 2

( ) ( ) 0

_ _ ( ) 0

amp d h C

amp h amp amp p S

Lm j k k Lk j j A j

R i co k M j k R i co k k k j A

ω ω ω ω

ω ω

 × + − × +Ω + × =
 

 + × × − + × + +Ω + ×Ω =
 

 (31)  

Solving the above equations, Ac and As are obtained as: 

( )( )

2 2 2

2 2
2

_ ( ) /( _ )

_ _ /( _ )

c h amp d s s

s amp p s amp h s

A LM Lk k k k i k k i k
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ω ω
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  = + − × × Ω − × 
 Ω −  = − × × − + × + ×   Ω

 (32)  

The expression of 2ω  can be gained from Equation (32): 

( )
2 2

( _ )

_

C amp S

amp d amp amp p

A R i co k A L

k k R i co k Lk k
ω

+ × − Ω
= + Ω

+ × −
 (33)  

Substituting Equation (33) to Equation (32), the relationship between Ac, As and Ω  can be solved. 

Parameters Ac and As that satisfy the critical stability under the different rotor speeds are shown in 

Figure 12. We can see that: (1) stable regions under different speeds are all passing through the origin 

of coordinates; (2) the stable regions of the low speed and high speed have no intersection, and the low 

speed and the high speed are separated by the rigid critical speed. 
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Figure 12. Parameters AC and AS satisfying the critical stability under the different speed.  

 

Figure 13 describes that the poles of the close-loop system changes with GPF control parameters at 

the speed of 80 Hz (only the poles above the real axis are displayed in the figure, as they are 

symmetrical about the real axis). Control parameters in the simulations are the same as those used in 

experiments. The gain coefficient A and phase corrector ωϕ  are two important parameters of the GPF. 

Curves in Figure 13 describe the trend of the close-loop system poles when increasing A under the 

same ωϕ .  

Figure 13. Poles and zeros of the AMB system with GPF at speed of 80 Hz. 
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Any pole falling to the right-half plane will make the AMB control system unstable. There are two 

poles in Figure 13. One is the original system’s pole, we call it S-pole. To make the original system 

stable, the S-pole should locate in the left half plane. The other pole is produced by the GPF, we call it 

GPF-pole. The GPF-pole locates on the imaginary axis with an initial value of Ω . As shown in the 

figure, the S-pole changes with the GPF. With parameter A increasing, the S-pole even shifts to the 

right-half plane. Thus, the system with GPF has three instability forms: (1) GPF-pole shifts to the 

right-half plane directly; (2) S-pole shifts to the right-half plane directly; (3) S-pole shifts to the  

right-half plane passing through the real-axis. The first two are in accordance with the stable region 

displayed in Figure 12, while the third should be solved according to Equation (33). When ωϕ  = 220°, 
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the trending curves just right pass near the original point. The S-poles first join at the real-axis and then 

separate along the real-axis, one of which falls to the right-half plane. 

The GPF will make the rotor displacement converge to zero as long as AS and AC lie in the stable 

region in Figure 12. However, to improve the convergence speed, A should not be enlarged limitlessly 

but the real parts of S-pole and GPF-pole should be decreased. Here, φω is set 140°, and A is set 350°. 

The simulation results are shown in Figure 14. After adding the GPF, the MLR’s rotation axis quickly 

converges to the geometric axis. 

Figure 14. Signals before and after adding the GPF (simulation performed with Simulink). 

 
 

(a) Rotor displacement. (b) Coil current. 

5. Measuring the Magnetic Force 

As discussed in Section 3, the procedure of computing the correction masses will be simplified 

greatly when the rotor is controlled under the zero-displacement status. Nevertheless, control current 

and current stiffness are indispensable, and the two factors will directly influence the computational 

precision. Accurate acquisition of the above two factors will be discussed in this section. 

5.1. Measuring Current Stiffness  

Due to manufacturing and assembling errors, the current stiffness is usually not the same as its 

design value, and balancing accuracy will decrease when using the design value. Because the 

geometric axis aligns with the AMBs centerline at zero-displacement status, the current stiffness loss 

produced by eddy current can be ignored in low-speed filed balancing. Here, torque equilibrium 

method, a simple but useful method, is employed to test the current stiffness. 

As shown in Figure 15, the MLM is placed vertically, and the rotor is levitated along the bearing 

centerline. A force f, supplied by a spring balance, is added at balancing plane-A and point to the 

middle of AMB-A’s two pole shoes. The torque equilibrium equations for the rotor are: 

1 2 2 1 2 2

1 2 1 2

2 / 2 ( ) (1 ) ( ) 2 / 2 ( ) (1 ) ( ) 0

2 / 2 (1 ) ( ) 2 / 2 (1 ) ( ) 0

iax iay iax ax iay by

ibx iby ibx bx iby by

f L L j f j f L f L L j k i j k i L

f L j f j f L f L j k i j k i L

 × + × + + + × × = × + × + + + × × =


× × + − + × × = × × + − + × × =

 (34)  

From Equation (34), the current stiffness can be solved as: 
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1 2
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k f L L i

 = − × +


= − × +

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 (35)  

Figure 15. Schematic of current stiffness measurement. 

 

5.2. Extracting the Synchronous Current 

Because unbalance is a rotor’s feature, the unbalance disturbance force is synchronized with the 

rotation rotor. Thus, the correction masses in Equation (17) are defined in a rotor-fixed coordinate 

system. However, coil currents are measured in the ground coordinate system because the AMB coils 

are fixed in the stator. The current frequency produced by unbalance is the same as the rotor rotation 

frequency. Beside the signals produced by unbalance disturbances, the measured current is mixed with 

signals with other frequencies. Therefore, to obtain the correction masses, we should extract the 

component that is synchronized with the rotation speed from the measured current, and then describe it 

in a rotor-fixed coordinate system through coordinate conversion. The cross-correlation algorithm  

(CCA) [26] can simultaneously realize the above two steps: extracting the synchronous signal from the 

measured current and accomplishing coordinate conversion. In the CCA, the measured current i(nT) is 

performed correlation operating with sin(nT) and cos(nT) respectively:  
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∑

∑
 (36)  

where Nz is the size of the sine/cosine tables, N is the rotational period, T is the sampling time.  

N changes with the rotation speed, and the frequency of sine/cosine series will change accordingly. 

The two results are called the cross-correlation coefficients, which are the coordinate values of the 

current produced by the unbalance in the rotor-fixed coordinate frame. 
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6. Platform Introduction and Experimental Results 

The rated speed (1,000 Hz) of the rotor in the study is higher than its first bending frequency  

(650 Hz), so the rotor is flexible. It is necessary to implement flexible balancing. However, to make the 

flexible balancing more precise, the beforehand rigid balancing is indispensable. Rigid balancing is 

mainly discussed in this study. The rotor is rigid when it rotates below 50% of the first bending critical 

speed fbending, weakly rigid when above 50% and below 70% of fbending, and flexible when above  

70% [27]. Theoretically, the rigid balancing can be carried out at any speed when the rotor is rigid, 

because at which the rigid unbalance plays a key role and the flexible influence can be ignored [13]. 

The AMB force in our study (the maximum is 50 N) cannot counterbalance the centrifugal force 

produced by the residual unbalance at high speed. Therefore, we implement rigid balancing at 80 Hz, 

and rotor will be balanced at full speed when the rotor is rigid. 

6.1. Introduction of the Platform 

To evaluate the effectiveness of the proposed balancing method, experiments were carried out on an 

MLM, which was fixed vertically on a metal base (as shown in Figure 16). The design parameters of 

this MLM are listed in Table 1. Two balancing planes are added to the rotor’s both ends. The rotor is 

supported at the reference position by the AMB control box and is driven by the motor control box. 

AMB controller utilizes TMSF28335 as its compute unit, controller’s sampling period is 150 µs. 

Figure 16. Photograph of the 4 kW MLM, AMB control box and motor control box. 

Threaded hole

Balancing plane A

Balancing plane B

AMB control box

Motor control box

MLM

 

The inertia axis and the rotation axis of the rotor are not aligned when rotating because of the 

residual unbalance. To reduce the unbalance, correction masses should be added to the two balancing 

planes at appropriate positions. There are 12 thread holes meanly distributing in every balancing plane. 

Screws matching the correction masses are fixed in the thread holes that match the correction angles. If 

the correction angle mismatches any thread hole, two screws that equivalent the correction masses can 

be placed in the two nearby thread holes. 
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Table 1. Design parameters of the 4 kW MLM. 

Symbol Name Value Unit 

Lr Length of the rotor 554 mm 

M Mass of the rotor 6.85 kg 

P Power 4 kW 

fbending The first bending frequency 650 Hz 

Jr The transverse moment of inertia 0.1147 kg m
2
 

Jz The polar moment of inertia 0.002529 kg m
2
 

I0 Bias current 1.2 A 

ki Current stiffness 43 N A
−1

 

ks Negative position stiffness −0.21 × 10
6
 N m

−1
 

S0 Radial protective clearance 0.2 mm 

L1 The distance from balancing plane-A to AMB-A 166 mm 

L2 The distance of the two AMBs 193 mm 

L3 The distance from AMB-B to balancing plane-B 168.5 mm 

r1 The correction radius of balancing plane-A 20 mm 

r2 The correction radius of balancing plane-B 15 mm 

6.2. Experimental Results 

Before assembled in the casing, the rotor has been balanced on the balancing machine. The GPF is 

added to the AMB control system at 0.7 s, and changes of the rotor displacement and coil current are 

shown in Figure 17.  

Figure 17. Sensor outputs before and after adding the GPF at 80 Hz. 

  

(a) rotor displacement (b) coil current 

The rotor’s synchronous displacement rapidly decreases to zero (the high-frequency residuals of 

AX-channel and AY-channel are caused by the rough sensor target rather than the unbalance) after 

adding GPF. With the CCA, the amplitudes and phases of the synchronous displacement and current 

are extracted (see Figures 18 and 19). The amplitudes of X-channel and Y-channel are almost the same, 

whereas the phase of Y-channel leads that of X-channel by 90 as the rotor spins from the x-axis to the 

y-axis. 
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Figure 18. Amplitude and phase of synchronous displacement before and after adding  

the GPF. 

 

Figure 19. Amplitude and phase of synchronous current before and after adding the GPF. 

 

According to the method discussed in Section 5, the measured current stiffness are obtained and 

listed in Table 2, which are all below the design values. 

Table 2. The measured results of the current stiffness. 

Channel Value Unit 

AX 33.45 N A
−1

 

AY 33.99 N A
−1

 

BX 37.77 N A
−1

 

BY 36.06 N A
−1

 

According to Equation (21), the synchronous current of X-channel is employed to compute the 

correction masses. The original correction masses at both balancing planes are 1.292 g∠154.4° and 

0.896 g∠264.0° respectively (equivalent to 3.772 g mm kg
−1

 and 1.962 g mm kg
−1

), far from the 

standard of balance grade for a motor [28]. After balancing once, the correction masses are  

0.045 g∠185.5° and 0.063 g∠45.3°, reducing 97.5% and 92.7% respectively. After a second balancing, 

the residual unbalances are 0.011 g∠54.1° and 0.011 g∠126.8° (equivalent to 0.032 g mm kg
−1

 and 

0.024 g mm kg
−1

), superior to the standard of the highest balance grade in ISO1940–2003 [28].  
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The rotor spins at frequency 80 Hz under the PD controller, and a comparison of the rotor 

displacements before and after balancing is given in Figure 20. After balancing, we find that the 

displacements at the B-end are nearly zero and the fluctuations at the A-end are the high-frequency 

rough target-detection error rather than the synchronous signal [29]. The amplitudes of the 

synchronous displacement and current of AX-channel are extracted using the method discussed in 

Section 5.1 when the rotor speeds down from 80 Hz to zero (see Figure 21). The peaks of the curves 

before balancing in the figure are located at the rigid critical speed of the MLR system. The rotor 

displacement decreases from 21 µm to 0.14 µm and coil current decreases from 740 mA to 7 mA at the 

balancing frequency (80 Hz).  

Figure 20. Rotor displacement at 80 Hz. 

  

(a) before field balancing. (b) after field balancing. 

Figure 21. Amplitude of synchronous displacement and current of AX-channel from 80 Hz 

to 0 before (bold curve) and after (thin curve) balancing at 80 Hz. 

  

(a) displacement. (b) current. 

Figure 22 is the amplitude of rotor’s synchronous displacement from 500 Hz to 0 after field 

balancing. We can see that rotor’s displacement is smaller than 0.3 µm when the speed is below 250 Hz. 

Rotor displacement improves rapidly after 300 Hz, and the flexible unbalance begins to affect rotor’s 

displacement. When the rotor spins above 400 Hz, flexible unbalance plays a key role in rotor 

displacement, and flexible balancing must be carried out. 
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Figure 22. Amplitude of rotor’s synchronous displacement after field balancing with the 

rotation speed decreasing from 500 Hz to 0. 

 

7. Conclusions 

A new method of field dynamic balancing for an MLR has been proposed that requires no trial 

weights or rotor-bearing model, but which can make balancing simultaneously highly efficient and 

highly accurate. First, the MLR dynamics including static unbalance and dynamic unbalance was 

modeled. According to the models, we found that making the rotor’s rotation axis align with the 

geometric axis would bring two benefits. One was that the unbalanced centrifugal force/torque equaled 

the synchronous magnetic force/torque generated by the control current; the other is that the magnetic 

force was proportional to the control current, assisting in making field balancing highly accurate. 

Second, using the UCC method with a GPF enabled the MLR to spin around its geometric axis. 

Finally, the correction masses was calculated using control current rather than rotor displacement, 

which required only a single startup, and particularly without the need for influence coefficients. The 

experimental results showed that this novel balancing method increased the balance grade by two 

orders of magnitude based on off-line balancing, achieving 0.024 g mm kg
−1

. Though the proposed 

balancing method performs well in the experiment, it still has many limitations as follows:  

(1)  It is effective only for rigid rotors; 

(2)  The off-line balancing is indispensable. The proposed method requires that the magnetic force 

should be able to counterbalance the unbalance centrifugal force, so it is not effective for rotors 

that have large unbalances; 

(3) The rotor’s mass distribution should change little in operation. Otherwise, an active vibration 

control method should be used in conjunction with the propose method. 
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