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Abstract: Various sensors have been used to obtain the canopy spectral reflectance for 

monitoring above-ground plant nitrogen (N) uptake in winter wheat. Comparison and 

intercalibration of spectral reflectance and vegetation indices derived from different 

sensors are important for multi-sensor data fusion and utilization. In this study, the spectral 

reflectance and its derived vegetation indices from three ground-based sensors (ASD Field 

Spec Pro spectrometer, CropScan MSR 16 and GreenSeeker RT 100) in six winter wheat 

field experiments were compared. Then, the best sensor (ASD) and its normalized difference 

vegetation index (NDVI (807, 736)) for estimating above-ground plant N uptake were 

determined (R
2
 of 0.885 and RMSE of 1.440 g·N·m

−2
 for model calibration). In order to better 

utilize the spectral reflectance from the three sensors, intercalibration models for vegetation 

indices based on different sensors were developed. The results indicated that the vegetation 

indices from different sensors could be intercalibrated, which should promote application 

of data fusion and make monitoring of above-ground plant N uptake more precise and accurate. 

Keywords: sensors; spectral reflectance; vegetation index; above-ground plant nitrogen 

uptake; estimating model; comparison; intercalibration; winter wheat 
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1. Introduction 

Above-ground plant nitrogen (N) uptake is a good indicator of plant N status [1]. Real-time and 

accurate monitoring of spatial and temporal variation of above-ground plant N uptake can help farmers 

make proper N application decisions and improve grain yield and quality [2,3]. The traditional 

methods for evaluating above-ground plant N uptake, depending on plant tissue analysis, are  

labor-intensive, time-consuming and expensive, and cannot characterize the temporal and spatial 

variability of above-ground plant N uptake over large fields. Recently, remote sensing has been proven 

to be an effective tool to estimate plant N status in the field [4–6]. 

A wide range of ground-based sensors, working either passively or actively, has been used to 

produce vegetation indices (VIs) for monitoring vegetation photosynthetic activities and biophysical 

properties [4,5]. Passive sensor systems, such as the ASD Field Spec Pro spectrometer (Analytical 

Spectral Devices, Boulder, CO, USA) and CropScan MSR 16 handheld multispectral radiometer 

(CropScan, Rochester, MN, USA) use sunlight as the source of light. Active sensors such as the 

GreenSeeker RT 100 (NTech Industries Inc., Ukiah, CA, USA) and Crop Circle ACS-470 (Holland 

Scientific Inc., Lincoln, NE, USA) are equipped with light-emitting components providing radiation in 

specific wavelength regions. Passive sensors are mostly multispectral or hyperspectral, enabling the 

calculation of numerous VIs, thus making themselves more flexible and applicable [7,8], although 

passive sensors can only be used under adequate light conditions. Active sensors are limited by their 

use of several central wavelengths and can thus be used to calculate only a few VIs, but they can be 

used, independent of solar radiation, in the field, even at night [9,10]. 

The capability and operability of active and passive sensors in monitoring plant growth status have 

been compared in previous studies [10–12]. Fitzgerald [11] concluded that active sensors did not 

perform as well as passive sensors in measuring green cover, but differences in model performance 

were small. The easy operation of active sensors without radiometric calibration would outweigh the 

small reduction in correlation or sensitivity in RMSE. Fitzgerald also found that the relationships of 

the typical, sunlight-based NDVI to biomass or leaf area index were nonlinear, while the relationships 

of NDVI and especially of SAVI from the active sensor to biomass or leaf area index were much more 

linear. It was proposed that the active sensors could measure the biomass or leaf area index more 

robustly [11]. Erdle et al. compared several indices obtained from four sensors, including one passive 

and three active sensors, and found that R760/R730 was the most powerful and temporally stable index 

for detecting the plant N status of winter wheat. Hence, the estimations from the passive sensor were 

slightly more precise than those from the active sensors. They concluded that active sensor was more 

flexible in terms of timeliness and illumination conditions, but it is bound to a limited number of 

central wavelengths [10]. 

The normalized difference vegetation index (NDVI), based on the red and near-infrared (NIR) 

reflectance difference divided by their sum [13], is one of the most widely used indices for monitoring 

plant N status. NDVI is also in a good correlation with green leaf cover [14], green leaf biomass [15] 

and grain yield [16]. It can also be used as an indicator of plant development, and can be input into 

crop models [17]. All common sensors can provide NDVI, but they are varied in central wavelengths 

or bandwidths for calculating NDVI [18,19]. 
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To be able to take full advantage of NDVI from different sensors, studies have been conducted to 

analyze the compatibility of NDVI from new and advanced sensor systems with the existing long-term 

NDVI time series data [18–21]. It was found that cross-sensor differences of NDVI were dependent on 

variations in solar radiation [22] and in bidirectional response introduced by the different solar 

radiations and viewing angles [23]. By calibrating the differences in solar radiations and viewing 

angles and then by correcting the differences in central wavelengths and bandwidths, near equivalent 

NDVI between sensors can be achieved [18,19,24]. In most of the above studies, the broadband VIs 

derived from active and passive sensors were compared, but the narrowband VIs constructed by 

passive sensor were not systematically compared with broadband VIs obtained by both active and 

passive sensors, and the intercalibration model between the active and passive sensors has been  

rarely reported. 

In precision agriculture, it is necessary to fuse data from more than one sensor to characterize the 

temporal and spatial variability of above-ground plant N uptake over large fields. On the basis of six 

field experiments in winter wheat, this study obtained the canopy spectral reflectance from three 

different ground-based sensors (involving two passive sensors—ASD and CropScan—and one active 

sensor—GreenSeeker) and above-ground plant N uptake. The main objectives of this study were to:  

(1) compare the spectral reflectance and VIs derived from different sensors, (2) compare and determine 

the best sensor and its VI for estimating above-ground plant N uptake, and establish the monitoring model 

for above-ground plant N uptake in winter wheat; and (3) intercalibrate VIs from different sensors. 

2. Materials and Methods 

2.1. Experiment Design 

The data included in this study were obtained from six experiments in winter wheat carried out over 

different years and eco-sites. Treatments under study included different N rates (Exp. 1 and 3), varieties 

and N rates (Exp. 2 and 4), sowing dates (Exp. 5), and plant densities (Exp. 6), as detailed in Table 1. 

2.2. Data Measurements 

2.2.1. Measurements of Canopy Spectral Reflectance 

Three sensors were used to measure canopy spectral reflectance in this paper: (1) ASD Field Spec 

Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA), abbreviated as ASD;  

(2) CropScan MSR 16 handheld multispectral radiometer (CropScan, Rochester, MN, USA), 

abbreviated as CS; (3) GreenSeeker RT 100 (NTech Industries, Ukiah, CA, USA), abbreviated as GS. 
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Table 1. Main details of the six field experiments. 

Exp. 

Number 

Year and 

Location 
Variety 

Sowing Date 

(Month-Day) 
Treatment 

Sampling Date 

(Month-Day) 

Sample 

Number 

Sensors 

Comparison 

Sensors 

Intercalibration 

ASD CS GS ASD & CS & GS 

Exp.1 2007–2008 

Nanjing 

Ningmai 9 11–5 Nitrogen (kg·hm−2):  

0, 90, 180, 270 

03–11 (early jointing), 

03–25 (jointing), 

04–18 (heading) 

N = 60 C C   

Exp.2 2009–2010 

Yangzhou 

Yangmai 16 

Ningmai 13 

11–3 Nitrogen (kg·hm−2):  

0, 120, 180, 240, 300 

03–28 (jointing), 

04–08 (early booting), 

04–16 (heading) 

N = 81   C  

Exp.3 2009–2010 

Yangzhou 

Yangmai 16 11–2 Nitrogen (kg·hm−2):  

0, 90, 180, 270 

03–11 (early jointing), 

03–19 (jointing), 

04–15 (heading) 

N = 63 V V V C 

Exp.4 2010–2011 

Yangzhou 

Yangmai 16 

Ningmai 13 

11–5 Nitrogen (kg·hm−2):  

0, 75, 150, 225, 300 

03–29 (jointing) N = 19 V V V C 

Exp.5 2010–2011 

Yangzhou 

Yangmai 16 

 

see treatment Sowing date:  

10–15, 10–25, 11–04, 

11–14, 11–24 

02–24 (green returning) N = 14 C C C V 

Exp.6 2010–2011 

Yangzhou 

Yangmai 16 

 

11–4 Density (plant·m−2)  

60, 150, 240, 330, 420 

02–23 (green returning),  

03–30 (jointing) 

N = 19 C C C V 

Notes: C was data for model calibration, and V was data for model validation. 
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The ASD recorded reflectance between 350 and 1,000 nm, with a sampling interval of 1.4 nm and a 

resolution of 3 nm, and reflectance between 1,000 and 2,500 nm with a sampling interval of 2 nm and 

a resolution of 10 nm. It had a 25° field of view fiber optics and was operated at nadir  

1.2 m above the winter wheat canopy. The reflected radiance was converted to spectral reflectance by 

normalization with radiance measured over a white Spectralon reflectance panel (Labsphere,  

North Sutton, NH, USA). Fifteen scans were obtained for each plot and averaged to produce final 

canopy spectral reflectance. Radiance measurement of the Spectralon panel was obtained for every 

fifteen canopy spectral measurements. 

The CS measured the canopy reflectance of 16 specific wavebands with each central wavelength 

and bandwidth between 447 and 1,752 nm (Figure 1). The sensor collected the upwelling radiance of 

target and downwelling irradiance of solar simultaneously at each central wavelength, using a cosine 

diffuser for the downwelling irradiance of solar measurement. Thus, it was able to compute reflectance 

directly rather than through the use of a white Spectralon reference panel and therefore could collect 

reflectance rapidly. The field of view was 28° and the sensor was operated at nadir 1.2 m above the 

canopy of winter wheat. Ten scans were obtained for each plot and averaged to produce final canopy 

spectral reflectance. 

Figure 1. The canopy spectral reflectance of winter wheat and the spectral response 

function of CS. 

 

The GS used two LEDs as a light source and detected the reflection in the visual (VIS, with  

656 nm and 25 nm as the central wavelength and bandwidth, respectively) and near infrared (NIR, 

with 774 nm and 25 nm as the central wavelength and bandwidth, respectively) spectral regions. The 

field of view was (24 ± 4)" × (0.6 ± 0.2)", and the sensor was operated at nadir 1.2 m above the winter 

wheat canopy. The sensor was run crosswise according to the sowing direction, and 10 rows of each plot 

were measured. With reference to the manufacturers’ instructions, GS was calibrated before delivery and 

no additional calibration was further required. In addition, the data obtained from GS was NDVI. 

All spectral reference measurements were made under clear sky conditions between 10:00 and 

14:00 (Beijing local time). In each experiment, data were obtained on several different dates, which 

corresponded to the major growth stages, as summarized in Table 1. 
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2.2.2. Determination of Above-Ground Plant N Uptake 

The determination of above-ground plant N uptake was made by the sample of an area of 0.25 m
2
 

(two rows and 0.5 m long) of winter wheat plants from each plot. For each sample, the above-ground 

plant dry weight was measured when the collected plants were oven-dried at 80 °C to constant weight. 

The above-ground plant total N concentration was determined by the micro-Kjeldahl method. Above-ground 

plant N uptake (PNU, g·N·m
−2

) was calculated as the product of above-ground plant N concentration on dry 

weight basis (PNC, g·100·g
−1

) and above-ground plant dry weight per unit ground area (PDW, g·DW·m
−2

). 

2.3. Data Analysis 

2.3.1. Intercalibration and Comparison of Spectral Reflectance between Different Sensors 

The central wavelengths of three sensors in this study had different bandwidths; so the spectral 

response function was used to resample spectral reflectance among different sensors for further comparing 

and intercalibration. On the basis of spectral response function at 16 central wavelengths of the CS 

(Figure 1); the spectral reflectance from ASD was resampled; denoted by ASD_CS in this paper. Similarly; 

the spectral reflectance from ASD was resampled based on the Gauss spectral response function (central 

wavelengths of 774 nm and 656 nm with bandwidths of 25 nm) of the GS [25]; denoted by ASD_GS. 

2.3.2. Calculation of VIs from Different Sensors 

The narrowband VIs for estimating above-ground plant N uptake in this paper, as well as their 

algorithms and sources, were listed in Table 2. Among these indices, NDVI (807, 736) was determined 

as the optimal index to estimate above-ground plant N uptake based on the all possible two-band 

combinations of NDVI (λ1, λ2) in our lab [26], and the other VIs were commonly used indices for 

monitoring plant N status. 

Table 2. VIs for estimating above-ground plant N uptake in winter wheat. 

VI Algorithm Reference 

RI red edge (R750-800/R695-740) −1 Gitelson et al. (2003) [27] 

mSR705 
 Sims and Gamon, (2002) [28] 

mND705 
 

VOGa  

Vogelmann et al. (1993) [29] 
VOGb 

 

VOGc 
 

PSSRb  Blackburn, (1998) [30] 

GREEN-NDVI 
 

Gitelson et al. (1996) [31] 

SAVI 
 

Huete, (1988) [32] 

NDVI (830, 660) 
 

Tucker, (1979) [13] 

NDVI (807, 736) 
 

Yao et al. (2012) [26] 

750 445

705 445

R R

R R





750 705

750 705 4452*

R R

R R R



 

740 720R / R

734 747

715 726

R R

R R





734 747

715 720

R R

R R





800 635R / R

750 550

750 550

R R

R R





  807 736

807 736

1 0 5
0 5

R R
.

R R .




 

830 660

830 660

R R

R R





807 736

807 736

R R

R R
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Furthermore, the resampled ASD data based on the central wavelengths and bandwidths of CS and 

GS were used to calculate all possible two-band combinations of NDVI (λ1, λ2) [5], and were 

abbreviated as NDVI_ASD_CS and NDVI_ASD_GS, respectively. The NDVI based on the original 

ASD data corresponding to the central wavelengths of CS and GS was abbreviated as NDVI_ASD, 

and the NDVIs based on the original CS and GS data were abbreviated as NDVI_CS and  

NDVI_GS, respectively. 

2.3.3. Model Calibration 

On the basis of calibration data (marked as C in Table 1), the VIs from different sensors in this 

paper were used to establish linear models for monitoring above-ground plant N uptake in winter 

wheat. The coefficient of determination (R
2
) and root mean square error (RMSE) were computed to 

evaluate the performance of the models [33]. Furthermore, the scatter plots between above-ground 

plant N uptake and VIs were drawn to show the fitness of the models. 

2.3.4. Model Validation 

The independent data (marked as V in Table 1) were used to test the monitoring models with R
2
, 

RMSE, slope and intercept of linear equation. The model performance was more accurate with the R
2
 

and slope near to 1, while the RMSE and intercept near to 0 [33]. Besides, the 1:1 scatter plots of the 

predicted and observed values were drawn to display the performance of the models. 

Finally, evaluation of VI performance was carried out based on considering both calibration and 

validation results. In this way, the model’s predictive performance was assessed by ranking R
2
 values 

in decreasing order and RMSE values in ascending order for calibration and validation datasets 

respectively, while ranking absolute values of (slope-1) and absolute values of intercept in ascending 

order only for the validation datasets. The overall performance of VIs across calibration and validation 

datasets was evaluated according to the sum of above six ranks, and the VI with the lowest sum of 

above six ranks was selected as the best VI [26]. All of the above procedures were implemented  

using MATLAB 7.9. 

3. Results 

3.1. Canopy Spectral Reflectance from Different Sensors at Different Above-Ground Plant N  

Uptake Levels 

Figure 2 shows an identical pattern of the changes in canopy spectral reflectance obtained from 

ASD and CS at different above-ground plant N uptake levels. In the visible region, the reflectance was 

in a downward trend with increasing above-ground plant N uptake, and the trend slowed down when 

the above-ground plant N uptake was above 6–9 g·N·m
−2

. Especially, the reflectance of the red ranges 

tends to be saturated at relatively high above-ground plant N uptake (Figure 2(b)). However, the 

reflectance in the NIR region was in an upward trend, and the trend maintained till the above-ground 

plant N uptake of 12–15 g·N·m
−2

. 
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Figure 2. Changes in canopy spectral reflectance from ASD and CS at different  

above-ground plant N uptake levels in winter wheat. (a) 350–2,500 nm; (b) 350–700 nm. 

 

    (a)                                                                              (b) 

3.2. Comparison of Canopy Spectral Reflectance from Different Sensors 

Significant positive correlations were observed between the canopy spectral reflectance of ASD and 

that of ASD_CS, with the R
2
 greater than 0.999, except when the central wavelength was at 1,650 nm 

(figure not shown). The wider bandwidth (195 nm) at the central wavelength of 1,650 nm affected the 

resampled data (ASD_CS) by atmospheric water absorption wavelengths between the 1,352 nm and 

1,451 nm, which significantly reduced the R
2
 (0.321). Significant positive correlations were also 

observed between the canopy spectral reflectance of ASD and that of ASD_GS, with the R
2
 greater 

than 0.999 (figure not shown). 

Figure 3 shows the correlation coefficients of canopy spectral reflectance between ASD and CS, 

ASD_CS and CS, respectively. Except at the central wavelengths of 1,220 nm and 1,650 nm, both 

ASD and ASD_CS reflectance were significantly correlated with the CS reflectance (correlation 

coefficients were higher than or close to 0.9). At the central wavelength of 1,220 nm, the spectral 

reflectance of CS were significantly different with that of ASD and ASD_CS, which obviously 

reduced the correlation coefficients of canopy spectral reflectance between ASD and CS, ASD_CS and 

CS. At the central wavelength of 1,650 nm, the correlation coefficient of spectral reflectance between 

ASD and CS was significantly higher than that between ASD_CS and CS, implying that the 

atmospheric moisture absorption wavelengths could markedly disturb the spectral reflectance of 

ASD_CS (Figure 3). 
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Figure 3. The correlation coefficients of canopy spectral reflectance between ASD and CS, 

ASD_CS and CS in winter wheat. 

 

3.3. Comparison of VIs among Different Sensors 

According to the 16 central wavelengths of CS, NDVIs of different sensors (ASD, CS and 

ASD_CS) with all possible two-band combinations were computed. Figure 4 shows that the correlation 

coefficients between NDVI_CS and NDVI_ASD varied with different central wavelength 

combinations. NDVI_CS with central wavelength combinations in the region of 460–710 nm and  

760–1,220 nm, as well as 760–1,220 nm and 1,480–1,650 nm, had high correlation coefficients with 

NDVI_ASD. Meanwhile, the correlation coefficients between NDVI_CS and NDVI_ASD_CS also 

varied with the different central wavelength combinations (Figure 5), but there were a little difference 

from those in Figure 4. 

Figure 4. The correlation coefficients of NDVI_CS and NDVI_ASD in winter wheat. 
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Figure 5. The correlation coefficients of NDVI_CS and NDVI_ASD_CS in winter wheat. 

 

In order to compare the correlation coefficients between NDVI_CS and NDVI_ASD_CS and 

between NDVI_CS and NDVI_ASD, the differences of the correlation coefficients were plotted in 

Figure 6. Figure 3 shows that the ASD_CS data were similar to the CS data as compared with the ASD 

data, while, Figure 6 shows that most correlation coefficients between NDVI_CS and 

NDVI_ASD_CS, were less than those between NDVI_CS and NDVI_ASD, except for the NDVI  

(660, 680), NDVI (760, 810), NDVI (760, 870) and NDVI (760, 950), and the absolute differences in 

most two-band combinations were less than 0.05. 

Figure 6. The differences in correlation coefficients of NDVI_CS and NDVI_ASD_CS 

with NDVI_CS and NDVI_ASD in winter wheat. 
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Figure 7 shows the correlation coefficients between NDVI (774, 656)_GS and NDVIs from CS, 

ASD and ASD_GS, including NDVI (760, 660)_CS, NDVI (774, 656)_ASD and NDVI  

(774, 656)_ASD_GS, in which the central wavelengths in NDVI (760, 660)_CS are the closest central 

wavelengths of CS compared with GS. There were no obvious differences between NDVI  

(774, 656)_GS and NDVI (760, 660)_CS, NDVI (774, 656)_GS and NDVI (774, 656)_ASD, and 

NDVI (774, 656)_GS and NDVI (774, 656)_ASD_GS, respectively (Figure 7). The correlation 

coefficients between NDVI (774, 656)_GS and NDVI (774, 656)_ASD and between NDVI  

(774, 656)_GS and NDVI (774, 656)_ASD_GS were relatively higher than those between NDVI  

(774, 656)_GS and NDVI (760, 660)_CS. 

Figure 7. The correlation coefficients between NDVI (774, 656)_GS and NDVI  

(760, 660)_CS, NDVI (774, 656)_ASD and NDVI (774, 656)_ASD_GS in winter wheat. 

 

3.4. Quantitative Relationships between Above-Ground Plant N Uptake and VIs from Different Sensors 

3.4.1. Monitoring Models Based on ASD 

The monitoring models for above-ground plant N uptake with VIs based on ASD in Table 2 were 

established, and the independent datasets were used to validate the models. Table 3 displays the 

models and their performance for monitoring above-ground plant N uptake. The results show that the 

NDVI (807, 736)_ASD was the best VI for monitoring above-ground plant N uptake, with R
2
 of 0.885 

and RMSE of 1.440 g·N·m
−2

 for model calibration, and R
2
 of 0.883, RMSE of 1.418 g·N·m

−2
, slope of 

1.006 and intercept of −0.942 for model validation. For all VIs, the indices based on the red edge range 

performed better than those based on the green or red range, as seen in Table 3. Figure 8 shows the 

relationship between NDVI (807, 736)_ASD and above-ground plant N uptake. Figure 9 displays the 

1:1 relationship between the predicted and observed above-ground plant N uptake based on the 

monitoring model with NDVI (807, 736)_ASD. 
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Table 3. The performance of models for monitoring above-ground plant N uptake in winter 

wheat based on VIs from ASD. 

VI 

Calibration Validation 
Summed 

Rank Model R
2
 

RMSE 

(g·N·m
−2

) 
R

2
 

RMSE 

(g·N·m
−2

) 
Slope Intercept 

NDVI (807,736) y = 82.222x − 4.006 0.885 1.440 0.883 1.418 1.006 −0.942 15 

VOGb y = −44.012x − 0.725 0.878 1.482 0.868 1.560 0.979 −0.952 26 

mSR705 y = 4.028x − 2.340 0.854 1.624 0.858 1.352 1.028 −0.681 28 

VOGc y = −36.799x − 0.336 0.876 1.496 0.866 1.544 0.956 −0.818 28 

PSSRb y = 0.880x − 0.251 0.846 1.668 0.842 1.329 0.955 −0.240 32 

RI red edge y = 8.714x − 2.435 0.876 1.497 0.864 1.551 1.047 −1.191 36 

NDVI (830, 660) y = 22.785x − 9.858 0.727 2.218 0.788 1.541 0.996 −0.111 40 

SAVI y = 15.333x − 9.798 0.730 2.209 0.787 1.546 0.997 −0.142 41 

VOGa y = 13.346x − 15.651 0.864 1.566 0.857 1.718 1.046 −1.403 44 

GREEN-NDVI y = 30.882x − 12.198 0.792 1.940 0.839 1.533 1.054 −0.964 48 

mND705 y = 28.628x − 10.322 0.801 1.895 0.816 2.258 1.185 −2.439 58 

Figure 8. The quantitative relationship between NDVI (807, 736)_ASD and above-ground 

plant N uptake in winter wheat. 

  

Figure 9. The 1:1 relationship between the predicted and observed above-ground plant N 

uptake in winter wheat based on NDVI (807, 736)_ASD. 
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3.4.2. Monitoring Models Based on CS 

NDVI_CS with all possible two-band combinations of NDVI (λ1, λ2) were computed and the 

monitoring models between NDVI_CS and above-ground plant N uptake were established. Figure 10 

shows the top 5% R
2
 of all the monitoring models for above-ground plant N uptake based on 

NDVI_CS. The statistics parameters were listed in Table 4. Among all the NDVI_CS, the best index 

for estimating above-ground plant N uptake was NDVI (950, 710)_CS. The model performance was 

good with R
2
 of 0.873, RMSE of 1.514 g·N·m

−2
, for calibration, and with R

2
 of 0.856, RMSE of  

1.393 g·N·m
−2

, slope of 0.936 and intercept of −0.425 for validation. 

Figure 11 shows the linear relationship between NDVI (950, 710)_CS and above-ground plant N 

uptake. Figure 12 shows a 1:1 relationship between the predicted and observed above-ground plant N 

uptake based on NDVI (950, 710)_CS. 

Figure 10. The top 5% R
2
 of monitoring models for above-ground plant N uptake in winter 

wheat based on NDVIs from CS. 

 

Table 4. The performance of models for monitoring above-ground plant N uptake in winter 

wheat based on NDVIs from CS. 

VI 

Calibration Validation 
Summed 

Rank Model R
2
 

RMSE 

(g·N·m
−2

) 
R

2
 

RMSE 

(g·N·m
−2

) 
Slope Intercept 

NDVI (950, 710) y = 27.567x − 6.792 0.873 1.514 0.856 1.393 0.936 −0.425 18 

NDVI (1100, 710) y = 27.279x − 6.974 0.870 1.533 0.857 1.335 0.866 0.294 19 

NDVI (870, 710) y = 25.082x − 5.798 0.856 1.612 0.850 1.352 0.909 −0.183 20 

NDVI (1220, 710) y = 39.074x − 11.119 0.885 1.442 0.843 1.576 0.970 −0.798 23 

NDVI (950, 560) y = 32.631x − 14.138 0.850 1.648 0.832 1.385 0.942 −0.237 26 

NDVI (810, 710) y = 24.912x − 5.669 0.854 1.621 0.844 1.480 0.933 −0.486 32 

NDVI (1220, 560) y = 43.819x − 20.236 0.847 1.661 0.826 1.467 0.961 −0.436 34 

NDVI (760, 660) y = 21.03x − 8.218 0.742 2.158 0.789 1.434 0.813 1.473 45 

  

460

510

560

610

660

680

710

760

810

870

950

1100

1220

1480

1500

1650

Wavelength (nm) 

W
a

v
el

en
g

th
 (

n
m

)

 

 

46
0

51
0

56
0

61
0

66
0

68
0

71
0

76
0

81
0

87
0

95
0

11
00

12
20

14
80

15
00

16
50

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885



Sensors 2013, 13 3122 

 

 

Figure 11. The quantitative relationship between NDVI (950, 710)_CS and above-ground 

plant N uptake in winter wheat. 

 

Figure 12. The 1:1 relationship between the predicted and observed above-ground plant N 

uptake based on NDVI (950, 710)_CS. 

  

 

3.4.3. Monitoring Models Based on GS 

NDVI (774, 656)_GS was used to develop a linear model for estimating above-ground plant N 

uptake, and the model was y = 15.286x + 0.185, with R
2
 and RMSE being 0.689 and 2.130 g·N·m

−2
 for 

calibration, and with R
2
, RMSE, slope and intercept being 0.820, 1.259 g·N·m

−2
, 0.798 and 1.134 for 

validation, respectively. The model performance for calibration was not very satisfactory, because the 

linear relationship between NDVI (774, 656)_GS and above-ground plant N uptake did not exist when 

the above-ground plant N uptake was higher than 10 g·N·m
−2

 (Figure 13). The result of model 

validation was consistent with that of calibration,when the above-ground plant N uptake was lower 

than 10 g·N·m
−2

, the predictive performance of the model had a 1:1 relationship between the predicted 

and observed values (Figure 14). 
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Figure 13. The quantitative relationship between NDVI (774, 656)_GS and above-ground 

plant N uptake in winter wheat. 

 

Figure 14. The 1:1 relationship between the predicted and observed above-ground plant N 

uptake based on NDVI (774, 656)_GS in winter wheat. 

 

3.5. Comparison of VIs from Resampled Reflectance for Estimating Above-Ground Plant N Uptake 

Based on the central wavelength combinations with top 5% R
2 
in CS, monitoring models from ASD 

and ASD_CS data were established (Table 5). 
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plant N uptake, with R
2
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2
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Table 5. The performance of models for monitoring above-ground plant N uptake based on 

VIs from ASD, ASD_CS and ASD_GS in winter wheat. 

Sensor VI 

Calibration Validation 
Summed 

Rank Model R
2
 

RMSE 

(g·N·m
−2

) 
R

2
 

RMSE 

(g·N·m
−2

) 
Slope Intercept 

ASD NDVI (950, 710) y = 31.436x − 7.113 0.849 1.651 0.857 1.634 1.072 −1.369 23 

 NDVI (1220, 560) y = 39.039x − 16.295 0.779 1.997 0.863 1.289 1.074 −0.394 24 

 NDVI (950, 560) y = 31.918x − 13.419 0.809 1.858 0.852 1.370 1.017 −0.631 24 

 NDVI (1100, 710) y = 32.707x − 8.18 0.836 1.723 0.859 1.529 1.119 −1.295 29 

 NDVI (1220, 710) y = 42.024x − 9.301 0.783 1.981 0.875 1.410 1.161 −1.137 30 

 NDVI (870, 710) y = 29.234x − 6.684 0.848 1.659 0.852 1.729 1.112 −1.613 31 

 NDVI (760, 660) y = 21.719x − 9.001 0.718 2.258 0.778 1.561 0.984 0.057 34 

 NDVI (774, 656) y = 22.244x − 9.387 0.658 2.236 0.801 1.439 0.924 −0.019 36 

 NDVI (810, 710) y = 28.768x − 6.215 0.845 1.673 0.847 1.786 1.127 −1.717 39 

ASD_CS NDVI (950, 710) y = 32.023x − 7.266 0.849 1.653 0.858 1.618 1.072 −1.345 21 

 NDVI (1220, 560) y = 38.967x − 16.304 0.780 1.995 0.863 1.292 1.075 −0.395 22 

 NDVI (950, 560) y = 31.887x − 13.435 0.808 1.860 0.851 1.370 1.018 −0.627 23 

 NDVI (1100, 710) y = 33.299x − 8.336 0.835 1.727 0.859 1.516 1.118 −1.259 26 

 NDVI (870, 710) y = 29.698x − 6.802 0.847 1.660 0.852 1.718 1.111 −1.593 28 

 NDVI (1220, 710) y = 43.158x − 9.58 0.779 1.997 0.875 1.407 1.163 −1.097 30 

 NDVI (760, 660) y = 21.805x − 9.094 0.716 2.262 0.779 1.562 0.987 0.000 31 

 NDVI (810, 710) y = 29.208x − 6.328 0.845 1.675 0.847 1.777 1.126 −1.699 36 

ASD_GS NDVI (774, 656) y = 22.243x − 9.371 0.656 2.240 0.801 1.432 0.919 0.021 6 

It could be concluded that among the models for estimating above-ground plant N uptake based on 

VIs from ASD, CS, GS, ASD_CS and ASD_GS, the best index for estimating above-ground plant N 

uptake in winter wheat was NDVI (807, 736)_ASD, with the highest R
2
 of 0.885 and 0.883 for 

calibration and validation, respectively (Tables 3–5 and Figure 13). 

3.6. Intercalibration of Optimal VI from ASD and CS 

The above results indicated that the spectral reflectance of the original ASD (ASD) and the 

resampled ASD data (ASD_CS, ASD_GS) were not significantly different in most central wavelengths 

and in the NDVIs. The intercalibration models based on original and resampled data were constructed 

and compared, and the results showed that there was no significant difference between them  

(figure not shown). Thus the intercalibration of VIs from different sensors (ASD, CS and GS) was 

based on the original sensor data in this paper. 

Table 6 reports the coefficients of determination (the higher one between the models based on linear 

and quadratic polynomial) between the VIs from ASD and CS. The result showed that NDVI  

(807, 736)_ASD and NDVI (810, 710)_CS had the highest coefficient of determination (0.9720) 

(Table 6). The results of Section 3.4.1 showed that NDVI (807, 736)_ASD was the best index among 

the NDVIs_ASD for estimating above-ground plant N uptake, while the results of Section 3.4.2 

showed that NDVI (950, 710)_CS was the best index among the NDVIs_CS. However, Table 4 

indicates that the performance of NDVI (810, 710)_CS was just slightly lower than NDVI  
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(950, 710)_CS, and it is also good. In addition, the central wavelengths in the NDVI (810, 710)_CS 

were closer to those in the NDVI (807, 736)_ASD than those in the NDVI (950, 710)_CS. These 

results suggest that the NDVI (807, 736)_ASD and NDVI (810, 710)_CS should be selected for 

intercalibration as the optimal VI between ASD and CS. 

The intercalibration model based on NDVI (807, 736)_ASD and NDVI (810, 710)_CS was 

developed. The quantitative relationship between NDVI (807, 736)_ASD and NDVI (810, 710)_CS 

was in the form of a quadratic polynomial model as y = −13.831x
2
 + 6.269x−0.070, with R

2
 of 0.972 

and RMSE of 0.021. Furthermore, the model validation results showed that the intercalibration model 

performed well for the independent data, with R
2
 of 0.953 and RMSE of 0.057. 

Table 6. The coefficients of determination between the VIs from ASD and CS. 

VI from ASD 

VI from CS 

NDVI 

(1220, 710) 

NDVI 

(1100, 710) 

NDVI 

(950, 710) 

NDVI 

(870, 710) 

NDVI 

(810, 710) 

NDVI 

(950, 560) 

NDVI 

(1220, 560) 

NDVI 

(760, 660) 

NDVI 

(810, 660) 

NDVI (807, 736) 0.9421 0.9694 0.9718 0.9712 0.9720 0.9682 0.9480 0.9263 0.9346 

RI red edge 0.9380 0.9642 0.9716 0.9705 0.9710 0.9658 0.9443 0.9348 0.9429 

mSR705 0.9242 0.9610 0.9593 0.9597 0.9593 0.9524 0.9275 0.9452 0.9488 

mND705 0.9384 0.9564 0.9668 0.9650 0.9660 0.9610 0.9441 0.9225 0.9323 

VOGa 0.9352 0.9583 0.9692 0.9679 0.9691 0.9641 0.9430 0.9273 0.9370 

VOGb 0.9377 0.9623 0.9716 0.9700 0.9708 0.9654 0.9448 0.9262 0.9349 

VOGc 0.9385 0.9625 0.9711 0.9695 0.9702 0.9645 0.9452 0.9253 0.9336 

PSSRb 0.9194 0.9522 0.9401 0.9397 0.9378 0.9282 0.9161 0.9272 0.9261 

GREEN-NDVI 0.9365 0.9658 0.9613 0.9608 0.9598 0.9549 0.9371 0.9443 0.9487 

SAVI 0.9116 0.9472 0.9383 0.9398 0.9388 0.9306 0.9100 0.9435 0.9442 

NDVI (830, 660) 0.9119 0.9469 0.9378 0.9393 0.9383 0.9300 0.9100 0.9425 0.9432 

3.7. Intercalibration of NDVI (NIR, red) from ASD, CS and GS  

3.7.1. Intercalibration of NDVI (774, 656)_ASD and NDVI (774, 656)_GS 

The quantitative relationship between NDVI (774, 656)_ASD and NDVI (774, 656)_GS was in the 

form of a linear model as y = 1.076x − 0.362, with R
2
 of 0.896 and RMSE of 0.056. Furthermore, the 

model validation results showed that the intercalibration model performed well for the independent 

data, with R
2
 of 0.974 and RMSE of 0.077. 

3.7.2. Intercalibration of NDVI (774, 656)_GS and NDVI (760, 660)_CS 

The quadratic polynomial model of y = −1.016x
2
 + 1.500x + 0.303 was developed to convert NDVI 

(774, 656)_GS to NDVI (760, 660)_CS, with R
2
 of 0.927 and RMSE of 0.036. On the basis of the 

intercalibration model, the transformed NDVI (760, 660)_CS was in a 1:1 relationship with measured 

NDVI (760, 660)_CS, with R
2
 of 0.974 and RMSE of 0.035. 

3.7.3. Intercalibration of NDVI (774, 656)_ASD and NDVI (760, 660)_CS 

The relationship between NDVI (774, 656)_ASD and NDVI (760, 660)_CS could be fitted as linear 

equation of y = 0.826x + 0.127, with R
2
 of 0.942 and RMSE of 0.032. The independent data for 
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validation indicated that the intercalibration model was reliable, with R
2
 of 0.970 and RMSE of 0.076 

between predicted and measured NDVI (760, 660)_CS. 

4. Discussion 

4.1. Spectral Reflectance and NDVI among Different Sensors 

Because of different design principles for different sensors, some differences could be found in the 

reflectance of single wavelength and in NDVIs obtained from different sensors at the same central 

wavelength, even in those of the resampled data (Figures 2–7). 

Two approaches are often used to make reflectance measurements on the ground-based passive 

sensor. The first is sequential measurement, in which solar irradiance is measured by periodically 

taking radiance from a calibration panel with known reflectance; and the reflected radiance of the 

ground target (generally the crop) is measured between two measurements of calibration panel. Then, 

the reflectance of the targets is calculated by dividing the radiance of the targets by the radiance of the 

calibration panel. The second is simultaneous measurement, in which irradiance values from the solar 

and from the target are measured simultaneously. Reflectance is also calculated by dividing radiance 

from the target by solar irradiance [34]. 

In this paper, the sequential measurement was used for the ASD, and the simultaneous 

measurement was used for the CS to determine the reflectance of the target. Using the ASD to measure 

the reflectance of the target, the variations could occur in atmospheric transmission between the 

measurements of the target radiance and solar irradiance, and substantial errors might occur in the 

calculated reflectance [35]. Previous studies showed that, under the condition of stable illumination, 

the sequential measurement introduced only slightly more variance in computed reflectance than 

simultaneous measurements. However, when clouds were present, even not immediately adjacent to 

the sun, solar irradiance varied over short temporal periods, then significant differences in the 

reflectance of target occurred between two different measurements [36]. 

Active sensors do not depend on sunlight or other external light sources, and they can be used under 

inadequate light conditions, even at night. They do not require a calibration panel because the light 

source intensity is known and constant. However, since the light source of active sensors has a limited 

range, they are limited to proximal sensing only. The commercial sensors only provide two central 

wavelengths, e.g., GreenSeeker RT 100 provides two central wavelengths of 774 nm and 656 nm, from 

which the normalized difference vegetation index (NDVI), ratio vegetation index (RVI) [13],  

soil-adjusted vegetation index (SAVI) [32] or related indices could be calculated. 

However, during the measurements in the present study, the fields of view of the sensors were 

different while the same measurement height was used, thus different canopy sizes were measured 

with different sensors. In future study, the researchers should adjust the height of the sensors to ensure 

the similar canopy in the fields of view of different sensors. 

4.2. Monitoring Model for Above-Ground Plant N Uptake among Different Sensors 

This paper also compared the quantitative relationships between VIs derived from different sensors 

and above-ground plant N uptake, from which some interesting results were found. Firstly, according 
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to the measuring principle of sensors, GS should be the most reliable sensor in this paper; however it 

did not provide the best estimation of above-ground plant N uptake. When the above-ground plant N 

uptake was higher than 10 g·N·m
−2

, the NDVI (774, 656)_GS was saturated (Figures 13 and 14). The 

saturation effects of NDVI from GS in current study were consistent with previous studies in maize [9] 

and wheat [10] crops. With high biomass, above-ground plant N uptake and LAI, the reflectance of red 

range tended to be saturated sooner than NIR range [37], and the central wavelength in red range was 

used in GS [10], which caused the saturation. 

Secondly, the NDVIs of the same central wavelengths from CS performed better than those from 

ASD and ASD_CS (Tables 4 and 5). The results indicated that the reflectance of CS were more 

reliable than the ASD, which might be that the CS measured the target radiance and the solar 

irradiance simultaneously, and could reduce errors of the change in solar irradiance. 

Thirdly, among the VIs from the above three sensors, the narrowband VI of NDVI (807, 736) from 

ASD performed the best for above-ground plant N uptake estimation (y = 82.222x − 4.006), with R
2
 of 

0.885 and RMSE of 1.440 g·N·m
−2

 for model calibration, and with R
2
 of 0.883, RMSE of  

1.418 g·N·m
−2

, slope of 1.006 and intercept of −0.942 for model validation. This finding was 

consistent with those of Mutanga and Skidmore [37] and Thenkabail et al. [4], who found that the 

NDVIs based on novel narrowbands could overcome the saturation of standard NDVI and could 

extract biomass information in areas of dense vegetation with a high degree of accuracy. The ASD 

sensor could provide a huge number of narrowbands to be used to construct new VIs for monitoring 

crop growth status. These results indicated that central wavelengths were, to a certain extent, more 

important than measuring principle of sensors in model accuracy. 

These findings in the present paper should be helpful for designing passive sensors with 

simultaneous measurements or active sensors with new central wavelengths (e.g., 807 and 736 nm), 

which could monitor plant growth status, especially N status, more precisely and accurately. 

4.3. Intercalibration of Different Sensors 

This study suggested that the original (CS and GS) and resampled spectral reflectance (ASD_CS 

and ASD_GS) had no significant difference in most central wavelengths and in the NDVIs 

respectively. These findings were different from previous studies in which resampled data, based on 

sensor specific spectral response functions instead of original data, were used to intercalibrate NDVI 

(NIR, red) between different sensors in order to reduce the error [18,19]. It might be that the sensors 

intercalibrated in previous studies were satellite sensors with broader bandwidths, while the sensors 

used in this paper were ground-based sensors with narrower bandwidths. Therefore, the original data 

of ASD, CS and GS were used to intercalibrate VIs from different sensors in the present study. 

Previous studies indicated that NDVI from different sensors could not be regarded as directly 

equivalent, because the working principle, central wavelengths and bandwidths were different. However, 

it could be further found that correlations existed between the NDVIs from different sensors [18,19]. The 

optimal VI of ASD and CS were intercalibrated based on NDVI (807, 736)_ASD and NDVI  

(810, 710)_CS. According to the model of y = −13.831x 
2
 + 6.269x − 0.070, NDVI (807, 736)_ASD 

could be accurately converted to NDVI (810, 710)_CS, with R
2
 of 0.972 and RMSE of 0.021. 
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There was a strong linear empirical relationship between NDVI (774, 656)_ASD and NDVI  

(774, 656)_GS, and the two NDVIs could be intercalibrated through y = 1.076x − 0.362, with R
2
 of 

0.896 and RMSE of 0.056 for calibration. The quadratic polynomial empirical relationships were 

found between NDVI (774, 656)_GS and NDVI (760, 660)_CS, and the two NDVIs could be 

intercalibrated through y = −1.016x
2
 − 1.500x + 0.303, with R

2
 of 0.927 and RMSE of 0.036 for 

calibration. There was also a linear relationship between NDVI (774, 656)_ASD and NDVI  

(760, 660)_CS, and the two NDVIs could be intercalibrated through y = 0.826x + 0.127, with R
2
 of 0.942 

and RMSE of 0.032 for calibration. The above intercalibration models were all validated with independent 

data, and the results showed that, with these models, nearly equivalent NDVIs between sensors could 

be achieved. These results were important for monitoring crop growth status with different sensors, 

and for better continuity of long-term monitoring of vegetation responses to environmental changes. 

5. Conclusions 

In this paper, VIs derived from different ground sensors (ASD Field Spec Pro spectrometer, 

CropScan MSR 16 and GreenSeeker RT 100) were compared and intercalibrated based on six 

experiments with winter wheat involving different years, eco-sites, varieties, N rates, sowing dates and 

sowing densities. The best sensor (ASD) and its VI (NDVI (807, 736)_ASD) were determined to 

estimate above-ground plant N uptake with higher precision (R
2
 of 0.885 and RMSE of  

1.440 g·N·m
−2

). The intercalibration models of VIs between three different sensors were developed. 

The results would contribute to the application of data fusion and improve the precision and accuracy 

in monitoring above-ground plant N uptake in winter wheat. 
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