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Abstract: Facial expressions are widely used in the behavioral interpretation of emotions, 

cognitive science, and social interactions. In this paper, we present a novel method for fully 

automatic facial expression recognition in facial image sequences. As the facial expression 

evolves over time facial landmarks are automatically tracked in consecutive video frames, 

using displacements based on elastic bunch graph matching displacement estimation. 

Feature vectors from individual landmarks, as well as pairs of landmarks tracking results 

are extracted, and normalized, with respect to the first frame in the sequence. The 

prototypical expression sequence for each class of facial expression is formed, by taking 

the median of the landmark tracking results from the training facial expression sequences. 

Multi-class AdaBoost with dynamic time warping similarity distance between the feature 

vector of input facial expression and prototypical facial expression, is used as a weak 

classifier to select the subset of discriminative feature vectors. Finally, two methods for 

facial expression recognition are presented, either by using multi-class AdaBoost with 

dynamic time warping, or by using support vector machine on the boosted feature vectors. 

The results on the Cohn-Kanade (CK+) facial expression database show a recognition 

accuracy of 95.17% and 97.35% using multi-class AdaBoost and support vector  

machines, respectively. 

Keywords: facial landmarks; elastic bunch graph; multi-class AdaBoost; dynamic time 

warping; facial expression recognition; support vector machines 
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1. Introduction 

Automatic facial expression recognition and analysis has been an active topic in the scientific 

community for over two decades (refer to [1] for a recent review). Recent psychological research has 

shown that facial expressions are the most expressive way in which humans display emotion. The 

verbal part of the message contributes only 7% of the effect of the message as a whole, and the vocal 

part 38%, while facial expression contributes 55% of the effect of the speaker’s message [2]. Therefore, 

automated and real-time facial expression recognition would be useful in many applications, e.g., human-

computer interfaces, virtual reality, video-conferencing, customer satisfaction studies, etc. in order to 

achieve the desired result. Although humans detect and interpret faces and facial expressions in a scene 

with little or no effort, accurate facial expression recognition by machine is still a challenge. Several 

research efforts have been made regarding facial expression recognition. In general, facial expressions 

are divided by psychologists into six basic categories: anger, disgust, fear, happiness, sadness,  

and surprise [3]. 

The first survey on the research made regarding facial expression recognition was published in  

1992 [4], and has been followed up by several researchers [5,6]. A meta-review of the facial 

expression recognition and analysis challenge has recently been presented in [1], by focusing on 

clarifying how far the field has come, identifying new goals, and providing the results of the baseline 

algorithms. It also discusses the future of the field of facial expression recognition, and possible  

future challenges. Facial expression recognition approaches can be divided into two main categories,  

based on the type of features used: either appearance-based features, or geometry-based features.  

Geometry-based features describe the shape of the face and its components, such as the mouth or the 

eyebrow, whereas appearance-based features describe the texture of the face, caused by expression. 

The appearance features that have been successfully employed for emotion recognition are local 

binary pattern (LBP) operator [7–11], histogram of orientation gradients (HOG) [12,13], local Gabor 

binary patterns (LGBP) [10], local directional pattern (LDP) [14], non-negative matrix factorization 

(NMF) based texture feature [15,16], Gabor filter based texture information [16], principle component 

analysis (PCA) [17], linear discriminant analysis (LDA) [18], etc. Among the appearance-based 

techniques, the theory of NMF has recently led to a number of promising works. In [16], an analysis of 

the effect of partial occlusion on facial expression recognition is performed, using a method based on 

Gabor wavelets texture information extraction, supervised image decomposition method based on 

discriminant NMF (DNMF), and shape-based method. A technique called graph-preserving sparse 

NMF (GSNMF) was introduced by Zhi et al. [15]. The GSNMF is an occlusion-robust dimensionality 

reduction technique, which transforms high-dimensionality facial expression images into a  

locality-preserving subspace, with sparse representation. LBP operator is also widely employed by 

many researchers for the analysis and recognition of facial expression. A comprehensive study on LBP 

operator-based facial expression recognition was presented by Sahn et al. [8]. In this study, they 

obtained the best facial expression recognition accuracy, by using support vector machine (SVM) 

classifiers with boosted-LBP features. An extension of the LBP operator, volume LBP (VLBP) and 

LBP on three orthogonal planes (LBP-TOP) are used in [7] for the recognition of facial expressions. 

Another example of a system that uses appearance feature to detect facial expressions automatically 

from video is that by Littlewort et al. [19]. Different machine learning techniques are evaluated, and 
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the best result was obtained by selecting a subset of Gabor filters using AdaBoost, and then training 

SVM on the output of the filters selected by the AdaBoost. 

In the geometric feature-based approach the primary step is to localize and track a dense set of 

facial points. Most geometric feature-based approaches use the active appearance model (AAM) or its 

variations, to track a dense set of facial points. The locations of these facial landmarks are then used in 

different ways to extract the shape of facial features, and movement of facial features, as the 

expression evolves. Choi et al. [20] use AAM with second order minimization, and a multilayer 

perceptron, for the recognition of facial expressions. A recent example of an AAM-based technique for 

facial expression recognition is presented in [21], in which different AAM fitting algorithms are 

compared and evaluated. Another example of a system that uses geometric features to detect facial 

expressions is that by Kotisa et al. [22]. A Kanade-Lucas-Tomasi (KLT) tracker was used, after 

manually locating a number of facial points. The geometric displacement of certain selected candid 

nodes, defined as the differences of the node coordinates between the first and the greatest  

facial expression intensity frames, were used as an input to the novel multiclass SVM classifier.  

Sobe et al. [23] also uses geometric features to detect emotions. In this method, the facial feature 

points were manually located, and Piecewise Bezier volume deformation tracking was used to track 

those manually placed facial landmarks. They experimented with a large number of machine learning 

techniques, and the best result was obtained with a simple k-nearest neighbor technique. Sung and  

Kim [24] introduce Stereo AAM (STAAM), which improves the fitting and tracking of standard 

AAMs, by using multiple cameras to model the 3-D shape and rigid motion parameters. A layered 

generalized discriminant analysis classifier is then used to combine 3-D shape and registered 2-D 

appearance, for the recognition of facial expressions. In [25], a geometric features-based approach for 

modeling, tracking, and recognizing facial expressions on a low-dimensional expression manifold was 

presented. Sandbach et al. [26] recently presented a method that exploits 3D motion-based features 

between frames of 3D facial geometry sequences, for dynamic facial expression recognition. Onset and 

offset segment features of the expression are extracted, by using feature selection methods. These 

features are then used to train the GentleBoost classifiers, and build a Hidden Markov Model (HMM), 

in order to model the full temporal dynamic of the expressions. Rudovic and Pantic [27] introduce a 

method for head-pose invariant facial expression recognition that is based on a set of characteristic 

facial points, extracted using AAMs. A coupled scale Gaussian process regression (CSGPR) model is 

used for head-pose normalization. 

Researchers have also developed systems for facial expression recognition, by utilizing the 

advantages of both geometric-based and appearance-based features. Lyons and Akamatsu [28] 

introduced a system for coding facial expressions with Gabor wavelets. The facial expression images 

were coded using a multi-orientation, multi-resolution set of Gabor filters at some fixed geometric 

positions of the facial landmarks. The similarity space derived from this representation was compared 

with one derived from semantic ratings of the images by human observers. In [29], a comparison 

between geometric-based and Gabor-wavelets-based facial expression recognition using multi-layer 

perceptorn was presented. Huang et al. [30] presented a boosted component-based facial expression 

recognition method by utilizing the spatiotemporal features extracted from dynamic image sequences, 

where the spatiotemporal features were extracted from facial areas centered at 38 detected fiducial 
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interest points. The facial points were detected by using ASM, and the features at those points were 

described by using LBP-TOP operator. 

In the current paper, two methods are proposed for recognizing dynamic facial expressions, either 

directly by using multiclass AdaBoost, or by using SVM on the boosted geometric features. Let us 

consider a video shot containing a face, whose facial expression evolves from a neutral state to a fully 

expressed state. The facial expression recognition is performed using only geometric information 

extracted from the sequence of facial images, without taking into consideration any facial texture 

information. The proposed facial expression recognition system is fully automatic, in which elastic 

bunch graph (EBG) is used to initialize facial landmarks at the first frame. Multi-resolution,  

multi-orientation Gabor filter responses at each facial landmark are now used to track the landmarks in 

the consecutive frames. The result of landmarks tracking is now normalized in such a way that the 

landmark positions on the first frame for each facial expression are the same, and follows the 

movement of the landmarks as the expression evolves over time, from neutral state to its highest 

intensity. A feature vector corresponding to each landmark point, as well as feature vectors from each 

pair of landmarks, are now created, and considered as a feature pool. We have a large number of 

feature vectors in the feature pool, but only some of them provide discriminative information for 

recognizing facial expressions. Therefore, a subset of feature vectors are chosen, by applying the 

AdaBoost algorithm for feature selection, with the help of dynamic time warping (DTW) similarity 

distance [31,32] between input feature vector and prototypic feature vector, of each facial expression. 

The prototype for each facial expression is formed by taking the median of all the tracked landmark 

positions of the corresponding facial expression dataset. The facial expression can now be recognized, 

by using multiclass AdaBoost with DTW similarity distance between feature vectors, or by using 

support vector machine on the subset of features selected by AdaBoost. There is always an issue 

relating to which features are important for distinguishing each facial expression from the rest of the 

facial expressions, either in the case of geometric features, or in the case of appearance features.  

A one-versus-all class classification scheme is used, and the subset of feature vectors from the feature 

pool is selected for each facial expression, and analyzed in terms of landmarks from different regions 

of the face, which are used to generate the feature vectors. The experiments were performed on the 

CK+ facial expression database, and the result shows that the proposed facial expression recognition 

system can achieve good recognition accuracy up to 97.35% using a small subset of boosted-features, 

when recognizing six basic facial expressions using the SVM classifier. 

This paper is organized as follows: Section 2 describes the landmark initialization process on the 

neutral frame (first frame of the video shot), tracking those landmarks over time as the expression 

evolves, and the normalization of tracking results of the landmarks. The proposed geometric features 

are described in Section 3. Subset of feature vector selection using AdaBoost with DTW similarity as a 

weak classifier is described in Section 4. The experimental results are presented in Section 5. Finally, 

Section 6 concludes the proposed facial expression recognition system. 

2. Landmark Initialization, Tracking and Normalization  

Facial expression recognition is mainly composed of three subsystems: facial landmark tracking, 

building features from the landmark tracking result, and classification of the extracted features. 
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2.1. Landmark Initialization and Tracking Using Elastic Bunch Graph 

The elastic graph matching (EGM) method was first proposed by Lades et al. [33], and applied to 

face recognition. Based on the work of Lades et al., Wiskott et al. [34] extracted more than one feature 

on one landmark point, called it EBG, and applied it to face recognition. Our implementation of EBG 

based landmark initialization is based on the algorithm developed by Wiskott et al. which was 

included by Colorado State University (CSU) as a baseline algorithm for comparison of face 

recognition algorithms [35]. The algorithm starts by creating a bunch graph. Each node of the bunch 

graph corresponds to a facial landmark, and contains a bunch of model jets (Gabor jets) extracted from 

the model imagery. The Gabor jets are a collection of complex Gabor coefficients from the same 

location in an image. The coefficients are generated using Gabor wavelets, of a variety of different 

sizes, orientations and frequencies. The bunch graph serves as a database of landmarks descriptors that 

can be used to locate landmarks in the novel imagery. 

Figure 1 shows the overall process of the landmark initialization and tracking. Locating a landmark 

in a novel imagery has two steps. First, the location of the landmark is estimated based on the known 

locations of other landmarks in the image, and second, that estimate is refined by extracting a Gabor jet 

from that image on the approximate locations and comparing that jet to one of the models. To make the 

system fully automatic the approximate locations of at least one or two landmarks are needed at the 

beginning. This goal is achieved by first localizing the face region in the image using the Haar-like 

feature based face detection method proposed in [36]. Now the landmarks at the center of the two eyes 

are searched within a face region by using the same Haar-like feature based object detection method 

proposed by Viola and Jones [36]. Estimating the location of the other landmarks is easy, based on the 

known eye coordinates. Each new landmark location is estimated based on the set of previously localized 

points. The landmark location is then refined by comparing a Gabor jet extracted from the estimated 

point to a corresponding model jet from the bunch graph. The process is iterated until all landmark 

locations are found. 52 landmarks in the neutral face image (first frame of the video shot) are initialized. 

Figure 1. Overall block diagram of the landmark initialization and tracking process. 
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Once the landmarks are initialized in the first frame of the video shot, the next step is to track them 

over time, as expression evolves. In each incoming frame, the displacement of landmarks with respect 

to the previous frame should be estimated. The Gabor jet corresponding to each landmark in the 

neutral frame is already computed. The Gabor jet from the next frame for each landmark, as in the 

same landmark position of the previous frame, is now extracted. The displacement of the landmarks 

with respect to the previous frame can be directly calculated from those two Gabor jets using the 

equation for direct displacement estimation given in [34]. This displacement gives the exact position of 

the landmark in the current frame. The Gabor jet for each landmark in the current frame is now 

updated, and the same process is repeated, to find the displacement of the landmarks in the next frame. 

The promising result of landmark tracking is obtained by using this concept. Figure 2 shows the result 

of 52 landmarks tracking in some sequences of facial expression; only a few images from each 

sequence are shown in the figure. The first, second and third row belong to anger, disgust and surprise 

facial expressions, respectively. 

Figure 2. Examples of the result of facial landmark tracking. 

 

2.2. Landmark Normalization 

The landmark normalization brings each landmark to the uniform coordinate position in the first 

frame of the video shot, and as the expression evolves, the landmarks are displaced accordingly. Let us 

suppose k

iS is the tracking result of the ith landmark in the kth expression sequences:  

          k
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i yxyxyxyxyxS ,,,,...,,,,,, 11221100   (1) 

where k

ill yx ),(  is the ith landmark coordinate position in the lth frame of the kth expression sequence, 

and N is the number of frame in an expression sequence. 

An average landmark position corresponding to each landmark is computed from all the neutral 

images, which is the first frame in each video shot. Suppose 
iyx ),( 00   denotes the average landmark 

position of the ith landmark in the first frame of the expression sequences. For each tracking result of 

the facial expression whose landmarks are to be normalized, the difference between the first frame 

landmark and the average landmark is determined. This gives the displacement of the landmark, with 
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respect to the average landmark position. Suppose k

iyx ),( 00   denotes the displacement of the  

ith landmark in the first frame of the kth expression sequence, with respect to the average  

landmark position:  

k

iyx

k

iyx yx ),(),( 000000   . (2) 

The displacement corresponding to each landmark is now added to the landmark positions in every 

frame of the facial expression sequence. The transformed result of landmark tracking is now denoted 

by k

iS  , and is defined as: 

      k

iyNxN

k

iyx

k

iyx

k

i yxyxyxS 0001010000 ,,...,,,,   . (3) 

The tracking result is normalized in such a way that each landmark for all the expression sequence 

now starts from the same coordinates position, i.e., 
iyx ),( 00   and evolves according to the 

displacement in the succeeding frames. Figure 3 shows the tracking result of landmarks before  

(first row), and after (second row), normalization (note the edges between landmarks are given just to 

make a face-like appearance). 

Figure 3. Example of landmark tracking sequences before (First row) and after  

(Second row) normalization. 

 

3. Feature Extraction 

In the proposed approach, the facial expression recognition is performed based only on geometrical 

information, without directly taking any facial texture information. The feature pool is made from two 

types of features, one by considering the tracking result of each single facial landmark, and the other 

by considering the tracking result of pairs of facial landmarks. Suppose ),( yx  is the transformed 

landmark coordinate position, and let us rewrite Equation (3) in the following form: 

      k

iNN

k

i

k

i

k

i yxyxyxS  ,,...,,,, 1100
. (4) 

The number of frames in different video shots of facial expression can be different. As we will 

describe in the next section, the subset of feature selection from the available feature pool is performed 

by using AdaBoost, with DTW similarity between prototypic feature vector and input feature vector as 

a weak classifier. Therefore, for each facial expression class, a prototypic facial expression should be 

created. For this purpose, the number of frames should be equal, in each facial expression sequence in 

the database. Once the prototype creation and feature selection is completed, the numbers of frames in 
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the sequence need not necessarily be equal in the classification stage. Therefore, let us consider in 

Equation (4) that each facial expression has the same number of frames. In practice, we resize the 

landmark tracking sequence, using linear interpolation. In our experiment we use N = 15, and there are 

L = 52 facial landmarks. Feature type one is a feature vector from the individual landmark tracking 

sequence. Each landmark coordinate in a sequence is now subtracted from the first landmark 

coordinate, i.e., landmark position in the neutral frame, to create the type one feature vector. Suppose 
k

ill yx ),(    denotes the difference in the ith landmark in the lth frame, from the ith landmark in the first 

frame of the kth video shot: 

   k
ill

k

ill yyxxyx 00,,   . (5) 

Equation (6) defines the type one feature vector:  
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. (6) 

Next, the feature vector is created from the pair of landmarks in the expression sequence. We call 

this feature a type two feature vector. First, the angle and Euclidian distance between each pair of 

landmarks within a frame are calculated. Suppose k

jilld ,),(   denotes the distance and angle between the 

ith and jth pair of landmarks in the lth frame of the kth expression sequence. Let us denote the 

calculated sequence of distance and angle as k

jiG ,
 .  

      k
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k

ji

k
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k

ji dddG
,,11,00, ,,...,,,,   . (7) 

Now, those distance and angles are subtracted from the corresponding distance and angles on the 

first frame of the video shot. Suppose k

jilld ,),(   denotes the change in distance and angle between the 

ith and jth pair of landmarks in the lth frame, with respect to the first frame, in the kth video shot: 

   k
jill

k

jill ddd
,00,

,,   . (8) 

Equation (9) defines the type two feature vector: 

      k
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ji dddG
,,22,11, ,,...,,,,   . (9) 

A type one feature has L = 52 feature vectors, and type two feature has M = L × (L-1)/2 = 1,326 

feature vectors. In total, there are L + M = 1,378 feature vectors in the feature pool. Out of those 

feature vectors, only some of them carry most of the discriminative information for the recognition of 

facial expressions. The AdaBoost feature selection scheme is used to select the subset of feature 

vectors from the feature pool that is sufficient for the recognition of the facial expressions. 

4. Feature Selection Using AdaBoost 

The AdaBoost learning algorithm proposed by Freund and Schapire [37], in its original form, is 

used to boost the classification performance of a simple learning algorithm. It does this by combining a 

collection of weak classification functions, to form a stronger classifier. In the language of boosting, 

the simple learning algorithm is called a weak classifier. AdaBoost is not only a fast classifier; it is also 

a feature selection technique. An advantage of feature selection by AdaBoost, is that features are 

selected contingent on the features that have already been selected. Different types of appearance 

based feature selection using AdaBoost for facial expression recognition can be found in the  
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literature [11,19,38,39]. In our system, a variant of multi-class AdaBoost proposed by Jhu et al. [40] is 

used, to select the important features sufficient for facial expression recognition from the feature pool 

defined in Section 3. In our system, classifier learning is not necessary, because the weak classifier is 

based on the DTW similarity [31,32] between the prototypical feature vector, and the input feature 

vector. Before describing the feature selection using AdaBoost, let us first describe the creation of 

prototypical feature vector, and DTW similarity, which will serve as a weak classifier. 

Prototypical feature vectors for each class of facial expression are created by taking the median of 

each corresponding elements in the feature vectors, from all the training set of those facial expression 

sequences. Here the assumption is that each class of facial expression can be modeled by using 

unimodal distribution, and this is the proper assumption which is supported by the experimental 

results. The median is selected, instead of the mean, because it is less affected by the presence of an 

outlier. Let U be the facial expression database that contains facial expression sequences. The database 

is clustered into six different classes, Uc, c = 1,…,6, with each representing one of six basic facial 

expressions (anger, disgust, fear, happiness, sadness, and surprise). Suppose the prototypical feature 

vector of class c for type one feature vectors and type two feature vectors is denoted by  iU SP
c

  and 

 jiU GP
c ,

 , respectively: 
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(11) 

Figure 4 shows the maximum intensity frame of each class of prototypical facial expression sequences. 

Figure 4. Maximum intensity frame of each facial expression prototype. 

 

Our goal is to search a small number of the most discriminative feature vectors from the feature 

pool. In support of this goal, the weak classifier is designed to select a single feature vector, which best 

classifies the training data. The class level of the feature vector is decided based on the minimum 

DTW similarity distance, with prototypical feature vectors. The DTW is a well-known algorithm that 

aims to compare and align two sequences of data points. It is worth noting that the sequences can be of 

different length. The sequences are “warped” non-linearly in the time dimension, to determine a 

measure of their similarity, independent of certain non-linear variations in the time dimensions. 

Distances like Euclidian, Manhattan, etc. that align the ith point on one time series with the ith point on 

the other, will produce a poor similarity score, whereas non-linear alignment produces a more intuitive 

similarity measure, allowing similar shapes to match, even if they are out of phase on the time axis. 

Although DTW was originally developed for speech recognition [31], it has also been applied to many 

other fields. In our system, the DTW is an efficient method for finding similarity between feature 
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vectors, because the length of the feature vector can be different, according to the number of frames in 

the facial expression sequence, as well as in different persons, as the movement of landmark positions 

is non-linear as the facial expression evolves. We use the DTW algorithm used in [32] to quickly find 

the similarity between two sequences. Now, a weak classifier (T(x, x
(p)

, f)) consists of a feature vector 

(f), input facial expression (x) and prototypical facial expressions (x
(p)

): 

    )(),(minarg,, )()( p

cDTW
c

p xfxfdfxxT  . (12) 

In practice, no single feature can perform this classification task with low error. Features that are 

selected in the early process yield less classification error rates, than features selected in the later 

rounds. Algorithm 1 shows the variant of multi-class AdaBoost learning algorithm proposed in [40], 

which they term Stagewise Additive Modeling using a Multi-class Exponential (SAMME) loss function. 

The multi-class AdaBoost algorithm given in Algorithm 1 is very similar to AdaBoost, with the 

major difference in Equation (13). Now, in order for α
(m)

 to be positive, we only need 

Kerr m 1)1( )(  , or the accuracy of each weak classifier to be better than random guessing, rather 

than 21 . The significance of extra term )1log( K in Equation (13) is explained in [40]. 

Algorithm 1. Multi-class AdaBoost learning algorithm. M hypothesis are constructed each 

using a single feature vector. The final hypothesis is a weighted linear combination of  

M hypothesis. 
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Figure 5 shows the first few features selected by multi-class AdaBoost. The blue dot indicates a 

type one feature vector generated from that landmark, and each line connecting a pair of landmarks 

indicates a type two feature vector generated from that pair of landmarks. Most of the selected feature 

vectors belong to type two features. This proves that the movements of landmarks, as the expression 

evolves for each facial expression, are not independent. 
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Figure 5. The first few (20, 40, 60, 80, and 100) features selected using multi-class 

AdaBoost. A blue dot indicates a feature vector extracted only from that landmark tracking 

result, as the expression evolves over time; whereas a red line connecting two landmarks 

indicates the feature vector extracted from that pair of landmarks tracking result, as the 

expression evolves over time. 

 

Shan et al. [8] applied the AdaBoost algorithm to determine a subset of the LBP histogram for each 

facial expression. As each LBP histogram is calculated from a sub-region, AdaBoost is actually used to 

find the sub-regions that contain more discriminative information for facial expression, in terms of the 

LBP histogram. Here, we are also interested to find the subset of feature vector for each facial 

expression. This will give the information about what are the features that are important to discriminate 

one particular class of facial expression, from the rest of the facial expression classes. It is worth 

noting that when K = 2, the feature selective multi-class AdaBoost algorithm in Algorithm 1 reduces to 

a two-class AdaBoost algorithm. As our weak classifier is based upon the DTW similarity of the 

feature vector with the prototypic feature vector, in the two-class case, we can have a prototypical 

facial expression for the positive class, but it is not feasible to make a single unimodel prototype for 

the negative class of facial expressions. For example, if we want to find the features for the angry 

facial expression, the anger is the positive class, whereas the rest of facial expressions (disgust, fear, 

happiness, sadness and surprise) belong to the negative class. Therefore, we keep all the prototypical 

facial expressions as they are, and use a single prototype for the positive class of facial expressions, 

whereas we use multiple prototypes (one for each class of facial expression) for the negative class of 

facial expressions. The weak classifier now classifies input facial expression into the positive class, if 

the DTW similarity distance is minimum with the positive class of prototype among all the prototypes; 

otherwise it classifies the input facial expression into the negative class. Figure 6 shows the first few 

features selected for each class of facial expressions, using this scheme. It is observed that different 

classes of facial expression have different key discriminative geometric features. 

In general, for anger, disgust and sadness facial expressions, usually the mouth is closed, and the 

landmarks movement is smaller, as compared with the movements of the landmarks in the case of fear, 

happiness and surprise facial expressions. From Figure 6, it seems that the selected feature vector for 

anger, sadness and disgust are from the near pair of landmarks, whereas in the case of fear, happiness 

and surprise, most of the feature vectors are from the far pair of landmarks. Actually, it is hard to 

analyze the landmarks, to determine which region of the face carries the discriminative information for 

each class of facial expressions, by just looking at the selected features. Therefore, we divided the 

landmarks into different subsets, according to the specific region, in order to determine regions or pairs 

of regions that contain discriminative landmarks for each facial expression. Figure 7 shows the 

grouping of landmarks, according to the face region, into seven subsets. 
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Figure 6. The first few (20, 40, and 60) features selected by AdaBoost for each class of 

facial expression. A red dot indicates a feature vector extracted from the tracking result of 

that landmark, as the facial expression evolves over time, whereas a red line connecting 

two landmarks indicates a feature vector extracted from the tracking result of those pair of 

landmarks, as the facial expression evolves over time. 

 

Figure 7. Grouping of landmarks into different regions according to the facial geometry. 

 

The selected features for each facial expression are either from the pair of landmarks within a 

region, or from the pair of landmarks from two regions. Table 1 lists the region, as well as the pair of 

regions, from which the landmarks are chosen to extract the most discriminative feature vector for 

each facial expression. A single or pair of landmarks within region R2, which is the eye and eyebrow 

region, is used to build the discriminative feature vectors for all the facial expressions. Pairs of 

landmarks from region R1–R2, and R2–R3 also have the discriminative information for almost all 

facial expressions. Region R6, the mouth region, contains discriminative landmarks for anger and 

sadness facial expressions. Table 1 shows more detail of the different regions of the face, from which 

the landmarks tracking results are used to build most of the discriminative feature vectors. 
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Table 1. Different regions (single/pair) of the face, with the most discriminative facial 

landmarks. Single region (Ri) means landmarks within this region are used to build a 

feature vector either from the stand alone landmark tracking result or pair of landmark 

tracking result. Pair of region (Ri–Rj) means two landmarks, one from each, is used to 

build the feature vector from the tracking result of those landmarks. 

Expression Face Regions (Single/Pair) with the Most Discriminative Landmarks  

Anger R1-R2, R2, R2-R3, R5-R7, R6, R6-R7 

Disgust R1-R2, R2, R2-R3, R5, R5-R6, R5-R7 

Fear R1-R2, R2, R3-R6, R5-R6, R2-R7, R4-R7, R6-R7 

Happiness R1-R2, R2, R2-R4, R2-R6, R3-R6, R4-R6 

Sadness R2-R3, R2, R3-R7, R5-R6, R6, R5-R7, R6-R7 

Surprise R1-R3, R2, R2-R3, R2-R7, R2-R5, R7 

5. Experimental Results 

5.1. Dataset Description 

The Extended Cohn-Kanade (CK+) database [41] was used for facial expression recognition in six 

basic facial expression classes (anger, disgust, fear, happiness, sadness, and surprise). This database 

consists of 593 sequences from 123 subjects. The image sequence varies in duration (i.e., seven to  

60 frames), and incorporates the onset (which is also the neutral face) to peak formation of the facial 

expression. Image sequences from neutral to target display were digitized into 640 × 480 or  

640 × 490 pixel arrays. Only 327 of the 593 sequences have a given emotional class. This is because 

these are the only ones that fit the prototypic definition. For our study, 315 sequences of the data set 

are selected from the database, for basic facial expression recognition. 

The most usual approach for testing the generalization performance of a classifier is the K-fold 

cross validation approach. A five-fold cross validation was used in order to make maximum use of the 

available data, and produce averaged classification accuracy results. The dataset from each class of 

facial expression was divided into five subsets for the entire process, even for obtaining the 

prototypical facial expressions. Each time, one of the five subsets from each class was used as the test 

set, and the other four subsets were put together to form a training set. The classification accuracy is 

the average accuracy across all five trials. To get a better picture of the recognition accuracy of the 

individual expression type, the confusion matrices are given. The confusion matrix is an n × n matrix, 

in which each column of the matrix represents the instances in a predicted class, while each row 

represents the instances in an actual class. The diagonal entries of the confusion matrix are the rates of 

facial expressions that are correctly classified, while the off-diagonal entries correspond to 

misclassification rates. 

5.2. Facial Expression Recognition Using Multi-Class AdaBoost 

In our system, the variant of multi-class AdaBoost proposed in [40] is used to select the discriminative 

feature vectors extracted from landmark tracking results. At the same time, the AdaBoost algorithm 

determines the weights associated with each feature vector. The facial expressions are recognized by 
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using the strong classifier given in Equation (14). The classification is based on the DTW similarity 

distance between the selected feature vectors of the test facial expression sequence, with the feature 

vector associated with each class of prototypic facial expression sequence. Each feature vector 

classifies the facial expression into one of the six classes, according to the minimum DTW similarity 

distance. One of the advantages of using DTW similarity measurement is that the two feature  

vectors to be compared need not necessarily be of equal length. Increasing the number of features in  

Equation (14) also increases the classification accuracy up to some limit. Figure 8 shows a graph of the 

number of features versus recognition accuracy, for both training and testing data. 

Figure 8. Recognition accuracy under different numbers of AdaBoost selected features. 

 

Table 2. Confusion matrix for facial expression recognition in percentages, using  

multi-class AdaBoost with 75 feature vectors. 

 Anger Disgust Fear Happiness Sadness Surprise 

Anger 90 5 0 0 5 0 

Disgust 0 95 0 5 0 0 

Fear 0 0 84 12 0 4 

Happiness 0 0 3.08 96.92 0 0 

Sadness 6.67 0 3.33 0 90 0 

Surprise 0 0 0 1.25 0 98.75 

With 52 landmark tracking results there are a total of 1,378 possible feature vectors, but only a few 

of them are sufficient to discriminate the six basic facial expressions. The highest classification 

accuracy of 95.17% is achieved with a minimum of 125 feature vectors. Tables 2, 3 show the 

confusion matrix of facial expression recognition, using multi-class AdaBoost with 75 and 125 number 

of feature vectors, respectively. Some of the fear and happiness facial expression are confused with 

each other. The discrimination of happiness and fear failed, because these expressions had a similar 

motion of mouth. The sadness and anger facial expressions are even difficult to recognize by a human 

observer. Some of the disgust facial expression was misclassified as happiness. 
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Table 3. Confusion matrix for facial expression recognition in percentages, using  

multi-class AdaBoost with 125 feature vectors. 

 Anger Disgust Fear Happiness Sadness Surprise 

Anger 95 5 0 0 0 0 

Disgust 0 95 1.67 3.33 0 0 

Fear 0 0 92 8 0 0 

Happiness 0 0 3.08 96.92 0 0 

Sadness 6.67 0 0 0 93.33 0 

Surprise 0 0 0 1.25 0 98.75 

Figure 9. Average confusion score of week classifiers in percentages, for the recognition 

of each class of facial expressions.  

 

None of the individual feature vectors can classify facial expressions with high accuracy. The 

strong classifier (Equation (14)) classifies any input expression to one of six basic classes, which has 

the highest confidence score. It is interesting to know for each facial expression what percentage of the 

feature vectors is classified correctly, and what percentage of the feature vectors is misclassified. This 

will give more precise information about the confusion score for each facial expression. Figure 9 

shows the confusion scores of weak classifiers in percentages, for each class of facial expression. For 

example, it can be seen from the figure that 42.52% of the feature vectors classify angry facial 

expressions correctly, whereas 18.74% of the features vector classify them as disgusted, 9.44% of the 

feature vector classify them as fearful, 7.61% of the feature vectors classify them as happy, 16.70% of 

the feature vectors classify them as sad, and finally 4.98% of the feature vectors classify them as 

surprised facial expressions. In case of the surprised facial expressions, the highest percentage,  

i.e., 59.51% of feature vectors classify them correctly. Therefore, we can see that, mostly, angry facial 
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expressions are confused with disgusted and sad; disgusted facial expressions are confused with angry; 

fearful facial expressions are confused with happy and surprised, happy facial expressions are 

confused with fearful and disgusted; sad facial expressions are confused with angry; and surprised 

facial expression are confused with fearful. 

5.3. Facial Expression Recognition Using SVM with Boosted Features 

The SVM is a class of linear classification algorithm, which aims to find a separating hyperplane, 

with as wide a margin as possible, between two different categories of data. In our experiment, we use 

a publically available implementation of SVM, libsvm [42], at which we used radial basic function 

(RBF) kernel and the optimal parameter selection is done based on the grid search strategy [43].  

As given in Equations (6) and (9) in Section 3, these are the two types of features from the 

landmark tracking results used in our system. Once the AdaBoost selects the feature vectors, for the 

classification of facial expressions using SVM, we generate the new set of features from the set of 

feature vectors selected using AdaBoost. In order to keep the dimensionality of the feature used in 

SVM classification as small as possible, we only took the maximum displacement value in two 

directions from the feature vector defined in Equation (6), and the maximum change in angle and 

distance from the feature vector defined in Equation (9). The feature vector defined in Equation (6), 

which is associated with the ith landmark tracking result of the kth facial expression sequence, gives 

the following two values: 
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Similarly, the feature vector defined in Equation (9), which is associated with the ith and jth 

landmark tracking result of the kth facial expression sequence, gives the following two values: 
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The output of this process is a single feature vector for each video. The dimensionality of the 

feature depends upon the number of features selected by AdaBoost. If we use L feature vectors 

selected by AdaBoost, the dimensionality of feature for SVM classification will be L × 2. The 

experiments show that more than 90% features have been selected from type two features, i.e., feature 

vectors generated by a pair of landmarks tracking results. This proves that the movements of 

landmarks, as the particular facial expression evolves, are not independent. Tables 4–6 show the 

confusion matrices for facial expression recognition using 100, 200 and 400 AdaBoost selected 

features, with dimensionality 200, 400, and 800 respectively. The average recognition accuracy was 

93.20%, 95.50% and 97.35%, using 200, 400 and 800 dimensional features, respectively. There is an 

improvement of 2.18% for facial expression recognition using SVM with boosted features, over facial 

expression recognition using AdaBoost with DTW similarity distance. 
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Table 4. Confusion matrix for facial expression recognition in percentages, using SVM 

with boosted features (100 AdaBoost selected features). 

 Anger Disgust Fear Happiness Sadness Surprise 

Anger 92.5 2.5 0 0 5 0 

Disgust 0 96.67 1.67 0 1.67 0 

Fear 0 0 92 8 0 0 

Happiness 0 3.08 1.54 95.38 0 0 

Sadness 6.67 0 3.33 0 87.67 3.33 

Surprise 0 0 2.5 0 2.5 95 

Table 5. Confusion matrix for facial expression recognition in percentages, using SVM 

with boosted features (200 AdaBoost selected features). 

 Anger Disgust Fear Happiness Sadness Surprise 

Anger 100 0 0 0 0 0 

Disgust 1.67 96.67 1.67 0 0 0 

Fear 4 0 84 8 0 4 

Happiness 0 3.08 0 96.92 0 0 

Sadness 3.33 0 0 0 96.67 0 

Surprise 0 0 0 0 1.25 98.75 

Table 6. Confusion matrix for facial expression recognition in percentages, using SVM 

with boosted features (400 AdaBoost selected features). 

 Anger Disgust Fear Happiness Sadness Surprise 

Anger 100 0 0 0 0 0 

Disgust 1.67 96.67 1.67 0 0 0 

Fear 0 0 92 4 0 4 

Happiness 0 0 0 100 0 0 

Sadness 0 0 3.33 0 96.67 0 

Surprise 0 0 0 0 1.25 98.75 

5.4. Comparison with State-of-the-Art Methods 

The recognition accuracy achieved by the proposed method on the Cohn-Kanade facial expression 

dataset for facial expression recognition is comparable with the best accuracy in the literature. We 

achieved 95.17% of facial expression recognition accuracy using multi-class AdaBoost with DTW 

similarity between feature vectors based weak classifier, and 97.35% of recognition accuracy using 

SVM on boosted features. So far, the system in [22] has shown superior performance, and has 

achieved a 99.7% recognition rate. In their method, the landmark initialization is a manual process, and 

the number of landmarks is also larger than the number of landmarks in the proposed method. On the 

other hand, the proposed method is fully automatic. In [7], a 96.26% recognition rate has been 

achieved, using a method based on local binary patterns and SVM classifiers. The main drawback of 

the method in [7] is that it is only tested in perfect manually aligned image sequences, and no 

experiments in fully automatic conditions have been presented. Similarly in [44], a 97.16% of 

recognition rate has been achieved, by extracting the most discriminated facial landmarks for each 
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facial expression. Recently, Zhao et al. [9] obtained 94.88% of recognition accuracy on a single facial 

image, using LBP features and a kernel discriminant isomap. Jabid et al. [14] achieved 93.69% of 

recognition accuracy, using local directional pattern features, which are similar to the LBP feature with 

SVM. Another, more recent method proposed by Zhang et al. [45], achieved 97.14% of recognition 

accuracy. The LBP features were used with sparse representation classifier. Therefore, the best 

recognition accuracy of the different methods proposed by researchers in the literature is around 97% 

(except for the method in [22]), on the Cohn-Kanade facial expression database. Our proposed method 

also achieved more than 97% of the recognition accuracy, which is the second best accuracy so far, at 

least according to the authors’ knowledge. 

6. Conclusions 

Two methods for facial expression recognition, by using either multi-class AdaBoost with DTW, or 

by using SVM on the boosted features, are proposed in this paper. The geometric features are extracted 

from the sequences of facial expression images, based on tracking results of facial landmarks. The 

proposed facial expression recognition system is fully automatic, in which the landmark initialization 

and tracking is based on the EBGM method. Each extracted geometric feature vector is used to build a 

single weak classifier, which is based on the DTW similarity between the input feature vector and the 

prototypical feature vector of each facial expression. A multi-class AdaBoost algorithm is used, to 

select the subset of discriminative feature vectors. A recognition accuracy of 95.17% using feature 

selective multi-class AdaBoost, and 97.35% using SVM on boosted features, is achieved on the 

Extended Cohn-Kanade (CK+) facial expression database. Feature selection using AdaBoost and 

expression classification using SVM gives the best recognition accuracy. The discriminative feature 

vectors for each facial expression are also determined, and the result is analyzed, depending on the face 

region from which the facial landmark tracking results are contributed, to build the feature vectors. 

Our experiments show that the movements of facial landmarks, as a particular expression evolves, 

are not independent of each other. In our system, the prototypical facial expressions are computed 

based on the assumption that each facial expression can be modeled using unimodel distributions. 

Since the facial expressions are recognized successfully, with high recognition accuracy, our 

assumption turns out to be true. This means that for each class of facial expression in the database, 

there are similar movements of landmarks, as the facial expression evolves over time, independent of 

the ethnic group, age, and gender. 
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