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Abstract: A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was 

designed for agriculture applications. In this study, FISS was used to gather spectral 

information from soybean leaves. The chlorophyll content was retrieved using a multiple 

linear regression (MLR), partial least squares (PLS) regression and support vector machine 

(SVM) regression. Our objective was to verify the performance of FISS in a quantitative 

spectral analysis through the estimation of chlorophyll content and to determine a proper 

quantitative spectral analysis method for processing FISS data. The results revealed that 

the derivative reflectance was a more sensitive indicator of chlorophyll content and could 

extract content information more efficiently than the spectral reflectance, which is more 

significant for FISS data compared to ASD (analytical spectral devices) data, reducing the 

corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the 

spectral features, the regression methods had smaller effects on the retrieval accuracy. A 

multivariate linear model could be the ideal model to retrieve chlorophyll information with 
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a small number of significant wavelengths used. The smallest RMSE of the chlorophyll 

content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% 

compared with the RMSE based on a non-imaging ASD spectrometer, which represents a 

high estimation accuracy compared with the mean chlorophyll content of the sampled 

leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial 

detailed information of high quality. Its image-spectrum-in-one merit promotes the good 

performance of FISS in quantitative spectral analyses, and it can potentially be widely used 

in the agricultural sector. 

Keywords: field imaging spectroscopy system; spectral sensor; chlorophyll; spectral analysis  

 

1. Introduction 

Plants cover more than 70% of the global land surface and are among the most important resources 

on the Earth; their distributions are also intensively and closely related to human activities. Terrestrial 

plants that can perform photosynthesis are the energy and organic matter providers for almost all 

ecosystems and are also the main products of the vast majority of terrestrial ecosystems. The 

importance of plants has made the extraction of information on plants based on various means and 

methods a topic of constant interest [1,2]. Spectroscopic technology provides fast, convenient and  

non-destructive detection, so it has long been used in fields, such as crop yield assessments [3], 

vegetation ecology assessments [4–6], light and effective radiation [7], land productivity [8], wetland 

management [9] and tree species identification [10,11]. Imaging spectroscopy can be divided into two 

categories according to the carrying platform of the sensors and applicable fields: spectroscopy that is 

based on remote sensing platforms, such as satellites and aircrafts, utilizes aerospace remote sensing 

and is suitable for large-scale regional studies and applications; and spectroscopy that is based on small 

ground application platforms, such as ground-based remote sensing systems, has a compact size and is 

flexible, mobile and widely used in agriculture applications, such as the retrieval of plant chlorophyll 

content and other biochemical parameters, discrimination of crops/weeds, monitoring of crop pests and 

disease and quality control of agricultural products and meat [12–18]. 

Ground remote sensing systems can be divided into single-point sensor spectrometers and imaging 

spectrometers depending on whether an image can be formed. Compared with single-point sensor 

spectrometers, an imaging spectroscopy system can provide tens to several hundreds of spectral 

channels and a wealth of images and spatial details, and it can perform image analyses and spectral 

analyses simultaneously. Such systems can also acquire qualitative and quantitative information, as 

well as information on positioning, distribution and morphology. The ability to obtain “pure” pixel 

information not only makes up for the drawbacks of conventional non-imaging spectroscopy 

instruments, but also greatly expands the potential applications of imaging spectroscopy [13–18]. 

Ground remote sensing systems have been widely used in agriculture [12–16], food security [17], 

quality control [18], chemical imaging analysis [19,20], biomedicine [21] geology [22,23], color 

science, materials science, machine vision and other fields [24,25]. These systems have become a 

popular topic in the research on imaging spectroscopy technology and its applications.  
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Chlorophyll is one of the most important biochemical parameters of plants and is usually an 

indicator of plants’ nutritional stress, photosynthetic capacity and the health status of plants; therefore, 

it is an important information parameter in research on crop quality monitoring, ecosystem 

productivity estimation, carbon cycles, etc. Fast and non-destructive chlorophyll content estimation is 

an important field of application for spectroscopy technologies. However, most current ground-based 

studies on chlorophyll retrieval have used non-imaging spectral data obtained by single-point sensors 

or images formed by a small number of wavelengths that are generated by multi-spectrum systems. 

The use of imaging spectroscopy systems, which are emerging high-tech detection systems, for the  

non-destructive acquisition of plant chlorophyll information must still be investigated [26–30]. 

The Chinese Scientific Community has exhibited strong interest in the application of small field 

imaging spectroscopy systems (FISSs). A series of FISSs have been developed by the Chinese 

Academy of Sciences, including two visible light systems and one shortwave infrared system [14,31,32].  

In the present study, one of these visible FISSs (the first FISS in China that is suitable for agricultural 

research) was used to obtain 101 FISS images of soybean leaves and to extract their reflectance, 

derivative spectra and other information. The chlorophyll content was retrieved using multiple linear 

regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) 

regression. In order to compare the performance of imaging spectrometer and traditional single-point 

sensor spectrometer, we also used an ASD spectrometer to obtain the spectral data of these soybean 

leaf samples simultaneously. The main purposes of the present study were to: (1) verify the 

performance of FISS in a quantitative analysis through the estimation of chlorophyll content and 

comparison with a traditional non-imaging spectrometer; (2) evaluate and compare the potential of 

FISS data-derived spectral reflectance and derivative spectra in estimating the chlorophyll content of 

plant leaves; and (3) evaluate the performance and accuracy of different estimation methods (linear and 

nonlinear) and determine the quantitative spectral analysis method most suitable for FISS. 

2. FISS and Experimental Design 

2.1. FISS 

FISS consist of a multi-purpose platform, electronic system, opto-mechanical system, computer 

system and auxiliary equipment (Figure 1) [31]. The opto-mechanical system, which is the key 

component of the FISS, consists of a scanning mirror, optical lenses, spectroscopic devices (ImSpector 

V9, Spectral Imaging, Ltd., Qulu, Finland) and a charge-coupled device (CCD) camera. The electronic 

system includes the power and motor control circuits. The motor control circuit is primarily used to 

control the rotation of the scanning mirror, synchronize the beam splitter and receiver and collect and 

store the data. The basic principle of FISS is shown in Figure 2 [31]. 

The computer system includes hardware and software: the hardware is a portable laptop computer, 

and the software includes the FISS operating software, data acquisition software and data processing 

software. The instrument operating software and data acquisition software are used for setting the 

instrument parameters (integration time, aperture, field of view, cooling temperature, etc.) and can 

display images and spectra in real time. The primary functions of the data processing software are data 
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format conversion, geometric correction, radiometric correction, image segmentation, interception and 

image stitching. 

Figure 1. Photograph of the field imaging spectroscopy system (FISS) components. 

 

Figure 2. Basic principle of the FISS.  

 

The FISS acquires spatial data by rotating the scanning mirror, and the spatial resolution varies with 

the platform height. The optimal resolution is greater than 2 mm. Figure 3 shows the whole system, 

and the main technical specifications are listed in Table 1. Figure 4 shows a sample of the 

hyperspectral data cube obtained by FISS in a mulberry field [31,32]. 

Figure 3. Actual photograph of FISS field measurements. 
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Table 1. Main parameters and specifications of the FISS. 

Main Parameters Values 

Band number 344 

Spectral range 379–870 nm 

Spectral resolution 4–7 nm 

Spatial resolution ≥2 mm 

Radiance calibration error in 
laboratory 

≤5% 

Imaging rate/(lines/s) 20 

Scan field/° −20–20 

Quantitative value /bit 12 

Signal to noise >500 (60% of bands) 

Spectral sampling interval/nm About 1.4 

Figure 4. A sample of the hyperspectral data cube obtained by FISS. 

 

2.2. Experimental Design 

Sample collection: The experiment was conducted in the Huanjiang Observation and Research 

Station for Karst Ecosystem, Chinese Academy of Sciences. Several different fertilization gradients 

were set up, and fertilizers with different nutrient gradients were applied in an experimental soybean 
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plot with the aim of studying nutrients in rain-fed lands. A total of 101 soybean plots were chosen to 

cover all nutrient gradients. Both new and old leaves were picked from the plants on 20 August 2009, 

and then stored in a box with ice and transported back to the laboratory within two hours. 

Data acquisition: The collected leaves were removed from the cooler and laid flat on the laboratory 

bench. Soybean leaves were placed to make the surface as flat as possible. The imaging spectral data 

of the soybean leaves were then obtained with the FISS and an artificial cold light source (halogen 

light). The leaf was quickly returned to the cooler after measurement and taken to the chemical 

analysis laboratory for processing. 

Chlorophyll extraction: The chlorophyll content was determined using the rapid extraction method 

with an ethanol-acetone mixture (1:1 by volume). Fresh leaves were cut into pieces, and 0.2 g of the 

pieces were weighed and placed in a 25-mL colorimetric tube for extraction for 18–24 h in the dark. 

The tube was shaken once every hour; the absorbance was measured with a UV spectrophotometer and 

used to calculate the contents of chlorophyll a, chlorophyll b and carotenoids. 

Data preprocessing: The reflectance images were obtained through a comparison with a gray 

standard panel. Namely, spectral reflectance was calculated as the ratio of leaf spectrum to the standard 

panel spectrum. The leaves were then separated from the background according to the threshold set, 

and shadows on the leaves were separated and removed (Figure 5). Because the lighting condition was 

stable in the lab, the contrast of spectra between leaf and shadow was quite remarkable. Leaves had 

much higher reflectance values of green wavelengths, while shadow had much lower reflectance 

values. Here, we use the reflectance value of the green band (550 nm) as the indicator and set a 

threshold to separate the leaf and shadow. This processing was performed using the software,  

ENVI 4.2. The valid extracted image data were then used for calculation and analysis. 

Figure 5. Shadow removal of soybean leaf data. (a) Raw data; (b) separated leaf;  

(c) shadow mask. 

 
(a) (b) (c) 

3. Methods 

3.1. General Description  

The aim of this study is to evaluate the performance of the FISS through estimation of plant leaf 

chlorophyll contents. Whether this new system can be used for quantifying chlorophyll or even 
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outperform traditional non-imaging spectrometer becomes the focus. As a typical non-imaging 

spectrometer, ASD is widely used in the remote sensing community to perform spectral experiments 

and quantify biochemicals, including chlorophyll. It can serve as a good counterpart to the FISS in 

spectral quantitative analysis. Detailed comparative analyses of chlorophyll estimation based on the 

two different spectrometers are presented in Section 4. Derivative spectra and reflectance spectra are 

used to estimate chlorophyll contents with ASD and FISS data. The same analysis methods and 

techniques are applied on both FISS and ASD data to make the comparison sound and comprehensive.  

3.2. Model Features Used for Chlorophyll Content Estimation 

In this section, the model feature is the information that can be used to retrieve the nitrogen content 

of the pigment and primarily includes the reflectivity of the raw spectra and derivative spectra.  

The derivative spectra can enhance the subtle changes in the slope of the spectra; for vegetation, 

such changes are related to the biochemical absorption characteristics. The ability to enhance these 

changes can also help eliminate certain interfering factors and can better reflect the essential 

characteristics of vegetation. Therefore, derivative spectral images are calculated in the present study 

to obtain the derivative of the leaf spectra as follows: 

1−−= kkk RRDR  (1)

where kDR  is the first spectral derivative of the k-th wavelength, kR  is the reflectance of the k-th 

wavelength and k is the serial number of the wavelength. 

Because the spectral range of FISS is 380–870 nm, the same range of spectral data of ASD is 

selected and used in the study to maintain the comparability of the two sensors.  

3.3. Spectral Analysis Models for Chlorophyll Content Estimation 

To retrieve the chlorophyll content and compare different estimation methods, we used linear 

regression (LR), stepwise multiple linear regression (SMLR), partial least squares regression (PLSR) 

and support-vector machine (SVM) regression, the latter of which has become popular in recent  

years for processing high-dimensional small-size datasets. The following is a brief introduction to  

these methods. 

(1) LR: LR is the simplest regression method. It assumes that the independent and dependent 

variables are linearly related, and the coefficient of the regression equation is estimated using the least 

squares method. This method is suitable for univariate analysis. Although it is simple, LR is the most 

commonly used estimation model.  

(2) SMLR: Spectral analysis often involves a large number of highly-correlated wavelengths, and 

the high correlation between the variables usually results in unstable MLR models. SMLR is widely 

used for regression analysis and is a common method to reduce the correlation between independent 

variables. This method draws on the strengths of forward selection and backward elimination, while 

overcoming their drawbacks, and it also has a low computation load. SMLR can guarantee the 

production of an “optimal” regression equation for a specific significance level. The main parameters 
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are the confidence level of the variable introduced ( inα ) and the confidence level of the variable 

deleted ( outα ). SMLR is implemented in SPSS13.0 [33]. 

(3) PLSR: PLSR can be used for regression modeling (multiple linear regression), to simplify the 

data structure (principal component analysis) and to analyze the correlation between two variables 

(canonical correlation analysis) [33]. This method proposes a breakthrough in multivariate statistical 

analyses. PLSR is a regression modeling method for multiple dependent variables versus multiple 

independent variables, and thus, it can solve numerous problems that conventional multiple regression 

is not able to solve. For example, PLSR can be used for solving problems involving multiple variables 

with a small sample size. PLSR is a nonlinear iterative method and usually outperforms the multiple 

linear regression method in processing data with mutual interferences between non-linear systems and 

quality parameters. In the present study, PLSR is implemented using the software, The Unscrambler 9.8. 

(4) SVM regression: SVM regression (SVR) was first proposed by Vapnik and is a classification 

algorithm for small-sized samples with minimal separation [34,35]. SVM uses kernel methods to solve 

the classification of nonlinear problems. The core idea is to project nonlinear problems from a  

low-dimensional feature space to a high-dimensional feature space, so that the projected data are 

linearly separable, which simplifies the problem of solving linear SVM classification problems. SVM 

can be considered an expansion of SVM classification: the value range of the categories in 

classification problems is expanded to continuous values. For a specific N-element data set, 
)},(,),,{( 11 nn yy xx   ( Ryi ∈ , ( 1,2,... )dR i N∈ =ix , where ix  is an input variable and iy  is the target 

output variable, the final SVM regression equation is as follows [34,35]: 
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where K  is the kernel function, 0iα ≥  is the Lagrange multiplier and db R∈  is the offset vector. A 

detailed introduction to the SVM method can be found in the literature [34,35]. The ability of SVM to 

process high-dimensional data fits well with the high dimensional nature of imaging spectral data, and 

thus, it has a wide range of applications in processing imaging spectral data. In the present study, SVM 

is implemented in the Python language using the LIBSVM package [36]. 

The performance of the above 4 models can be measured with the coefficient of determination 

(COD) and root mean square error (RMSE), which are defined as follows: 
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where n is the number of samples, y  is the measured mean of the sample and ŷ  is the  

predicted value. 



Sensors 2014, 14 19918 

 

 

4. Results and Discussion 

4.1. Spectral Variables as an Indicator of Pigment Content  

To evaluate the utility of various spectral features as pigment content indicators, we calculated the 

linear correlation coefficients between these features and the pigment content (shown in Figures 6 and 7).  

Figure 6. Correlogram of the mean spectral reflectance versus pigment content. 

 

Figure 7. Correlogram of the mean derivative spectral reflectance versus pigment content. 

 

In both figures, the correlation coefficient curves of chlorophyll a, chlorophyll b, total chlorophyll 

and carotenoids were similar in shape, but had different ranges, and they coincided in wavelength with 

the high correlation coefficients, which will be illustrated in the following section using total 

chlorophyll as an example. 
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For the spectral reflectance, the wavelength ranges that exhibited high correlation coefficients were 

530–670 nm and 695–715 nm, and the maximal correlation with chlorophyll content was −0.85 

(corresponding to wavelengths of 568 nm and 703 nm). For the derivative spectra, there were four 

regions with relatively high correlation coefficients: 490–550, 600–670, 680–710 and 725–775 nm. As 

shown in Figures 6 and 7, the maximal correlation coefficient between the mean derivative spectral 

reflectance of the FISS data and chlorophyll content was −0.90 (corresponding to a wavelength of  

650 nm). A comparison of the two figures revealed that the correlation coefficient between the FISS 

spectral derivative and pigment content was overall higher than that between the spectral reflectance 

and pigment content, indicating that the derivative spectral information was a better pigment  

content indicator. 

4.2. Chlorophyll Content Retrieval 

There were 101 valid samples for chlorophyll retrieval, which included 71 training samples and  

30 validation samples. The maximum, minimum, mean and standard deviation of the chlorophyll 

content of the training samples were 5.33, 2.33, 4.19 and 0.75 mg/g, respectively, and the 

corresponding values for the validation samples were 5.41, 2.69, 4.05 and 0.76 mg/g, respectively. The 

statistics of the training samples and validation samples were generally the same; therefore, these 

samples can be used for the construction and validation of the same model. 

Table 2. Spectral variables and chlorophyll content retrieval accuracies for the different 

models (FISS data) (RMSEc refers to RMSE of calibration dataset and RMSEv refers to RMSE 

of validation dataset). 

Feature Model 
No. of 

Wavelengths 

Calibration Validation 

RMSEc 2R  RMSEv 2R  

spectral 
reflectance 

LR 1 0.404 0.71 0.310 0.85 

MLR 3 0.302 0.84 0.297 0.86 

MLR 7 0.259 0.88 0.312 0.85 

PLSR 344 0.244 0.90 0.222 0.92 

SVR 3 0.282 0.86 0.352 0.82 

SVR 7 0.277 0.86 0.276 0.89 

SVR 344 0.262 0.88 0.246 0.91 

derivative 
spectral 

reflectance 

LR 1 0.339 0.79 0.254 0.90 

MLR 3 0.283 0.86 0.254 0.90 

MLR 7 0.258 0.88 0.201 0.94 

PLSR 343 0.275 0.86 0.236 0.90 

SVR 3 0.262 0.88 0.266 0.90 

SVR 7 0.270 0.87 0.241 0.92 

SVR 343 0.239 0.90 0.238 0.91 

For different spectral features (spectral reflectance, derivative spectra), significant wavelengths 

were selected using stepwise methods, and then, the chlorophyll content was retrieved using the LR, 

MLR, PLSR and SVM models. The retrieval accuracies are shown in Table 2 (FISS data). The LR 

model used the first significant wavelength; the MLR model used the first three and first seven 
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wavelengths; the PLSR model used all of the wavelengths; and the SVM model used the same 

wavelengths as those in the MLR model, as well as all of the wavelengths. The number of features and 

accuracy in each case are shown in Table 2 for comparison. 

ASD spectrometer was used as well to obtain the spectra data of these samples simultaneously. 

Similar methods mentioned above were also performed on ASD data sets. Features and accuracy in 

each case based on ASD data are shown in Table 3. 

Table 3. Spectral variables and chlorophyll content retrieval accuracies for the different 

models (ASD data). 

Feature Model 
No. of 

Wavelengths 

Calibration Validation 

RMSEc 2R  RMSEc 2R  

spectral 

reflectance 

LR 1 0.665 0.20 0.527 0.57 

MLR 3 0.510 0.53 0.380 0.77 

MLR 7 0.408 0.70 0.348 0.80 

PLSR 520 0.364 0.76 0.364 0.78 

SVR 3 0.464 0.61 0.405 0.74 

SVR 7 0.403 0.71 0.405 0.72 

SVR 520 0.399 0.74 0.412 0.71 

derivative 

spectral 

reflectance 

LR 1 0.581 0.39 0.424 0.72 

MLR 3 0.477 0.59 0.413 0.76 

MLR 7 0.365 0.76 0.378 0.78 

PLSR 520 0.489 0.57 0.406 0.72 

SVR 3 0.344 0.79 0.463 0.73 

SVR 7 0.380 0.75 0.411 0.77 

SVR 520 0.381 0.76 0.431 0.71 

4.2.1. Comparative Analysis of the Accuracy of Chlorophyll Content Retrieval Based on Imaging 

Spectrometer and Non-Imaging Spectrometer 

From the comparison of Table 2 with Table 3, it is easy to find that chlorophyll content retrieval 

accuracies based on the imaging spectrometer are higher than those based on a traditional single-point 

sensor spectrometer. In the case where spectral reflectance is selected as the model features, the lowest 

RMSE is 0.348 mg/g based on ASD data, while the lowest RMSE is 0.222 mg/g based on FISS data. 

The retrieval error generates a relative reduction of 36.2%. A similar result can be found in the case 

where derivative spectral reflectance is the model feature. For example, the MLR retrieval error of the 

validation samples at seven wavelengths is 0.201 mg/g based on FISS data, a relative reduction of 

46.8% compared with the error 0.378 mg/g based on ASD data. 

The imaging spectrometer could obtain both spectral and spatial detailed information.  

Its image-spectrum-in-one merit can provide more information about the whole leaf and is more 

conducive to chlorophyll content estimation. Meanwhile, the imaging spectrometer can accurately 

obtain the spectral information of any valid pixel in the entire leaf and accurately locate the target.  
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A single-point sensor spectrometer can only obtain information in the sensor’s field of view and not 

the complete spectral information of the entire leaf. This could lead to the fact that its spectral signals 

cannot be precisely mapped to the target objects. In our cases, the entire leaf was used for chlorophyll 

extraction, while we cannot get the complete spectral information of the entire leaf using a  

non-imaging spectrometer. The imaging spectrometer can overcome this shortcoming and, thus, obtain 

better results for chlorophyll content estimation. 

4.2.2. Comparative Analysis of the Accuracy of Chlorophyll Content Retrieval Based on Different 

Spectral Features  

The comparison between the retrieval accuracies of the spectral reflectance and derivative spectra of 

the FISS data indicated that when the same method and same number of variables are used (except for 

the PLSR model, which used all of the wavelengths), the derivative spectra provided a higher accuracy 

of chlorophyll content estimation: its maximal validation accuracy in RMSE was 0.201 mg/g, and its 

coefficient of determination was 0.94. The highest prediction accuracy of the spectral reflectance in 

RMSE was 0.222 mg/g, and its coefficient of determination was 0.92. Using the derivative spectrum 

can reduce the RMSE by 3.3%–35.6%. When only a small number of wavelengths were used, the 

difference was particularly significant, and the mean reduction was 22.7%. This result demonstrates 

that the derivative spectrum is a more sensitive chlorophyll content indicator that can extract content 

information more efficiently than the raw spectral reflectance. 

From Table 3, it can be found that the derivative spectrum serves as a better indicator of chlorophyll 

content generally compared to raw spectral reflectance for ASD data. It holds true for both FISS and 

ASD data that derivative spectra have better performance than reflectance spectra for quantifying 

chlorophyll. However, this phenomenon is much more significant for the FISS data. Significant 

reductions of the estimation RMSEs were observed by comparing the results derived from derivative 

and reflectance spectra of the FISS data. However, the corresponding improvements are not so obvious 

for ASD data by the fact that RSMEs reductions are mainly observed in the calibration dataset, while 

no significant reductions are found in the validation dataset in our cases.  

If all 344 of the wavelengths are used in the models, then the advantages of using the derivative 

spectra become less significant, because the derivative spectra are essentially a method of enhancing 

information, while effectively suppressing noise at specific wavelengths. Therefore, the derivative 

spectra do not increase the amount of information carried by the FISS data. When all of the 

wavelengths are used, the spectral reflectance and derivative spectra carry the same amount of 

information. Consequently, the derivative spectra cannot significantly improve the estimation accuracy 

with all bands used. This point holds true as well for ASD data due to similar reasons.  

4.2.3. Comparative Analysis of the Accuracy of Chlorophyll Content Retrieval Using Different 

Regression Models 

For spectral reflectance, the highest prediction accuracy was achieved when using the information 

at all of the wavelengths in the PLSR model, which had a corresponding RMSE of 0.222 mg/g. For the 

derivative spectra, the smallest prediction error was 0.201 mg/g, which occurred when using the 

information of seven wavelengths in the MLR model (Table 2). Among the four models, the accuracy 
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achieved by the LR model was generally the lowest because the LR model used fewer characteristic 

variables and, therefore, had insufficient information. 

When using three or seven wavelengths, the SVM (a nonlinear method) did not outperform the 

MLR model, indicating that the relationship between the chlorophyll content and these significant 

wavelengths was closer to a linear relationship than to a complex non-linear relationship. Thus, 

nonlinear models did not display an advantage and might present the risk of over-learning. 

When using the information at all 344 wavelengths, the performance of the PLSR was improved, 

and the RMSE was 9.8% lower than that of the SVM model. However, when using the derivative 

spectra at all of the wavelengths, the estimation errors of the SVM and PLSR models were almost the 

same, which may imply that using sophisticated methods does not always increase the estimation 

accuracy and that selecting the appropriate spectral feature (e.g., spectral reflectance or derivative 

spectra) may be more important. 

Therefore, we can conclude that regression methods only require information at several significant 

wavelengths to retrieve chlorophyll content, and they can be used in multivariate linear models. 

Specifically, this conclusion holds true as well for ASD data by comparing the different regression 

models (Table 3). 

5. Conclusions 

An FISS was used to study the retrieval of soybean leaf chlorophyll content in the present study, 

and the performance of the FISS system in a quantitative spectral analysis was assessed. The main 

conclusions are as follows. 

(1) For the raw spectra, reflectance in the ranges of 530–670 and 695–715 nm exhibited a strong 

correlation with pigment content; for the derivative spectra, the following four regions showed 

relatively high correlation coefficients: 490–550, 600–670, 680–710 and 725–775 nm. 

(2) Compared with the spectral reflectance, the derivative spectra displayed a stronger correlation 

with pigment content and were a better indicator of pigment content, which is more significant for 

FISS data compared to ASD data. Using derivative spectra as the input feature in regression models 

resulted in a much higher accuracy than when the raw spectral features were used, with the RMSE 

reduced by 3.3%–35.6%. This difference was more significant when only a small number of 

wavelengths were used, with a mean reduction of 22.7%.  

(3) Different modeling methods presented different accuracies, although the overall differences 

were not significant. The impact of the model selection on accuracy was smaller than that of the 

spectral feature. Regression methods only required information from several significant wavelengths to 

retrieve chlorophyll content, and they can be used in multivariate linear models. This conclusion holds 

true for both FISS and ASD data. 

(4) Because of its unique measurement method and image-spectrum-in-one feature, FISS data can 

be used to acquire accurate chlorophyll content information with higher accuracies than non-imaging 

spectral data. The relative reduction of retrieval RMSE could reach a level of more than 30%. The 

lowest retrieval RMSE based on FISS data was 0.201 mg/g, which indicates a high estimation 

accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g), confirming 
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the excellent performance of FISS in quantitative spectral analyses. Therefore, FISS can be widely 

used in the agricultural sector. 
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