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Abstract: When operating under harsh condition (e.g., time-varying speed and load, large 

shocks), the vibration signals of rolling element bearings are always manifested as low 

signal noise ratio, non-stationary statistical parameters, which cause difficulties for  

current diagnostic methods. As such, an IMF-based adaptive envelope order analysis  

(IMF-AEOA) is proposed for bearing fault detection under such conditions. This approach 

is established through combining the ensemble empirical mode decomposition (EEMD), 

envelope order tracking and fault sensitive analysis. In this scheme, EEMD provides an 

effective way to adaptively decompose the raw vibration signal into IMFs with different 

frequency bands. The envelope order tracking is further employed to transform the 

envelope of each IMF to angular domain to eliminate the spectral smearing induced by 

speed variation, which makes the bearing characteristic frequencies more clear and 

discernible in the envelope order spectrum. Finally, a fault sensitive matrix is established to 

select the optimal IMF containing the richest diagnostic information for final decision 

making. The effectiveness of IMF-AEOA is validated by simulated signal and 

experimental data from locomotive bearings. The result shows that IMF-AEOA could 
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accurately identify both single and multiple faults of bearing even under time-varying 

rotating speed and large extraneous shocks.  

Keywords: rolling element bearing; multi-fault diagnosis; time-varying rotating speed; 

fault sensitive matrix  

 

1. Introduction 

Rolling element bearings are common and vital mechanical components that are widely used in 

rotating machinery, and their malfunction may lead to uncomfortable vibration and noise, or even 

breakdown of the entire production line. As a result, it is crucial to detect bearing faults before a 

catastrophic failure occurs. A variety of monitoring and diagnostic techniques for rolling element 

bearings have been developed in recent years. Among those, vibration analysis has been proven to be 

the most fundamental and versatile one that plays an important role in bearing faults diagnosis.  

When the rolling element passes through a faulty surface, a force impact is generated and this in 

turn excites the resonance frequency of the bearing system [1,2]. As the bearing rotates, these impulses 

will occur periodically with a frequency uniquely determined by the location of the defect. For this 

reason, the detection of faults in bearings is commonly achieved by identifying the bearing 

characteristic frequencies (BCFs), i.e., ball pass frequency of inner-race (BPFI), ball pass frequency of 

outer-race (BPFO), or ball spin frequency (BSF). However, those impulses are very weak at the early 

stage of faults and are usually overwhelmed by measurement noise and other vibration sources (such as 

gear mesh and rotor unbalance), which causes difficulties for the early fault detection of bearings. For the 

purpose of signal denoising and weak signature enhancement, a variety of signal processing techniques 

have been proposed in recent years. They mainly include high frequency resonance technique (HFR) [3], 

spectral kurtosis [4–6], wavelet analysis [7,8], empirical mode decomposition [9,10], cyclostationary 

approach [11–15], minimum entropy deconvolution [16,17] and stochastic resonance [18–21] etc. Among 

those, the HFR is the most widely used since it could extract the fault-related amplitude-modulation that 

resides in a narrow band around the resonance and may minimize the effects of interfering signals in 

lower frequency range. Nevertheless, the major challenge in the application of HFR lies in how to 

choose the optimal frequency band for demodulation [22]. In early days, the demodulation frequency 

band was selected either by trial and error, or by shock testing using a hammer, both of which are 

rather inconvenient for practical applications. To address this issue, the spectral kurtosis (SK) method 

was intensively investigated by Antoni and Randall [4,5]. It is shown that SK is an effective statistical 

tool which can indicate not only transient components in the signal but also their locations in the 

frequency domain, thus providing a guideline for the optimal demodulation bandwidth selection in the 

envelope analysis. However, the original SK is time-consuming and not suitable for on-line fault 

detection. To overcome this issue, a 1/3-binary tree fast kurtogram estimator was further proposed 

Antoni, which made on-line condition monitoring a reality [6]. Since then, improvements of both SK 

and the kurtogram have attracted increasingly attention of researchers [23]. By introducing Wavelet 

Package Transform (WPT), Lei et al. [24] presented an improved kurtogram method which employs 

WPT as the filter-bank to overcome the shortcomings of the original kurtogram. A novel tool called 
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Protrugram [25] is proposed by Barszcz and Jabłoński in 2011 for the optimal band selection, which is 

proven to be more effective than kurtogram in detecting the transient under heavy noise. In the same 

year, Wang et al. [22] proposed an adaptive spectral kurtosis for the multiple bearing faults detection. 

Considering the low time-frequency resolution of traditional kurtogram, Li et al. [26] developed a 

continuous-scale mathematical morphology (CSMM) scheme to locate the optimal scale band that best 

reflects the impulsive feature for more reliable fault signature extraction. Inspired by wavelet packet 

transform, an enhanced kurtogram was recently presented by Wang et al. [27]. In that method, the 

kurtosis values are calculated based on the envelope signals extracted from wavelet packet nodes at 

different depths, instead of band-pass filtered waveforms.  

Although the aforementioned methods have shown different levels of success in bearing fault 

diagnosis, it is noted that most of those methods assume that the frequency band with largest kurtosis 

value is the resonance excited by the fault, and regard it as the best choice for demodulation. However, 

this assumption is not valid in many practical applications, especially when the bearing runs under 

harsh operation conditions. For instance, the measured signals of on-line locomotive bearing 

monitoring system are always corrupted by the impacts when the wheel goes through the joints 

between two successive railway tracks; the bearing signal of high-speed spindle usually suffered from 

transient vibration due to the non-continuous milling process. In addition, some incidental spikes 

caused by electromagnetic interference are frequently encountered in industrial applications. All the 

interferences mentioned above are impulse-like, which are very similar to the signature caused  

by bearing fault. Moreover, those interferences are always characterized by high amplitude and  

short-duration, thus have even larger kurtosis values than those of fault signatures. For this reason, 

when the maximum-kurtosis based approaches are applied to those signals, the strong interference will 

probably be extracted, however leaving the real fault signature undetected.  

Besides, the traditional diagnostic methods are also premised on the assumption that the bearing is 

operating at a constant speed [28]. However, there are a variety of applications where the bearings 

experience different extents of speed variations due to non-stationary working condition. For instance, 

the rotating speed (RS) of automobile bearings are varying with its driving speed, the RS of mining 

excavator bearings are affected by the external load [29], and the RS of a wind turbine main bearing  

fluctuates with the wind power and speed [30]. In those cases, the repetition frequencies of impacts are 

also time-varying, hence the impulse signal and its envelope are non-stationary in nature. The direct 

application of frequency-based methods to those signals will result in spectral smearing and false 

diagnosis, even though the fault-induced impulses are extracted effectively [31,32].  

This paper aims to provide a reliable and effective bearing diagnostic method capable of extracting 

fault signatures from the strong impulse interferences. In addition, it is also expected that this method 

applies not only to bearings under constant speed, but also those under variable speeds. For this 

purpose, an enhanced bearing signal analysis technique called IMF-AEOA is proposed by integrating 

the individual merits of ensemble empirical mode decomposition (EEMD), envelope order tracking 

and fault sensitive analysis. Compared with WT and HFR, the decomposition process of EEMD is 

data-driven and self-adaptive according to the natural oscillatory mode embedded in the signal, thus 

providing a fine separation of fault-related signal from the background noise and other interference.  

In addition, since the envelope of each IMF is resampled from time domain to angular domain,  

the spectral smearing problem encountered in varying speed cases is addressed successfully. By 
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performing envelope order analysis (EOA), the BCFs of real faults are enhanced in the order domain 

due to angular cyclostationary characteristics, while the interferences are weakened since they are 

randomly distributed in the vibration signal. On this basis, a fault sensitive matrix (FSM) is further 

established to quantitatively assess how much diagnostic information each IMF has, with which the 

optimal component containing the richest diagnostic information may be identified for final decision 

making. By combining those advantages of EEMD, EOA and FSM, both single and multi-fault of 

bearing can be detected effectively even under varying speed operations and strong interferences. 

The rest of this article is organized as follows: After a briefly review of EMD and EEMD in  

Section 2, the principle and implementation of proposed bearing diagnostic technique, IMF-AEOA, is 

elaborated in Section 3. The advantages of IMF-AEOA in interference resistance, multi-fault 

identification as well as variable speed application are demonstrated by simulation analysis in  

Section 4. The effectiveness of this approach is validated by application to locomotive bearing 

diagnosis in Section 5. Finally, some conclusions are drawn in Section 6. 

2. A Briefly Review of EMD and EEMD 

Before the introduction of EEMD, we will first give a briefly review of the classical Empirical 

Mode Decomposition (EMD) technique. EMD is a novel and effective signal processing technique, 

originally proposed by Huang et al. [33] in 1998. It can decompose a complicated signal into a set of 

complete and almost orthogonal components called intrinsic mode functions (IMFs), and each IMF 

represents one simple oscillatory signal mode [10]. It has been proven to be quite versatile for 

extracting signals from data generated in noisy nonlinear and non-stationary processes. In comparison 

with the WT, the decomposition process of EMD is data-driven and self-adaptive, according to the 

natural oscillatory mode embedded in the signal, rather than the pre-determined mother function. 

Those properties make the EMD a powerful tool in a wide variety of applications, such as voice 

recognition, system identification, medicine and biology, system control, etc. Studies on EMD applied 

to fault diagnosis of rotating machinery have also grown at a very rapid rate in the past few years, 

covering the diagnostic problems of rotors, gears and bearings.  

However, the original EMD algorithm is not perfect. One of the major drawbacks of EMD is the mode 

mixing problem [34], which not only leads to serious aliasing in time-frequency distributions, but also 

makes the physical meanings of individual IMFs unclear. To alleviate this problem, a noise-assisted  

data analysis method, called ensemble empirical mode decomposition, was proposed by Wu and 

Huang [35] in 2009. The EEMD method first adds white noise with finite amplitude to the analyzed 

signals. Since the white noise is uniformly distributed throughout the frequency domain, no missing 

scales are present and hence the components in different scales of the signal are automatically 

projected onto proper scales of reference established by the white noise in the background [35]. As a 

result, the mode mixing due to the existence of intermittency is overcome effectively. Finally, the 

added white noise can be decreased or even completely canceled out in the ensemble mean of 

sufficient trails. In contrast to EMD, EEMD has better scale separation ability and more robust to 

mode mixing problem, which make it an appropriate candidate for analyzing the bearing vibration 

signals that inevitably contain intensive noises and other interference. 

Based on the above discussion, the algorithm of EEMD can be summarized as follows: 
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(1) Initialize the number of trials in the ensemble, J, and the amplitude of added white noise.  

Set trial number j = 1; 

(2) Generate a white noise series with the preset amplitude and add it to the analyzed signal, i.e.: 

( ) ( ) ( )j jx t x t n t= +
 (1)

where nj(t) is the j-th added noise signal, xj(t) denotes the noise-added signal of the j-th trial. 

(3) Decompose the white noise-added signal into M IMFs by EMD, and we can obtain: 

, ,
1

( ) ( ) ( )
M

j j m j M
m

x t c t r t
=

= +
 

(2)

where cj,m(t) and rj,M(t) demote the mth IMF and the residue of the j-th trial, respectively; M is the 

number of IMF of the j-th trial. 

(4) If the trial number is smaller than the termination number, i.e., j < J, then go to step (2) with  

j = j + 1. Repeat steps (2) and (3) again, but with independent random white noise signals each time. 

(5) Calculate the ensemble mean of corresponding IMFs in each trail as the final result: 

,
1

1
( ) ( ),   1,2, .

J

m j m
j

c t c t m M
J =

= = 
 

(3)

Generally, the noise amplitude is selected about 0.2–0.3 times the standard deviation of the original 

signal. However, since we primarily concern the high-frequency resonances where the bearing fault 

signatures residing in, the noise amplitude may be selected much smaller so as to separate those  

high-frequency components better as suggested in [35,36]. For this reason, the noise amplitude is set as 

0.1 times the standard deviation of the original signal in our practice. Under this amplitude, an ensemble 

number of 100 is sufficient to suppress the added noise. Using such a signal processing technique, a 

complicated non-stationary bearing signal, x(t), could finally decomposed into a finite number of IMFs 

representing the natural oscillatory mode of x(t). For more details about EEMD readers may refer to [35]. 

3. The Proposed IMF-AEOA Method for Bearing Fault Diagnosis 

To effectively detect the faults of rolling element bearings under harsh working condition, an  

IMF-based adaptive envelope order analysis (IMF-AEOA) technique is proposed in this section. The 

flow chart of the IMF-AEOA is shown in Figure 1, and its principle and implementation are elaborated 

as follows: 

Step 1. Decompose the Raw Vibration Signal into IMFs Using EEMD 

As discussed previously, the vibration signal of bearings in industrial applications is rather 

complicated, and always contains impulses caused by bearing faults, the rotating harmonics due to 

unbalance and misalignment, the strong meshing vibration coming from gears, and the high-amplitude 

impulses resulting from other interference, etc. Therefore, it is advisable to separate those components 

before more advanced signal processing techniques are applied. To achieve this, EEMD is utilized to 

decompose the raw vibration into different subbands in terms of IMFs. Each IMF contains signal 

components within certain oscillation frequency range. Since the signal decomposition scheme is  
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data-driven and self-adaptive, the EEMD can provide a nature separation of signal components 

according to their oscillation characteristics.  

Figure 1. Flowchart of proposed IMF-AEOA. 

 

Step 2. Perform Envelope Order Analysis on Each IMF 

After applying the EEMD to the bearing signal, the impulses related to bearing faults may be 

decomposed into certain IMFs. Nevertheless, for incipient bearing faults, the signatures may be so 

weak that we can hardly identify them in the waveform of each IMF. Although the envelope spectrum 

is an effective tool for bearing fault diagnosis, however, the envelope of impulses is non-stationary 

under speed-varying working conditions, which in turn leads to the smearing effect in the envelope 

spectrum. Therefore, the envelope spectrum cannot be used directly for those signals. To overcome 

this limitation, the envelope order analysis (EOA) is performed on each IMF. In this step, the envelope 
of each IMF, ˆ ( )ic t , is first obtained by calculating the modulus of its analytic signal, which is given by: 

[ ]ˆ ( ) ( ) H ( )i i ic t c t j c t= +  (4)

where H denotes the Hilbert transform.  

Then the envelopes are resampled with equal angular increments according to the instantaneous 

speed v(t) of bearing shaft. In practice, v(t) can be calculated either from a tachometer signal or the 

vibration signal itself [37]. Through the above procedure, the non-stationary envelope signal in  

time-domain can be transformed into a cyclostationary one in the angular domain. By performing 

Fourier transform on the resampled signals, we can get the envelope order spectrums of each IMF. The 

BCFs of real faults are enhanced in the envelope order spectrum due to their inherent angular 
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cyclostationary characteristics, in the meantime the strong interferences are eliminated since they are 

randomly distributed in the vibration signal. 

Step 3. Find out the Optimal IMFs Using Fault Sensitive Matrix 

For the signal acquired from a complex mechanical system, the number of decomposed IMFs can 

reach up to a dozen or more. It is a boring and time-consuming work to diagnose the fault by checking 

each IMF via visual inspection. In order for this method to be applicable in an on-line monitoring 

system, the health status or the fault types of bearing should be identified in an automatic manner. 

Moreover, since the fault-induced impact may simultaneously excite several resonance zones of the 

bearing system, the diagnostic information may distribute in multiple frequency bands. Therefore, 

several interesting and crucial problems arise in bearing fault diagnosis: How to find the most sensitive 

IMF to certain faults? Does the diagnostic information of different faults reside in the same IMF? In 

previous research works, the most sensitive IMF is usually selected according to its kurtosis value [10]. 

As pointed out previously, the IMF with largest kurtosis value is probably caused by interference, 

rather than fault signatures.  

To address this issue, an automatic optimal IMF selection scheme based on fault sensitive matrix 

(FSM) is established. In this scheme, a significance indicator (SI) for fault signature, Sm,type is first 

proposed to measure the sensitivity of m-th IMF to a certain type of fault. Taking inner-race fault for 

example, the SI is defined as the energy ratio between the spectral component at BPFI and the local 

noise level around it, which is given as follows: 

[ ] [ ],

( )
,  0.5 ,1.5

( )
m BPFI

m Inner BPFI BPFI
m f u

A f
S u f f

RMS A f
∈

= =  (5)

where Am(fBPFI) denotes the amplitude of BPFI in the envelope order spectrum of m-th IMF, while the 

denominator in Equation (5) is the root mean square (RMS) value of the local background noise in the 

range of 0.5fBPFI ~1.5fBPFI.  

If there is no inner-race fault, the SI will remain a low value since no BPFI component is provoked 

in the envelope order spectrum. However, if an inner-race fault occurs, those indicators will increase to 

different degrees for different IMFs. Therefore, the sensitivity of each IMF to inner-race fault could be 

evaluated according to its SI, and the optimal one may be determined. From the definition in  

Equation (5), we can see that the SI can also be extend to outer-race and rolling element faults directly. 

By taking all the possible faults into consideration, a fault sensitive matrix of dimension 3 × M can be 

constructed as follows: 

1,  2,  ,  

1, 2, ,

1,    2,    ,    

Inner Inner M Inner

Outer Outer M Outer

Ball Ball M Ball

S S S

S S S

S S S

 
 
 
  





 (6)

Each row of the matrix reveals the sensitivities of different IMFs to a certain fault, while each 

column gives the sensitivities of a certain IMF to different faults. Figure 2a illustrates the 

corresponding bar plot of FSM. For better interpretation, the SIs in each row are sorted in a descend 
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order as shown in Figure 2b. By using such a representation, one can comprehensively discover the 

relevance between IMFs and bearing fault signature, from high to low.  

Figure 2. The bar plot of FSM: (a) before sorting; (b) after sorting. 

(a) (b) 

Step 4. Identify the Fault Type of Bearing 

From the above property of FSM, it is rational to conclude that the existence and the severity of 

bearing faults could also be determined if an appropriate threshold alarm is imposed on each FSM row. 

In practice, how to select the threshold value is an important issue. A small threshold may lead to false 

alarms, while a big threshold may lead to missing alarms. In this paper, the threshold value used is 4. It 

was determined based on the consideration that, for a non-fault bearing signal, the vibration waveform 

is generally dominated by Gaussian distributed white noise whose spectrum is almost flat in the 

frequency domain, hence the risk that a spectrum line exceeding four times the mean energy of its 

neighborhood is rather small. However, when a fault occurs the amplitude of BCF increases 

dramatically and can easily reach this threshold according to our experimental and in-suit bearing 

signal analysis. By impose the above threshold to each row of FSM, the health condition of bearing 

can be identified. The merit of this diagnostic scheme is that it not only applies to single fault, but also 

suitable for multi-fault cases. 

4. Simulation Analysis 

Generally, the vibration signal of a faulty rolling element bearing is mainly composed of three parts 

as given in Equation (7) [28]. The first part represents a series of impulses excited by defect, where Ai 

is the amplitude of the ith impulse, Ti is the time of its occurrence. The second part denotes the 

vibration harmonics caused by bearing imbalance or gear meshing. In this term, Bn and βn are the 

amplitude and initial phase of the nth harmonic, f(t) is the instantaneous rotating frequency of bearing 

shaft. The third part n(t) stands for the white noise in the measurement:  

( )( ) ( ) cos 2 ( ) ( )i i n n
i n

x t A s t T B nf t n tπ β= − + + +   (7)
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In this simulation, a bearing with fixed outer-race and rotating inner-race is investigated. It’s 

assumed that a local defect occurs on outer-race, whose characteristic frequency (i.e., BPFO) is 6 times 

the rotating frequency of shaft. The fault excited bearing vibration is simulated by an exponentially 

decaying sinusoid with the following form: 

( ) sin(2 )t
rs t e f tα π−=  (8)

where fr is the resonance frequency of the bearing system, which takes a values of 2000 Hz here, α is 

the damping ratio of the impulse, which takes 500 Hz here. The gear vibration is simulated as the 16th 

rotating harmonic of shaft, and its amplitude and phase are B16 = 0.4, β16 = π/6, respectively. The 

sampling frequency and time length are specified as 20,000 Hz and 1 s. 

4.1. Application to Bearing Diagnosis with Varying Speed and Random Impulsive Noise 

Bearings served in the industrial field usually suffer harsh working conditions. In order to establish 

a more realistic model, two frequently encountered scenarios are taken into account in this simulation, 

i.e., time-varying rotating speed and random impulsive noise. To investigate the influence of speed 

variation on the performance of proposed method, a non-linear run up process is simulated by 

Equation (9), the speed curve of which is given in Figure 3: 

( ) [200 200 sin(2 0.2 )] / 60f t tπ= + ⋅ ⋅ ⋅  (9)

Figure 3. The speed curve of a bearing. 

 

Figure 4. The simulated bearing vibration signal: (a) fault impulses p(t); (b) gear vibration 

g(t); (c) extraneous interferences e(t); (d) noisy compound signal x(t). 
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Figure 4. Cont. 

(b) 

(c) 

(d) 

Figure 4a,b show the simulated fault impulses p(t) and gear mesh vibration g(t), respectively. It is 

noted that the impulses are not equally spaced in the time domain due to speed variation, and the gear 

mesh period becomes shorter as the rotation speed increases. To simulate the extraneous interferences 

encountered in real-case applications, several random amplitude and short duration bursts, e(t), with 

center frequency of 6000 Hz are generated and plotted in Figure 4c. By adding Gaussian distributed 

white noise, a noisy compound signal x(t) with SNR of −3 dB is finally obtained as illustrated in Figure 4d. 

From this figure, the impulses generated by fault can hardly be observed due to the heavy noise. 

In order to extract the fault feature, a SK analysis method based on fast-kurtogram [6] is applied to 
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assumes that the frequency band with the largest kurtosis value is the frequency region where the fault 

impulses lie. Obviously, this assumption does not hold in the situations where strong non-Gaussian 

interferences exist. In fact, kurtosis is only a measure of the peakiness of a signal, but without any 

source identification. The more sparse distribution and sharper peaks a signal contains, the larger 

kurtosis value it has. Taking this simulation for instance, due to sporadic distribution and short 

duration, the kurtosis value of interference e(t) can reach up to 251, while the kurtosis value of the 

fault signal p(t) is only 25. It explains why the fault impulses are ignored when SK is applied to the 

simulated signal.  

Figure 5. Kurtogram of simulated out-race fault signal. 

 

Figure 6. The band-pass filtered signal. 
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higher order IMFs with relatively low oscillation frequency, e.g., the IMF7. However, due to the heavy 

noise and time-varying signal structure, it is still impossible to determine the fault type by measuring 

the time-interval between two successive impulses in time domain, which is frequently employed in 

literatures. For this reason, more effective post-processing techniques are required.  

Figure 7. Several representative IMFs obtained by EEMD. 

 

As we know, envelope spectral analysis is only applicable to the diagnosis of bearings working 

under stationary conditions. When ESA is applied to the bearing vibration signal or its IMFs under 

varying speed, a smearing phenomenon will occur as shown in Figure 8a, from which the BPFO 

cannot be identified in any IMF due to this smearing. To overcome this issue, envelope order analysis 

is utilized to process the IMFs in the proposed method. Since the envelope signal is resampled with 

equal increments in the angular domain, the frequency modulation effect caused by speed variation is 

removed effectively. For comparison, the envelope order spectrum (EOS) of each IMF is shown in 

Figure 8b. From the EOS of the IMF2, it is observed that the BPFO and harmonics of real fault are 

enhanced in the order domain due to its angular cyclostationary characteristics. At the same time, since 

strong interferences are randomly distributed in the vibration signal, their influence on the bearing 

diagnosis is eliminated completely in the EOS.  

Although the fault type of bearings can be identified by visual inspection of BCFs in each EOS, 

such a diagnostic manner is inconvenient and time consuming. Moreover, for a data-driven signal 

decomposition approach, it is also desirable to establish a quantitative assessment of how much 

diagnostic information one IMF has. For the above purposes, the SI of each IMF to different type of 

fault is calculated according to Section 3. Figure 9 shows the FSM of the simulated signal. It is noted 
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that the IMF2 is most sensitive to outer-race faults, and the corresponding SI is far above the threshold 

line. This signature clear indicates that an outer-race fault has occurs. On the other hand, since the SIs 

corresponding to inner-race and ball faults are all below the threshold line, so one can conclude that 

the inner-race and rolling elements are in a healthy state.  

Figure 8. Comparison between (a) envelope spectrum and (b) envelope order spectrum  

for IMFs. 

 

(a) (b) 

Figure 9. FSM of the simulated signal. 
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4.2. Case 2: Application in Multi-Fault Detection of Bearings 

Once a bearing defect occurs, the local stress increases significantly as the rolling element passed by. 

As a consequence, a single bearing fault will develop into a multi-fault in a very short time due to high 

stress. Another advantage of the proposed method is its ability for multi-fault detection. To 

demonstrate this, an inner-race fault signal is generated as shown in Figure 10a. Different from an 

outer-race fault, the energy of measured vibration signal of an inner-race fault is influenced by the load 

zone and time-varying transmission path. In this work, those effects are simulated by imposing an 

amplitude modulation function a(t) to the impulse train, which is given by: 

 (10)

where θ(t) denotes the instantaneous angular position of the inner-race fault on the bearing. Since 

different faults may excite different frequency bands of the system, the resonance frequency of an 

inner-race fault is specified as 6000 Hz in this simulation. Figure 10b illustrates the final compound 

signal, which is generated by adding the inner-race fault to the previous signal x(t) as given in Figure 4d. 

By applying SK to the simulated signal, a frequency band with a center frequency of 5937.5 Hz and 

bandwidth of 625 Hz is identified in the kurtogram as presented in Figure 11. Figure 12a shows the 

band-pass filtered signal, from which the impulses induced by the inner-race fault can be identified. 

Figure 12b shows the envelope order spectrum of the filtered signal, from which one can only identify 

the BPFI, while leaving the outer-race fault undetected. This drawback is due to the fact that the 

conventional SK only focuses on the sole frequency-band with the largest kurtosis value. Therefore, in 

the case of multi-faults, the bearing defects with relative smaller kurtosis value may be ignored.  

Figure 10. (a) Simulated inner-race fault signal; (b) compound signal. 
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Figure 11. Kurtogram of simulated multi-fault signal. 

 

Figure12. (a) Waveform and (b) envelope order spectrum of band-pass filtered signal. 
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(b) 

In contrast, since all the decomposed frequency bands are equally treated before envelope order 

analysis, the limitation mentioned above can be overcome effectively in the proposed method.  

Figure 13 presents the FSM of the simulated signal, from which the inner-race fault and outer-race 

faults can be identified clearly. Moreover, it is interesting to find in FSM that the IMF2 is most 

sensitive one to the outer-race fault, while IMF1 is the most sensitive one to the inner-race fault. To 

further validate the effectiveness of FSM, the waveforms and EOS of the first four IMFs are plotted in  

Figure 14a,b, respectively. It is obvious that the BPFI and its modulation sidebands are clearly 

revealed in the EOS of IMF1. Similarly, the diagnostic information of outer race fault mainly resides 

in the IMF2. 
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Figure13. FSM of simulated multi-fault signal. 

 

Figure 14. (a) Waveforms and (b) envelope order spectrums of the first 4 IMF components. 
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5. Application to Fault Diagnosis of Locomotive Bearings 

To validate its effectiveness, the proposed method is applied to the fault detection of locomotive 

bearings in this section. The locomotive bearing test bench and its schematic are presented in  

Figure 15a,b, respectively. The outer-race of the bearing is driven by a nylon driving wheel connected 

to a hydraulic motor, while the inner-race is fixed during the test. Although the nominal rotation speed 

of the driving motor is 400 rpm. Its actual speed can hardly be kept constant due to oil pressure 

fluctuation. According to the geometric parameters of the bearing listed in Table 1, the nominal BCFs 

are calculated and given in Table 2. It is important to note that the BCFs are time-varying in the test 
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since the bearings are not operating at a constant speed. To overcome this, those BCFs are normalized 

by the rotating frequency of outer race (in terms of order) and listed in Table 2.  

Figure 15. (a) The locomotive bearing test bench; (b) its schematic view. 

Driving wheel
Hydraulic

motor

Bearing

Loading
wheel

 
(a) 

 
(b) 

Table 1. Geometric parameters of the roller bearing. 

Pitch Diameter  

(mm) 

Roller Diameter 

(mm)

Contact Angle 

(degree)

Number of  

Rollers 

180 23.775 9 20 

Table 2. BCFs of the bearing. 

Items BCFs in Hz BCFs in Order 

BPFO 57.97 8.695 

BPFI 75.37 11.305 

BSF 24.81 3.721 

A tri-axial accelerometer is mounted on the shaft end to collect the bearing vibration signals. The 

vibration signals are acquired for 2 s at a sampling rate of 76,800 Hz. Since the vibration in the vertical 

direction is constrained by the loading wheel, its amplitude is not as large as that in the horizontal. 

Therefore, the vibration signals in the horizontal direction are more informative and selected for 

further processing. In this experiment, the locomotive bearings are tested blindly and we don’t know 

their fault types in advance. Figure 16a shows the waveform of a bearing vibration signal, from which 
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no distinct impulses can be detected. To identify the bearing’s health state, the SK-based method and 

IMF-AEOA are applied to the vibration signal, respectively.  

Figure 16. (a) Waveform and (b) kurtogram of the bearing signal. 

 

(a) (b) 

Figure 16b illustrates the kurtogram of the raw signal, from which the ‘optimal’ demodulation 

frequency-band can be obtained as 32,400~33,000 Hz. Based on this information, the raw signal is 

band-pass filtered and the resultant waveform is presented in Figure 17a. It is noted that several high 

amplitude impulses with random time distribution are extracted from the filtered signal. However, 

those components come from the rubbing between the drive system and the chassis, rather than real 

faults. Therefore, when envelope analysis is applied to the filtered signal, no BCF can be detected in 

the envelope spectrum as given in Figure 17b. Therefore, the diagnostic result of SK-based approach is 

that the bearing is in a healthy state. 

Figure 17. (a) Waveforms and (b) envelope spectrum of the band-pass filtered signal. 

 

(a) (b) 

For comparison, the IMF-AEOA is performed on the same signal, and the FSM of the bearing 

vibration is illustrated in Figure 18. From this figure, it can be concluded that a defect may occur in the 

outer-race of the bearing. In addition, the FSM also reveals that the IMF2 is most sensitive to the  
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outer-race fault. According to this, the waveforms of IMF2 are selected and presented in Figure 19a. It 

is found that the some sharp impulses caused by an outer-race fault become visible in the figure. By 

EOS, a dominant line locating at BPFO is recovered as shown in Figure 19b, which provides a clear 

evident for the outer-race fault.  

Figure 18. FSM of locomotive bearing signal. 

 

Figure 19. (a) Waveform and (b) envelope order spectrum of IMF2. 

(a) (b) 

Figure 20. Outer-race of the dismantled bearing. 
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To validate the effectiveness of IMF-AEOA, the locomotive bearing is dismantled, and a picture of 

its outer-race is shown in Figure 20. From this figure, the spall fault in the outer-race can be  

seen obviously. 

Besides external interference, the speed variation is also an obstacle that affects the diagnostic 

accuracy of locomotive bearings. For demonstration, Figures 21 and 22 illustrate the diagnosis of 

another locomotive bearing with an unknown fault based on the SK approach. As mentioned above, 

since the rotation speed of driving wheel (as well as the outer-race) cannot keep constant in the test, the 

smearing problem occurs in the envelope spectrum as shown in Figure 22b. From this figure none of 

the fault features can be identified. 

Figure 21. (a) Waveform and (b) kurtogram of the bearing signal. 

(a) (b) 

Figure 22. (a) Waveforms and (b) envelope spectrum of the band-pass filtered signal. 

(a) (b) 

In the proposed method, the envelope of each IMF is resampled from the time domain to the angular 

domain, hence the influence of speed variation can be effectively removed. Figures 23 and 24 give the 

FSM and the most sensitive IMF component. By inspecting Figure 24b, one can conclude that the 

smearing problem is addressed in the EOS of IMF1, and the inner-race fault is extracted and identified 
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even under non-stationary working conditions. Figure 25 shows the defect in the inner-race  

of the bearing.  

Figure 23. FSM of locomotive bearing signal. 

 

Figure 24. (a) Waveform and (b) envelope order spectrum of IMF1. 

 

(a) (b) 

Figure 25. Inner-race of the dismantled bearing. 
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observe the BPFI and its harmonics, and no other BCFs can be identified, so this signature indicates 

that a defect may occur in the inner-race.  

Figure 26. (a) Waveform and (b) kurtogram of the bearing signal. 

(a) (b) 

Figure 27. (a) Waveforms and (b) envelope spectrum of the band-pass filtered signal. 

 

(a) (b) 

Figure 28. FSM of locomotive bearing signal. 
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Figure 29. (a) Waveform and (b) envelope order spectrum of IMF1. 

(a) (b) 

Figure 30. (a) Waveform and (b) envelope order spectrum of IMF6. 

(a) (b) 

Figure 31. Inner-race and roller of the dismantled bearing. 

(a) (b) 

For comparison, the same vibration signal is processed by the proposed method, which is illustrated 

in Figures 28–30. However, the FSM gives a different diagnostic conclusion, i.e., both inner-race and 

ball faults occur in the bearing. It also reveals that the fault signatures of the inner-race and ball fault 

are contained in IMF1 and IMF6, respectively. To further validate its effectiveness, the locomotive bearing 

is disassembled. As expected, both inner-race and roller faults were found, as shown in Figure 31.  
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6. Conclusions 

The vibration signals of rolling element bearings used in the industrial field usually suffer from 

multiple vibration sources, low signal to noise ratios and time-varying statistical parameters, which 

cause difficulties in current diagnostic approaches. To establish a more reliable diagnostic method for 

bearings under such harsh working conditions, an IMF-based adaptive envelope order analysis 

technique is proposed in this paper. Some conclusions can be drawn as follows: 

EEMD is an effective signal processing tool which could adaptively decompose the raw bearing 

signal into IMFs with different frequency bands. By using EEMD, the fault signature will be enhanced 

in certain IMF components. However, it is noted that the fault impulses can hardly be detected in IMF 

components in the presence of heavy noise and random impulsive interferences. Moreover, due to 

speed variation, those impulses are not equally spaced in time domain, which in turn leads to smearing 

problems in the spectrum. To remove the spectral smearing effect caused by speed variation, the 

envelope order analysis is further employed to transform the envelope of each IMF from the time 

domain to the angular domain. In this procedure, the BCFs of real faults are enhanced in the envelope 

order spectrum due to its angular cyclo-stationary characteristics, while strong interferences are 

eliminated since they are randomly distributed in the vibration signal. To select the optimal IMF 

containing the richest diagnostic information for decision making, a fault sensitive matrix is finally 

established in this work, which overcomes the limitation of maximum kurtosis based methods. By 

combining the advantages of EEMD, envelope order tracking and IMF sensitive analysis, both single 

and multi-faults of bearing can be identified successfully even under varying speed operations and 

strong interferences. 
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