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Abstract: Passive wireless surface acoustic wave (SAW) resonant sensors are suitable for 

applications in harsh environments. The traditional SAW resonant sensor system requires, 

however, Fourier transformation (FT) which has a resolution restriction and decreases the 

accuracy. In order to improve the accuracy and resolution of the measurement, the singular 

value decomposition (SVD)-based frequency estimation algorithm is applied for wireless 

SAW resonant sensor responses, which is a combination of a single tone undamped and 

damped sinusoid signal with the same frequency. Compared with the FT algorithm, the 

accuracy and the resolution of the method used in the self-developed wireless SAW 

resonant sensor system are validated. 
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1. Introduction 

Resolution is one of the most important parameters of passive wireless SAW sensors [1–4]. Among 

all wireless SAW sensor configurations, a resonant sensor can potentially achieve better theoretical 

resolution (with the assumption of infinite signal-to-noise (SNR)) with a significant reduction of SAW 

chip size. In practical, the resolution is mainly determined by noise in the measured value, which in its 
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turn depends on the loaded quality factor (Q factor) and the insertion losses of the SAW resonator, noise 

properties of the receiver and the algorithm used for spectrum estimation. So far, studies on the influences of 

the loaded Q factor and the additive white Gaussian noise on the standard deviation of the resonant 

frequency measured by means of pulsed interrogation of the SAW resonator were performed [5–7]. 

In most published papers on wireless SAW resonant sensors, Fourier transform (FT) calculations 

are still commonly used for resonance frequency estimation [5–9]. Even though the interpolation leads 

to a performance improvement, in the case of long distance and low Q factor, the length of the 

effective response signal would be reduced, resulting in frequency estimation errors in the traditional 

SAW resonant sensor system due to the resolution restriction of the FT approach. 

The use of model-based parametric methods for SAW sensor frequency estimation was mentioned 

in [2]. Indeed, many model-based parametric methods have been continually proposed in the field of 

signal processing to overcome the defects of FT. However, due to the application of the limiting 

amplifier in the sensor reading system, the received response consists of the partial undamped and the 

damped hybrid sinusoid signals. The performance of parametric methods in practical SAW resonator 

systems has not been clearly documented. We find that some parametric methods like auto-regressive 

and moving average (ARMA), and the Pisarenko harmonic decomposition method, although 

theoretically they provide better resolution than the FT method for short data, most of them become 

prone to errors for the non-stationary damped sinusoidal signals and even worse than the FT method at 

low signal-to-noise ratio (SNR) [10–12]. Most of the computationally attractive schemes such as 

Prony, iterative filtering and weighted phase average (WPA) approaches, have the demerits of poor 

threshold performance, non-uniform estimation performance across the admissible frequency  

range and limited frequency operation range [13]. The conventional singular value decomposition 

(CSVD)-based parametric methods such as Kumaresan-Tufts (KT) and matrix pencil approaches can 

obtain accurate estimations when the SNR is above 5 dB [14,15]. However, signal modeling using  

a large scale Hankel-style matrix leads to a large-sized polynomial which becomes a computational 

bottleneck in solving the linear prediction equations. Moreover, noise introduces extra perturbations to the 

extraneous roots of large-sized polynomials when the SNR is reduced to a certain degree, resulting in 

accuracy loss [10]. 

Recently, a singular value decomposition-based single frequency estimation method has  

attracted much attention due to its high computational efficiency and good performance [16,17]. Its 

computational complexity is significantly reduced by constructing a signal matrix with no repeated 

entries; its threshold SNR is further reduced to about −5 dB. In this paper, we extend this approach to 

amplitude hybrid sinusoid signals. The performance of this algorithm on different amplitude 

combinations of the damped and the undamped parts in the hybrid signal is investigated. 

The rest of this paper is organized as follows: in Section 2, we describe the operating principle of 

passive wireless SAW resonant sensor measurement system and the used frequency measurement 

approach. Simulation results are presented in Section 3, and its practical experimental results are 

introduced in Section 4. Finally, the conclusions are given in Section 5. 
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2. Frequency Measurement Algorithm 

2.1. The Principle of Passive Wireless SAW Resonant Sensor System 

The operation principle of a passive wireless SAW resonant sensor system is illustrated in  

Figure 1. The interrogation unit emits a high frequency electromagnetic wave (radio frequency (RF) 

interrogation signal) to activate a passive SAW resonant sensor, which consists of a piezoelectric 

substrate and a one-port SAW resonator. The interdigital transducer (IDT), which is connected to the 

antenna, , transforms the received electromagnetic wave into a narrow-band SAW with the help  

of the inverse piezoelectric effect. The practical resonant frequency depends on the structure of the 

resonating cavity and the environmental influences the resonator is exposed to. After the stimulating 

signal is switched off, the in-band various frequency components of the SAW oscillate freely damped 

with different time constants. The SAW returns to the antenna for retransmission to the interrogation 

unit as an electromagnetic wave with the help of IDT. The longest echo duration is achieved only 

when the frequency of the emitted electromagnetic wave is equal to the resonance frequency of SAW 

resonator. The interrogation unit evaluates the frequency of this damped electromagnetic wave and 

determines the value of the measurand. 

Figure 1. Passive wireless SAW resonant sensor system block diagram. 

 

2.2. Signal Model 

The received SAW resonator response signal is an amplitude combination of a single tone 

undamped and damped sinusoid signal with the same frequency, it can be recorded as: 

, 1,2,...,k k kx s n k K= + =  (1)

where: 
( ) sin( )dk

ks Ae kω φ−= +  (2)

the 0d =  when 1 dk k< ≤ , when dk k>  the damping happens, ( ) /nd f Qπ= . The nf  is the 

frequency of natural oscillation of the resonant SAW sensor. The A , (0, )ω π∈  and (0,2 )φ π∈  are 

the amplitude, frequency and phase of received resonator response signal ks , respectively, and they 
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Acoustic waves IDT 

Antenna 



Sensors 2014, 14 22264 
 
are unknown constants, while kn  is the noise which is injected in the transmission channel or 

produced by signal conditioning in the measurement device with unknown variance of 2σ . 

Unlike a Hankel-style matrix in the conventional SVD based methods, a signal data matrix with no 

repeated entry is constructed for the used method as shown in Equation (3): 

1 1 ( 1) 1

2 2 ( 1) 2

2

M M N

M M N

M M MN

x x x

x x x

x x x

+ − +

+ − +

 
 
 = + =
 
 
 




   


X S N  (3)

where S is the noiseless signal matrix containing { }ks  and MN = K. K is the number of samples in 

{ }kx  depending on sampling frequency and time, and if it is not factorizable, one simple way is to 

discard a few samples and find M and N such that their product is closest to K. In practical, N is chosen 

as close as possible to M so as to improve computational complexity. 

2.3. The Algorithm Principles 

Based on the fact that the rank of a single frequency noiseless signal matrix S is two, the optimum 

estimation of S is taken as the product of two largest singular values 1 2,  λ λ  and their left and right 

singular vectors 1 2,  u u  and 1 2,  v v  of noisy received signal matrix X corresponding to the signal 

subspace [16]. Therefore, by taking advantage of partial singular value decomposition, the noiseless 

response signal matrix S can be approximated by: 

1 2 1 2 1 2
ˆ [ ] ( , )[ ]Tdiag λ λ=S u u v v  (4)

where 1 2,  u u  and 1 2,  v v  are unit vectors. Since other singular vectors corresponding to the noise 

subspace will no longer affect the solution, the noise sensitivity of algorithm is reduced. 

According to the trigonometric identity, ( )2 1[ ] [ ] 2cos [ ]i n i n i nMω− −+ =v v v , which can be satisfied 

even for the damped data when the sampling rate is high enough. In the case of frequency estimation, 

compared with the left singular vectors, the frequency calculated from right singular vectors leads to a 

smaller variance [17–19]. Therefore, the resonant frequency can be firstly estimated from 1 2,  v v . In the 

algorithm, the weighted least squares (WLS) technique can be used for improving performance [20]. 

There is: 

cos( )
2( )

T
v

T
v

Mω = y W z
y W y

 (5)

where vW  is the optimal weighting matrix and can be computed as: 

2 2 1
1 2( , ) ( )T

v diag λ λ −= ⊗W BB  (6)

with 
1 ( 3) 1 ( 3)([1 ] ,[1 1 ])

( )

T
T v

N NT
v

Toeplitz × − × −= −0 0
y W zB
y W y

, 1 2[ ]T T Ty = y y , 1 2[ ]T T Tz = z z , 2 3[[ ] [ ] [ ] ]i i i i N= y v v v  

and 1 3 2 4 2[[ ] [ ] [ ] [ ] [ ] [ ] ]i i i i i i N i N−= + + +z v v v v v v . 

The frequency estimations calculated from the right singular vectors are denoted by 

, , 1, 2,...v j j Mω = : 
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1
[( 1) arccos( ) 2 ]

2( ) 2

T
j v

v j T
v

j

M
ω π = − +   

y W z
y W y

 (7)

Note that the ,v jω  corresponds to M of possible frequency estimations,     rounds the value to 

the nearest integer towards −∞ . Since the reflective echo is composed of a single frequency signal, 
similar to the above procedure, a frequency estimation of uω  should be implemented in terms of the 

left singular vectors 1u  and 2u : 

arccos( )
2( )

T
u

u T
u

ω = p W q
p W q

 (8)

where: 
2 2 1

1 2( , ) ( )T
u diag λ λ −= ⊗W CC  (9)

with 
1 ( 3) 1 ( 3)([1 ] ,  [1 1 ])

( )

T
T u

M MT
u

Toeplitz × − × −= −0 0
p W qC
p W q

, 1 2[ ]T T T=p p p , 1 2[ ]T T T=q q q ,

2 3[[ ] [ ] [ ] ]i i i i M= p u u u  and 1 3 2 4 2[[ ] [ ] [ ] [ ] [ ] [ ] ]i i i i i i M i M−= + + +q u u u u u u . 

Here, though with less accuracy, uω  is the sole frequency estimation from Equation (8). Thus, 

combining uω  and ,{ }v jω , the optimum estimation ω̂  can be determined: 

, , {1,2,... } ,
ˆ arg min

v j j M v j uωω ω ω∈= −  (10)

3. Simulation Results 

In the simulations, the signal frequency is 500 kHz and the sampling frequency sf  is set to  

9 Msps, which is similar to the intermediate frequency and the sampling frequency in the reading 

transceiver. To verify the accuracy of the measurement algorithm, the performance of the used 

algorithm on different combinations of damped and undamped parties compared with the commonly 

used FFT. The complex sinusoidal signals with the same frequency are used for FT; and the length of 

each signal is extended to 8192 by using zero padding before performing FT; the estimated frequency 

of FT method is obtained by a parabolic approximation using the maximum of spectrum amplitude and 

its two adjacent points [21]. The used noises are zero-mean white Gaussian noises. The SNR of this 

hybrid signal is defined as: 

2

1
10

2

1

SNR 10log 1,2,...,

K

k
k
K

k
k

s
k K

n

=

=

= =


 
 (11)

the |·| means the absolute operator. 

All the results are averages of 1000 Monte Carlo experiments. The mean square error (MSE) of the 

estimated frequency and actual value is calculated as following: 

2
10

ˆ
MSE 10log ( )

2

ω ω
π

−=
×

 (12)
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3.1. Accuracy of Measurement 

The hybrid signals with the effective time lengths of 56 µs used in the simulation are shown in 

Figure 2. The comparisons between the used algorithm and FFT in the different combinations of 

undamped and damped parts are shown in Figure 3. As demonstrated, the MSE of the FFT are above 

the used method if the undamped ratio is bigger than 10% or the SNR is above −4 dB. The undamped 

ratio means the time length of the undamped part to the whole effective time length. Furthermore, both 

a bigger undamped ratio and a higher SNR lead to a wider MSE gap between the used method and 

FFT. FT method suffers from the biased frequency estimation due to the non-integer periodical 

truncation. Thus, the MSE presented in Figure 3 for the FFT method does not drop with SNR at the 

same rate when SNR is bigger than 7 dB. 

Figure 2. Hybrid signals with different undamped part ratio (a) 10% (b) 20% (c) 30%  

(d) 40%. 

(a) (b) 

(c) (d) 
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Figure 3. Comparisons of accuracy on mean square frequency error versus SNR on 

different undamped ratios (a) 10% (b) 20% (c) 30% (d) 40%. 

(a) (b) 

(c) (d) 

3.2. Resolution of Measurement 

Since the resolvability of two frequencies depend on the SNR and the Q factor of the resonator, we 

consider the accuracy of the results over various Q factors at the given SNR. Here, the time lengths of 

undamped parts of the hybrid signals are all 14 µs. Since the amplitude of exponentially damped part 

is dependent on ( )/nf Qe π− × , the bigger Q factor represents the longer effective time length. 

In order to evaluate the resolvability of the algorithms, the average frequency estimation of  

1000 times rather than the real value of ω is specially used in Equation (12). The corresponding results 

for the used method and the FFT technique at different SNR levels are presented in Figure 4. It can be 

seen that the used algorithm exhibits smaller values of MSE than FFT method even in the short 

effective time length. However, for the conventional SVD based method, such as the KT algorithm, its 

variance is higher than the FFT method with parabolic interpolation if the signal is not too long [22]. 

That is, the used method shows better resolution ability. Furthermore, it indicates a longer sensing 

distance than using the FT method. 
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Figure 4. Comparisons of measurement resolution at different SNR levels. (a) SNR level = 

5 dB (b) SNR level = 10 dB. 

(a) (b) 

4. Experimental Results 

The Figure 5 depicts the block diagram of the transceiver unit. The power amplifier (PA) boots the 

transmitted power up to 27 dBm. The frequency difference between the transmitter and in the receiver 

is digitally controlled at fixed 500 kHz. The phase noise of the frequency synthesizers are within  

−110 dBc/Hz at 100 kHz offset. The amplifier (LOG) is used to provide an undamped output when the 

input signal is beyond −70 dBm due to impedance mismatching (the theoretical value is −78 dBm). 

When the input power of receiver unit is −98 dBm, the SNR of the signal offered to the 

analog-to-digital converters (ADC) is about 10 dB. The reflected echoes are converted into the digital 

signals by using 14 bit ADC with sampling rate of 9 Msps. The recorded data are processed using the 

proposed algorithm and FFT, respectively. The time sequence of the interrogation unit is well 

controlled so as to keep the initial phase angle of the interrogation as a constant during all the 

measurement processing. In the case of the Q factor is 6000 and the sensing distance is 2 m, the time 

length of the undamped part can be guaranteed above 15 µs. That is, the undamped part ratio in the 

received signal is at least 26%. 

Figure 5. Block diagram of the interrogation unit. 
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The accuracy of the used algorithm is firstly verified by an experiment, which employs a signal 

generator (IFR 2023A) to simulate the response signal. The transmitted power is set to −79 dBm, 

which is higher than the sensitivity of the practical receiver. The absolute values of the deviations from 

the actual frequency are shown in Figure 6. It demonstrates that the results of the used method are 

much closer to the actual frequency, that is, the used method has higher accuracy. The average 

deviations are 1.67 KHz and 529.89 Hz for the FFT and used method, respectively. 

Figure 6. Absolute values of the deviations from the actual frequency. 

 

The algorithm is also validated using the actual wireless SAW resonating sensor which is made of 

Y-rotated 36° (AT-cut) quartz. Its thermal sensitivity can be accurately adjusted by controlling the 

metallization thickness (h/λ) of the SAW resonator. In our experiment, the metallization thickness of 

4% is designed; thus the temperature-induced frequency shift of SAW resonators can be within  

950 kHz in the range from −40 °C to +150 °C, i.e., the average temperature sensitivity of the sensor is 

about 4.9 KHz/°C. The measured S11 frequency responses of the SAW resonator using the vector 

network analyzer AV3629A are shown in Figure 7. Two curves are measured at 25 °C and at 115 °C, 

respectively. And the central frequency of the resonator shifts from 428.689 MHz to 428.253 MHz, 

which is in good agreement with the designed temperature sensitivity and the loaded Q factor also 

slightly decreases from 6679 to 6397. As shown in Figure 8, in this experiment, the resonant SAW 

sensor and the antenna are mounted on two separate tripods to keep the reading distance of 2 m. 

An acquisition of SAW resonator response in the digital signal processor is shown in Figure 9. The 

comparison of the measured resonant frequencies between the proposed SVD based system and the 

FFT based conventional system over measurement time in a fixed temperature is shown in Figure 10. 

Enhanced performance in terms of reduced variance is visible. More specifically, the standard 

deviation of the used method is 391.26 Hz at the room temperature. Using the same measured data, 

however, the corresponding standard deviation of the FFT scheme is 951.05 Hz. Clearly, in the same 

condition, the standard deviation of used algorithm is up to a factor 2.43 lower than the FFT based 

system. Thus, the proposed system delivers lesser standard deviation, that is, higher resolution than the 

conventional system using FFT. 
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Figure 7. The measured reflection coefficient (S11) of a resonator at 25 °C and 115 °C, 

respectively. 

 

Figure 8. Experimental arrangement. 
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Figure 9. SAW resonator response signal (the horizontal axis is time in microsecond, and 

the vertical axis is the digitalized amplitude). 

 

Figure 10. Measured frequency over the measurement time. (a) FFT; (b) Used method. 

(a) (b) 

5. Conclusions 

An efficient frequency estimation method considering a single frequency measurement requirement 

is used to estimate the echo frequency of SAW resonant sensors. The theoretical properties, 

simulations and practical experiments demonstrate that the self-developed system using this SVD 

based method shows some properties in high computational efficiency, high accuracy and resolution. It 

has been found that the algorithm can achieve better resolution and accuracy than the FT method as long 

as the ratio of the undamped part in the hybrid signal exceeds a certain value. Thus, using a logarithmic 

amplifier in the self-developed wireless transceiver, better measurement accuracy and longer reading 

distance are verified by simulation and experiment. 
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