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Abstract: An efficient spectral element (SE) with electric potential degrees of freedom 

(DOF) is proposed to investigate the static electromechanical responses of a piezoelectric 

bimorph for its actuator and sensor functions. A sublayer model based on the piecewise 

linear approximation for the electric potential is used to describe the nonlinear distribution 

of electric potential through the thickness of the piezoelectric layers. An equivalent single 

layer (ESL) model based on first-order shear deformation theory (FSDT) is used to 

describe the displacement field. The Legendre orthogonal polynomials of order 5 are used 

in the element interpolation functions. The validity and the capability of the present SE 

model for investigation of global and local responses of the piezoelectric bimorph are 

confirmed by comparing the present solutions with those obtained from coupled 3-D finite 

element (FE) analysis. It is shown that, without introducing any higher-order electric 

potential assumptions, the current method can accurately describe the distribution of the 

electric potential across the thickness even for a rather thick bimorph. It is revealed that the 

effect of electric potential is significant when the bimorph is used as sensor while the effect 

is insignificant when the bimorph is used as actuator, and therefore, the present study may 

provide a better understanding of the nonlinear induced electric potential for bimorph 

sensor and actuator.  

Keywords: spectral element method; piezoelectric bimorph; electric potential; sublayer; 

piecewise linear 
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1. Introduction 

Piezoelectric materials generate electric potentials in response to mechanical stresses, and 

conversely, produce mechanical movements in response to electric potentials. Therefore, piezoelectric 

materials can be used both as actuators and sensors, they transform electrical energy into mechanical 

energy, and vice versa. To achieve practically meaningful actuation and sensing capabilities, a 

piezoelectric bimorph consisting of two piezoelectric layers is widely used [1,2]. A broad range of 

electromechanical applications have been reported, such as electroacoustic transducers [3,4], medical 

devices [5], microcantilever biosensors [6], and atomic force microscope (AFM) cantilevers [7]. However, 

before piezoelectric bimorphs can be utilized in all these applications, it is first necessary to investigate 

both the global responses and the local responses, e.g., the deflection and the distribution of the electric 

potential across the thickness.  

There have been many theories and models developed for analyzing piezoelectric bimorph 

structures with emphasis on approximating the mechanical displacement and electric potential. By 

carrying out exact 3-D analytical solutions for the simply supported piezoelectric plate [8,9], it is 

shown that the distribution of the electric potential across the thickness is nearly quadratic. This 

implies that the assumption of linear distribution of the electric potential across the thickness adopted 

by many numerical models [10,11] cannot address this nonlinear electric potential. Since exact 3-D 

analytical solutions are not available for more general cases of loading and boundary conditions, the 

introduction of the finite element (FE) method is desirable. A considerable amount of literature has 

been published on the FE analysis of piezoelectric smart structures [12–14]. Among these works, the 

simplest and often used model is the equivalent single layer (ESL) model in which the displacement 

and strain functions are assumed to be continuous through the thickness. There are two main kinds of 

theories used for ESL models. One is the classical laminated plate theory (CLPT) [15,16], and the 

other one is the shear deformation theory, which branches out into first-order shear deformation theory 

(FSDT) [17,18] and higher order shear deformation theory (HSDT) [19,20]. The ESL model is simple 

and capable of predicting the global responses of the bimorph, but it does not account for the nonlinear 

distribution of the electric potential across the thickness. To overcome this shortcoming, the FE model 

using the layer-wise theory [21–24] or the sublayer theory [2,25–28] has been recommended. In the 

latter case, the piezoelectric layer is divided into appropriate number of thin sublayers. For each of 

these sublayers, a linear electric potential distribution across the plate thickness is assumed. It is further 

expected that the quadratic distribution of the electric potential across the plate thickness can be 

accurately approached with more sublayers adopted. 

Generally, accurately simulation of the local responses of the piezoelectric bimorph structures 

would inevitably lead to a very dense FE mesh when using the FE method. Hence, conventional FE 

simulation becomes computationally very inefficient. A more efficient method is the spectral element 

(SE) method which combines the geometric flexibility of FE method with the high accuracy of the 

pseudo spectral method. This method was first presented by Patera in the mid 1980s [29]. In fact, the 

SE method and FE method are closely related and built on the same ideas. The main difference 

between them is that SE method uses orthogonal polynomials, such as Legendre and Cheybysev 

polynomials, in the shape functions. The SE method results naturally in diagonal mass matrices which 

is a distinct advantage over traditional FE method especially for transient analysis. Moreover, to have 
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an accurate simulation with the conventional FE method, a mesh with a large number of elements and 

degrees of freedom (DOFs) is inevitably needed. The SE method, in which the polynomial order is 

increased and the mesh size is decreased, can be used to overcome this problem. The SE method has 

been widely applied to many engineering problems related to acoustics, fluid dynamics and 

seismology [30–35]. Recently, the SE method has been extensively used to investigate the wave 

propagation problems for the purpose of damage detection in structures [36,37]. However, according 

to the authors’ best knowledge, the SE method has not been previously used for accurately modeling of 

the through-the-thickness electric potentials for piezoelectric bimorphs.  

For the purpose of accurately representing the mechanical displacement and the electric potential, a 

reasonable choice is to use the ESL model for the mechanical variables and the layer-wise theory or 

the sublayer theory for the electric variables. In the present work, we attempt to combine the merits of 

the SE method and the sublayer model. More specifically, the mechanical variables, i.e., the 

displacements, are described based on FSDT. The electrical variables, i.e., the potentials, are described 

using the sublayer model. SE method is then utilized to deduce the governing equations. Legendre 

orthogonal polynomials are adopted in the interpolation function to improve the accuracy. To validate 

the effectiveness and the capability of the present model, numerical simulations for a simply supported 

piezoelectric bimorph with two different load cases, i.e., a uniform pressure load applied to the top 

surface and a uniform potential applied to the top and bottom surfaces, are carried out. The results 

obtained by the present approach are then compared to those coming from the coupled 3-D FE 

simulations using ABAQUS. The comparisons show the good accuracy and efficiency of SE method 

for modeling of the through-the-thickness electric potentials of the piezoelectric bimorph. 

2. Mathematical Formulation 

2.1. Constitutive Relationships, Displacement and Strain 

A piezoelectric bimorph made of two identical PZT-4 piezoelectric layers, which has been 

investigated by Fernandes [1], is considered here. The PZT-4 layer is assumed to behave in a linear 

orthotropic manner with small displacements and strains. As depicted in Figure 1, both piezoelectric 

layers have the same thickness 0.5 h and are poled in the same direction. The x-y plane of the 

coordinate system x-y-z coincides with the middle plane of the bimorph, and the z  axis is defined 

normal to the middle plane following the right-hand rule. This work aims to investigate the problem of 

a simply supported piezoelectric bimorph under a uniform pressure load or an applied electric potential 

in the framework of linear theory of piezoelectricity. Assuming the PZT-4 layers work under 

isothermal conditions, the pyroelectric effects and thermomechanical couplings are not taken into 

account. Consequently, a linear constitutive relationship addressing both the direct and converse 

piezoelectric effects is utilized for the analysis of the piezoelectric bimorph, which can be written as: 

Tσ cε e E

D eε gE
 (1) 

where 
T

x y z yz zx xyσ  and 
T

x y z yz zx xyε  represent stress vector 

and strain vector, respectively. 
T

x y zE E EE , the electric field vector, 
T

x y zD D DD , the 
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electric displacement vector, c , the elastic coefficient matrix, g , the dielectric coefficient matrix, and 

e , the piezoelectric stress coefficient matrix. 

Figure 1. Geometry of a piezoelectric bimorph. 

 

An ESL model adopting the FSDT is adopted to describe the mechanical displacement. The 

displacement field of a piezoelectric bimorph based on FSDT takes on the form [17,18]:  

, , , ( , , ) ( , , )

, , , ( , , ) ( , , )

, , , ( , , )

u x y z t u x y t z x y t

v x y z t v x y t z x y t

w x y z t w x y t

 (2) 

where , ,u v w  denote the displacements of an arbitrary point on the mid plane 0z ,  and  

denote the rotations of a transverse normal about the y  and x  axes, respectively. In the FSDT, the 

transverse shear strains are assumed to be constant with respect to the thickness coordinate. The 

constant state of transverse shear strains across the thickness is a gross approximation of the true strain 

field, which is at least quadratic through the thickness. 

We define: 

T
u v wU  (3) 

T
u v wU  (4) 

where U  is the displacement vector, and U  is a generalized displacement vector. Then Equation (2) 

can be written in matrix form as: 

U ZU  (5) 

where: 

1 0 0 0

0 1 0 0

0 0 1 0 0

z

zZ  (6) 

The infinitesimal strain components associated with the displacements are given by: 

h/2 

0 

- h/2 

 
x

y

z

a
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LUε  (7) 

where L  is the derivation operator defined as:  

T

0 0 0

0 0 0

0 0 0

x z y

y z x

z y x

L  (8) 

2.2. Approximations for Displacements 

The Legendre polynomials based SE method can be described as follows: the bimorph is firstly 

discretized using a set of non-overlapping rectangular elements, as in the traditional FE method. Each 

rectangular element, denoted by e , is then mapped to a reference element, denoted by 
ref : 1,1 1,1 , using an invertible local mapping. The discretization procedure is 

illustrated in Figure 2.  

Subsequently, a set of nodes, denoted by ,i j , are defined in the local coordinate system  

of the reference element ref  as roots of the following polynomial expression: 

2

2

(1 ) ( ) 0

(1 ) ( ) 0
N

N

P

P
 (9) 

where NP  is the  N-th order Legendre polynomial. In fact, the nodes are the 2-D Gauss-Lobatto-

Legendre (GLL) points. In contrast to the classical FE method, the distribution of nodes is irregular, as 

shown in Figure 2. In the current formulation, the 5-th order Legendre polynomial is chosen, hence  

36 nodes can be specified in the reference element ref , as depicted in Figure 2.  

Figure 2. Discretization of a plate and an example of spectral element. 

 

The 1-D shape functions at the 1-D GLL points i  are defined as [36]: 

2(1 ) ( )1
( ) for 1, , 1

( 1) ( )
N

i
N i i

P
h i N

N N P
 (10) 
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An important property of these interpolation functions is the discrete orthogonality expressed as:  

( )i j ijh  
(11) 

where ij  denotes the Kronecker delta. The 2-D shape functions are constructed as a tensor product of 

the 1-D ones: 

( , ) ( ) ( ) for , 1, , 1ij i jh h i j N  (12) 

Figure 3 shows two examples of the 2-D shape functions which indicate that each shape function 

has the value 1 at one node and vanish at all other nodes.  

Figure 3. Selected shape functions for a 36-node spectral element. (a) 32( , ) ;  

(b) 45( , ) . 

  

(a) (b) 

Coordinates x  and y  within each e  may be uniquely related to  and  upon the invertible mapping: 

6 6

1 1

( , ), ( , ) ( , ) ,ij ij ij
i j

x y x y  (13) 

where ijx  and ijy  denote the coordinates of x  and y , respectively, of the element nodes ,i j
. The 

generalized displacements u , v , w ,  and  over an reference element ref  are discretized by the 

2-D shape functions as: 

6 6

1 1

( , ), ( , ), ( , ), ( , ), ( , ) ( , ) , ,ij ij ij ij
i j

u v w u v w  (14) 

where iju , ijv , ijw , ij  and ij  are the nodal values of the generalized displacements. The discrete 

element nodal displacement vector is expressed as:  

Te T T T
11 12 66q qq q  (15) 

where ijq  is the displacement vector of the node ,i j
:  
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T

ij ij ij ij ij iju v wq
 

(16) 

Substituting Equations (14) into Equation (15) yields: 

e
uU N q  (17) 

where uN  is the displacement shape function matrix which can be expressed as:  

11 12 66uN Z N N N  (18) 

with: 

5 5ij ijN I  (19) 

where 5 5I  is a 5 5  identity matrix. Substituting Equation (17) into Equation (7) yields: 

ε e
uB q  (20) 

where uB  is strain-displacement matrix which can be written as: 

u uB LN  (21) 

2.3. Approximations for Electric Potential 

For the purpose of accurately modeling the distribution of the electric potential across thickness, 

each layer of the piezoelectric bimorph is subdivided mathematically into n  thinner sublayers. As 

shown in Figure 4, the sublayers are numbered in top-to-bottom order. The z  coordinates of the top 

and bottom surfaces of the i-th sublayer are denoted by iz  and 1iz , respectively. In each sublayer, the 

distribution of the electric potential ( )i z  is assumed to be linear across the thickness such that: 

( )i i iz N Φ  (22) 

where iN  is the interpolation function and iΦ  is a column matrix composed of the electric potentials 

at the top and the bottom surfaces of the thi  sublayer, which can be expressed as:  

1 1 1
1

, ,i
i i i i i i i

i

z z z z h z z z z z
h

N  (23) 

T

1
i

i iΦ  (24) 

In this way, the assumption of linear distribution of electric potential across the thickness is used 

not in the whole piezoelectric layer, but in each sublayer instead. As a result, the electric potential is 

approximated as piecewise linear across the thickness and it is expected that the quadratic distribution 

of the electric potential across the bimorph thickness can be approached with more sublayers adopted. 

As mentioned before, the mechanical displacement field is approximated using ESL model based on 

FSDT and the piezoelectric bimorph is discretized using 2-D mesh. To keep the compatibility,  
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each sublayer of the piezoelectric layer is also discretized using the same mesh. Consequently, an 

element potential vector eΦ  is then introduced in the spectral plate finite element, which is defined as: 

Te
0 1 2nΦ  (25) 

The surface potential of the sublayer, i , is assumed to be constant over the element and 

0 1 2, , n  are treated as elemental DOFs, as illustrated in Figure 2. Furthermore, the top and bottom 

surfaces of the piezoelectric layers are always coated with metallic coatings of zero thickness and the 

potentials on the electrodes should be taken as independent of ,x y . Thus the present method combines 

an ESL theory for the displacement and a piecewise linear approximation for the electric potential. 

Under the quasi-electrostatic approximation, the electric field and the electric potential in each 

sublayer have the following relationship: 

( )i i izE B Φ  (26) 

where ( )i zE  is the electric field of the i-th sublayer, iB  is the electric field-potential matrix, given by: 

i iNB  (27) 

Figure 4. A sublayer model for a piezoelectric bimorph. 

 

2.4. Governing Equations 

By applying Hamilton’s principle, the elementary dynamic equations for the piezoelectric bimorph 

plate can be obtained: 

e e e e e e e

e e e e e
uu uu u u

u

M q K q K F

K q K F

Φ

Φ
 

(28) 

where e
uuM  denotes the element mass matrix; e

uuK , mechanical stiffness matrix; e
uK  and e

uK  the 

piezoelectric coupling matrices; eK  the dielectric permittivity matrix; e
uF  the vector of externally 

applied force; and eF  the vector of externally applied charge, respectively: 
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2 1 1
e T

1 1
1

d d
n

uu i u u
i

hM N N J  (29) 

2 1 1
e T

1 1
1

d d
n

uu i u u
i

hK B cB J  (30) 

2 1 1Te e T T

1 1
1

d d
n

i
u u i u

i

hK K B e B J  (31) 

2 1 1 Te i i

1 1
1

d d
n

i
i

hK B Bg J  (32) 

1 1
e T

1 1
d du u sF N P J  (33) 

1 1 Te

1 1
d di

s
i

F N q J  (34) 

where  is the mass density, sP  is the surface force vector, sq  is the surface charge density vector. J  

is the well-known Jocobian matrix of the mapping (13) which is defined as:  

( , )

( , )

x y
x y

x y
J =  (35) 

The GLL integration rule is then used to calculate the characteristic matrices and the nodal force 

vector in Equation (28) at the elemental level [36]. In this study, the interface between the two PZT 

layers is grounded. Two sets of electric boundary conditions are considered, i.e., (1) sensor function 

with the top and bottom surfaces grounded and a uniform pressure load of 2
0 1,000N/mS  applied 

to the upper surface, and Equation (2) actuator function with an electric potential of 0 50VV  

applied to the top and bottom surface of the bimorph. By applying the electric boundary conditions, the 

DOFs for the electric potential are condensed out such that Equation (28) is finally of the form: 

e e e e e e e
uu uu p u aM q K K q F F  (36) 

where e
pK  denotes the mechanical stiffness matrix induced by the electromechanical coupling of PZT-4 

layer, and  e
aF  denotes the mechanical forces induced by the applied voltages of piezoelectric actuators [2]. 

The electric potential is then recovered by the inverse process of the aforementioned condensation. 

Assembling all elementary equations, one can have a global dynamic system equation:  

uu uu p u aM q K K q F F  (37) 

where uuM , uuK , pK , uF  and aF  are the assembled counterparts of matrices e
uuM , e

uuK , e
pK , e

uF  

and e
aF ; q  is the global nodal displacement vector. Since the DOFs for the sublayer electric potentials 

have been condensed out, this approach will not result in a large number of potential DOFs. For the 

purpose of static analysis, the governing equations in Equation (37) reduces to: 
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uu p u aK K q F F  (38) 

3. Numerical Results 

In this section, the derived SE model is converted into a numerical code and case studies are carried 

out to validate the effectiveness and the capability of the present model for predicting both the global 

responses and the local responses, i.e., the deflections of the bimorph and the distribution of the 

electric potential across the bimorph thickness. A simply supported rectangular piezoelectric bimorph 

shown in Figure 1, which has been investigated by Fernandes [1], is considered here. The material 

constants of PZT-4 are given as: 

139 77.8 74.3 0 0 0

77.8 139 74.3 0 0 0

74.3 74.3 115 0 0 0
GPa

0 0 0 25.6 0 0

0 0 0 0 25.6 0

0 0 0 0 0 30.6

c  (39) 

2

0 0 0 0 12.7 0

0 0 0 12.7 0 0 C/m

5.2 5.2 15.1 0 0 0

e  (40) 

13.06 0 0

0 13.06 0 nF/m

0 0 11.51

g  (41) 

The length a  and width b  of the bimorph are 25 mm and 12.5 mm respectively. Two values of 

slenderness ratio, / 5S a h  and 50S , which represent the thick and thin bimorph plate, 

respectively, are considered. Unless otherwise stated, the order of Legendre polynomial is chosen as 5, 

and the mesh in Figure 3 is used in this work. Two load cases corresponding respectively to sensor 

function and actuator function are considered. To overcome the ill condition problem resulted from the 

huge difference of the element values of e
uuK  and eK  in magnitudes, Equation (28) is rewritten using 

dimensionless variables. Consequently, the numerical results for the deflection and the electric 

potential are given in dimensionless units as: 

11
0

0

, ( , / ) for sensor function
c

W w E
hS

 (42) 

0
0

0

, ( , / ) for actuator function
E

W w E
V

 (43) 

where the amplification factor 0E  is taken as 10
0 10 V/mE . For the purpose of comparison, a 

coupled 3-D analysis is carried out using 20-noded hexahedral 3-D piezoelectric elements (C3D20RE) 
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with a mesh size of 40 20 10  in ABAQUS and the results from the coupled 3-D FE analysis are 

taken as accurate. 

3.1. Sensor Function 

For this case a uniform pressure load of 2
0 1,000N/mS  is applied to the upper surface and the 

bimorph is used as a sensor with the top and bottom surfaces grounded. The variations of both the 

deflection W  and the electric potential  across the bimorph thickness at the centre of the bimorph 

plate ( 0.5 , 0.5x a y b ) for the slenderness ratio 5S  and 50S  are shown in Figures 5 and 6, 

respectively. It can be observed from Figure 5a and Figure 6a that the deflection W estimated by the 

present method adopting different number of sublayers is constant through the thickness and it is a 

good approximation of the nonlinear distribution described by the coupled 3-D analysis. The present 

model based on FSDT with assumption of uniform deflection through the thickness cannot predict the 

nonlinear variation of W  through the thickness. The electric potentials induced by the deformation of 

the bimorph through the direct piezoelectric effects are shown in Figures 5b and 6b. It is observed that 

the distribution of the electric potential  across the thickness provided by the present approach with 

more than 2 sublayers is in good agreement with the nonlinear distribution predicted by the coupled  

3-D analysis. Furthermore, it is expected that with more sublayers adopted the quadratic distribution of 

the electric potential  across the bimorph thickness can be accurately approached without 

introducing any higher-order electric potential assumptions. However, the conventional linear electric 

potential assumption [38] will result in an inaccurate prediction of the local electric potential response 

for the case of sensors. The curves in Figures 5 and 6 are symmetrical with respect to the interface 

between the two PZT layers. It should be highlighted that although the present method cannot predict 

accurately the distribution of W across the bimorph thickness, it may be able to provide good 

approximate results for  with appropriate number of sublayers for both thick and thin bimorph plates. 

Figure 5. Bimorph sensor of 5S  under pressure load. (a) Dimensionless deflection;  

(b) Dimensionless electric potential. 3-D FE analysis (full line), present model with 2n  

(triangles) and present model with 10n  (small circles). 
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Figure 6. Bimorph sensor of 50S  under pressure load. (a) Dimensionless deflection; 

(b) Dimensionless electric potential. 3-D FE analysis (full line), present model with 2n  

(triangles) and present model with 10n  (small circles). 

 

3.2. Actuator Function 

To achieve practically meaningful actuation capabilities and guarantee that the piezoelectric 

material behaves linearly, an electric potential of  V0 = 50V is applied to the top and bottom surfaces of 

the bimorph with intermediate electrode grounded. The through-the-thickness variations of W and  

at the centre of the plate for 5S  and 50S  are shown in Figures 7 and 8, respectively.  

Figure 7. Bimorph actuator of 5S  under potential load. (a) Dimensionless deflection; 

(b) Dimensionless electric potential. 3-D FE analysis (full line), present model with 2n  

(triangles) and present model with 10n  (small circles). 
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Figure 8. Bimorph actuator of 50S   under potential load. (a) Dimensionless deflection; 

(b) Dimensionless electric potential. 3-D FE analysis (full line), present model with 2n  

(triangles) and present model with 10n  (small circles). 

 

Once again, the present model based on FSDT cannot predict accurately the through-the-thickness 

distribution of W. Similar to the previous observation, the constant deflection W through the thickness 

calculated by the present method adopting different number of sublayers is a good approximation of 

the nonlinear distribution provided by the coupled 3-D analysis. It is noticed that as the sublayer 

number increases a smaller deflection is obtained which is also pointed out by Wang [2]. The electric 

potentials at the centre of the plate are plotted in Figure 7b and Figure 8b for the slenderness ratio 

5S  and 50S , respectively. It can be observed that the almost linear distribution of  across the 

thickness predicted by the present method for both thick and thin bimorph plates is in excellent 

agreement with the coupled 3-D analysis, indicating that the nonlinear induced electric potential is 

insignificant compared to the externally applied potential. Consequently, the conventional linear 

electric potential assumption [38] may be accurate enough to calculate the local electric potential 

response for the case of actuators. 

4. Conclusions 

The present work aims to develop an efficient SE model with electric potential DOFs for the static 

electromechanical response of a piezoelectric bimorph. The approach is the combination of an ESL 

model based on FSDT for the mechanical displacement with a sublayer model based on the piecewise 

linear approximation for the electric potential. 2-D GLL shape functions are used to discretize the 

displacements and then the governing equation of motion is derived following the standard SEM 

procedure. By applying the electric boundary conditions, the DOFs for the electric potential are 

condensed out such that the present model will not result in a large number of potential DOFs. 

Numerical simulations based on the present model are carried out for two different load cases, i.e., a 

uniform pressure load applied to the top surface and a uniform potential applied to the top and bottom 

surfaces. To validate the effectiveness and the capability of the present model for investigation of both 

global and local response of the piezoelectric bimorph, the numerical results thus obtained are 
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compared to those from 3-D analysis using ABAQUS. The results indicate that the deflection W  

estimated by the present method is a good approximation of the nonlinear distribution predicted by the 

coupled 3-D analysis. It is further shown that the present model provides very accurate prediction for 

the electric potential distributions across the bimorph thickness even for rather thick bimorph plate 

without introducing any higher-order electric potential assumptions. It is also revealed that the 

conventional linear electric potential model is accurate enough to predict the local electric potential 

response for the case of actuators. This observation consists with the previous findings proposed by 

Yang [39]. One of the limitations is that the deflection W across the thickness is constant. 

Nevertheless, it is accurate enough to investigate the global response of the piezoelectric bimorph. The 

present work is important for researchers to better understand the nonlinear induced electric potential 

for bimorph sensor and actuator. An important extension of the present research is to study the 

vibration characteristics of the piezoelectric bimorph based on SE method. The influence of the 

induced stiffness matrix on the natural frequencies of the bimorph plate under various electric 

boundary conditions is to be investigated. The convergence study of the present model with respect to 

the order of the Legendre polynomial is also a practical and interesting problem to be conducted.  
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