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Abstract: The large expansion of the robotic field in the last decades has created a 
growing interest in the research and development of tactile sensing solutions for robot hand 
and body integration. Piezoresistive composites are one of the most widely employed 
materials for this purpose, combining simple and low cost preparation with high flexibility 
and conformability to surfaces, low power consumption, and the use of simple read-out 
electronics. This work provides a review on the different type of composite materials, 
classified according to the conduction mechanism and analyzing the physics behind it. In 
particular piezoresistors, strain gauges, percolative and quantum tunnelling devices are 
reviewed here, with a perspective overview on the most used filler types and polymeric 
matrices. A description of the state-of-the-art of the tactile sensor solutions from the point 
of view of the architecture, the design and the performance is also reviewed, with a 
perspective outlook on the main promising applications.  

Keywords: piezoresistivity; composite materials; percolation threshold; quantum 
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1. Introduction 

Transferring the utilization of robots from the repetitive and limited tasks of the industrial 
environment to more complex operations for interacting with human beings has recently raised 
growing interest in both the research and applied technology fields. In this context, great 
improvements are required, not only for in-hand manipulation and exploration tasks, but also for safe 
operations and interactions with humans. Humanoid robots, unlike the industrial ones, are required to 
achieve their goals interacting with humans and their tools, adapting to the changes in the environment 
thanks to an autonomous learning process. In order to satisfy these requirements, robots need to be 
able to perform advanced human-like manipulation tasks such as rotation, translation and in-hand 
grasping [1–3].  

To operate in changing environments, humanoid robots need to sense and elaborate the information 
about the surrounding environment, while interacting with real world objects. By analyzing the force 
and the position at all points of contact, robots can obtain information about the weight, the stiffness 
and the surface of a tool and elaborate a way to complete the assigned tasks. In order to satisfy these 
requirements, there is increased interest in the robotic community in the development of large area or 
whole-body tactile sensing structures. Without a high throughput tactile sensing system, humanoid 
projects strongly limit their interaction and cognitive capabilities [4]. Tactile sensing is also essential 
for fine manipulation tasks in humans. When our mechanoreceptors are anesthetized, like when our 
hands are chilled from cold weather, this results in a loss of sensing and our movements become 
inaccurate and clumsy. Simple operations like lacing up shoes or simply maintaining a stable grasp on 
an object can become very complex tasks. In order to reproduce human tactile sensing performances 
for fabricating sensor devices to be implemented in robot hands and bodies, several researchers have 
defined the guidelines and requirements which a robot tactile system has to satisfy for performing the 
basic in-hand manipulation tasks. These requirements, presented in Table 1, were determined by 
analyzing the human sense of touch, but even if they are almost exhaustive, they could be modified 
depending on the specific application in which the device would be used [3–7]. Moreover, even if 
some criteria are strict and technologically challenging, a possible solution to fulfill them could be 
complex systems integrating different devices instead of using a single tactile sensor. 

In the last twenty years, many tactile sensor devices have been presented, exploiting several 
physical phenomena as transduction modes [2–4,8,9]. However, most of them do not satisfy 
completely the specific requirements of in-hand manipulation, being too bulky to be used without 
sacrificing dexterity or because they are fragile, rigid, slow or lack some fundamental characteristics. 
For this reason, it is not possible to choose a standard system like CCD or CMOS optical arrays used 
for the sense of sight. Moreover, tactile sensors get their information through physical interaction, this 
brings about problems of robustness to withstand several impacts and abrasions, and of compliance, to 
conform the device to the robot surface guaranteeing an adequate friction for handling tools  
securely [2].  

The solutions presented in the literature for the fabrication of tactile sensors are innumerable, so that 
an in-depth classification based on task, site, transduction method and mechanical properties is 
necessary to organize and select the interested field [2–4]. The present review is concentrated mostly 
on the last two classifications, i.e., transduction method and mechanical properties. Considering the 
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mechanical properties, tactile sensors can be classified as rigid, flexible, compliant, conformable, 
stretchable, etc. Depending on the final application, the choice of these characteristics is fundamental 
for obtaining a perfect bonding and uniform coverage of the robot surface, and most of all for 
preventing damage and abrasion during the utilization.  

Table 1. Specific requirements for the design of tactile sensor devices to be implemented 
on human robots. Adapted from [3], Copyright (2011), with permission from Elsevier. 

Parameter Requirements 
Force direction Both normal and tangential 

Force range  0.01 N–10 N (1000:1) 
Temporal variation Both dynamic and static 

Time response 1 ms for tactel (depending on the dimension for arrays) 
Spatial resolution 1 mm at fingertips, 5 mm on palm, even less on limbs and belly 

Sensor output  Stable, repeatable, monotonic and low hysteresis 
Array output Minimal or null cross-talk 

Sensing Surface  Compliant and durable 

Mechanical properties 
Flexible, conformable, stretchable and robust (depending on the 

application and environment) 
Shielding Electronic and magnetic shielding 

Data organization Preprocessing to reduce data to central unit 
Fabrication Simple mechanical integration, minimal wiring, low cost 
Electronics  Low power consumption 

The other classification is made with regard to the physical nature of the transduction method.  
Thus, tactile devices can be divided into piezoelectric [10,11], optical [12,13], magnetic [14,15],  
ultrasonic [16,17], resistive and capacitive [18–21]. With the first four solutions it is possible to obtain 
extremely high sensitivity and elevated spatial resolution, however most of these devices require a large 
pay load, are expensive and complex to fabricate, difficult to reproduce, and have reduced flexibility. 
Therefore they can result unsuitable for integration on a robot hand or body. In contrast, capacitive and 
resistive approaches guarantee wide working ranges, low cost and power consumption, and the use of 
simple read-out electronics. Most of them combine mechanical flexibility and resistance, providing a 
better integration and a primary protection from external overpressure, shock and vibrations. For these 
reasons, both capacitive and resistive approaches are certainly the most investigated among all the 
solutions. Moreover the majority of the commercial tactile sensors exploit these transduction 
mechanisms because of the lower cost and easiness of fabrication together with the basic electronics 
needed for the read-out operation. As major drawbacks, some capacitive and resistive solutions could 
lack of sensitivity and repeatability, mainly due to hysteresis phenomena or cross-talk between the sensor 
elements and thus their implementation could be limited in some high-precision application. 

In these review we investigate the functional materials and the tactile sensor devices, presented in 
literature, exploiting flexible composites with piezoresistive properties. These materials are one of the 
best candidates to fabricate a sensing “skin”, able to reproduce the tactile sense and to fit the shape of 
the robot structure. Beyond the high conformability required to mimic the human skin, these composite 
sensing materials can be employed to generate devices with a wide range of sensitivity, a low power 
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consumption and an elevate mechanical resistance guaranteeing protection from external physical 
agents that could damage the sensor. The major drawbacks of these types of devices are represented by 
the temperature sensitivity and hysteresis phenomena of the sensing response, which could influence 
the repeatability of the measurements [2,3]. 

Table 2. Comparison of the different flexible composite tactile sensors.  

Parameter  
Sensor Type 

Piezoresistors Strain Gauges Percolation 
Mechanism 

Quantum Tunnelling 
Mechanism 

Sensitivity High sensitivity High sensitivity Low sensitivity High sensitivity 
Repeatability High repeatability High repeatability Hysteresis Problem Hysteresis Problem 

Spatial resolution High Quite high Low (except OFET) Low 

Working area 
Suitable for small 

area (i.e., fingertip) 
Suitable for small 

area (i.e., fingertip) 
Small and  
large area 

Small and large area 

Working range Low Medium 
Low, but tunable 
with composition 

Very high and tunable 

Fabrication 
techniques 

Costly materials and 
techniques 

Costly materials 
and techniques 

Simple fabrication 
techniques  

Simple fabrication 
techniques 

MEMS/electronic 
integration  

Ease integration Ease integration 
Complex integration  

(except OFET) 
Complex integration 

Mechanical 
properties 

Fragile (better with 
protective 
elastomer) 

Fragile (better with 
protective 
elastomer) 

Stretchable and 
robust 

Stretchable and robust 

Table 3. Comparison of tactile sensor solutions based on flexible piezoresistor.  

Year Author 
Functional 
Material 

No. of 
Sensing 

Elements 

Spatial 
Resolution 

Signal 
Conditioning 

Circuit 

Working 
Range  

Sensitivity 

2013 Ahmed et al. [22] Nichrome 48 283 µm Yes 0–30 kPa 
1.25 V/N 
(average) 

2013 Koiva et al. [23] Metal 12 5.5 mm Yes 0–10 N - 

2006 Noda et al. [24] Silicon 1 20 mm No 
0–5 kPa  

(−5 kPa to  
5 kPa shear) 

0.015% 
(0.03% 
shear) 

2008 Beccai et al. [25] Silicon 1 3 mm Partially 
0–15 N 
(0–11 
shear) 

100 mV/N 
(400 mV/N 

shear) 

We perform a classification on the basis of the piezoresistive conduction mechanism dividing the 
tactile sensors into piezoresistors, strain gauges, percolative and quantum tunnelling devices. For each 
flexible tactile device family we analyze the physics behind the conduction mechanism and we describe 
the state-of-the-art from the point of view of the material employed and the adopted architecture. The 
design and the performance are also reviewed, with a perspective outlook on the main promising 
applications. To introduce the following detailed analysis a general qualitative comparison of the four 
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different tactile sensor types is presented in Table 2. Furthermore a table (Tables 3–6) with a quantitative 
comparison of each analyzed device is reported at the end of each section. 

Table 4. Comparison of tactile sensor solutions based on flexible strain gauges.  

Year Author 
Functional 
Material 

No. of 
Sensing 

Elements 

Spatial 
Resolution 

Signal 
Conditioning 

Circuit 

Working 
Range  

Sensitivity 

2005 Engel et al. [26] Nichrome 5 × 5 5 mm Yes - 340 ppm/mN  

2009 Kim et al. [27] Nichrome 32 × 32 1 mm Yes 0–1 N 

2%/N  
(0–0.6 N) 

1%/N  
(0.6–1 N) 

2010 Zang et al. [28] Copper - 400 µm No 0–7 N 0.3% 

2010 Choi et al. [29] Nichrome 4 × 4 2.5 mm Partially 0–0.8 N 
206.6 mV/N 
(70.1mV/N 

shear) 

2013 Tata et al. [30] Carbon 1 20 × 5 mm yes 0%–50% (ε) 
24.15 mV/ε 

(%) 

2012 Lu et al. [31] 
Carbon  

black-PDMS 
10 - No - 4 mV/ε (%) 

Table 5. Comparison of tactile sensor solutions based on percolation mechanism.  

Year Author 
Functional 
Material 

No. of 
Sensing 

Elements 

Spatial 
Resolution 

Signal 
Conditioning 

Circuit 

Working 
range  

Sensitivity  

2011 
Hwang et al. 

[32] 
PDMS-CNTs 1 5 mm No 0.0.12 MPa - 

2013 Pyo et al. [33] PDMS-CNTs 1 - No 0–2 N ~5%–6%/N 
2010 Lay et al. [34] PDMS-CNTs 8 × 8 1.5 mm Partially 0–9 N 0.145%/mN 

2010 
Yang et al. 

[35,36] 
Press.-cond. 

Rubber a 32 × 32 3 mm Yes 0–650 kPa - 

2000 Yuji et al. [37] 
Press.-cond. 

Rubber a 
1 30 mm Yes 0.2–1.6 kgf - 

2011 
Cheng et al. 

[38,39] 
Conductive 
polymer b 

8 × 8 3 mm Yes 0–650 kPa 300 Ω/kPa 

2004 
Shimojo et al. 

[40] 
Press.-cond. 

Rubber a 
16 × 3 3 mm Yes 0–0.2 MPa - 

2005 
Somaya et al. 

[41] 
Press.-cond. 

Rubber a 
12 × 12 
(OFET) 

4 mm Yes 0–30 kPa 0.2 µA/kPa 

a Pressure-Conductive Rubber (carbon particles in elastomer matrix); b PDMS filled with carbon black, copper and silver particles. 
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Table 6. Comparison of tactile sensor solutions based on quantum tunnelling mechanism.  

Year Author 
Functional 

Material 

No. of Sensing 

Elements 

Spatial 

Resolution 

Signal 

Conditioning 

Circuit 

Working Range Sensitivity  

2011 Bloor et al. [32] Elastomer-nickel - - No 0%–25% strain ~0.5 decade/% 

2013 Stassi et al. [42] PDMS-copper 8 × 8 2 mm Yes 0–2 MPa variable a 

2010 
Canavese et al. 

[43] 
PDMS-nickel 8 × 8 1.5 mm Yes 300–1,150 kPa exponential 

2010 
Stassi et al. 

[44,45] 
PDMS-nickel 1 10 mm Yes 0–100 kPa  

~1.7 kHz/kPa  

(up to 10 kPa) 
a 8.77 V/MPa (0–0.25 MPa), 2.21 V/MPa (0.25–0.85 MPa), 0.63 V/MPa (0.85–2 MPa). 

2. Piezoresistors  

The work principle in piezoresistors consists in a variation of the resistivity of the material itself 
due to an applied stress. In general piezoresistors are made of silicon or other semiconductors, like 
germanium. Here the stress modifies the width of the band-gap and consequently the mobility of the 
charge carriers (electrons and holes). Therefore a significant variation of the resistivity is induced 
because of the dependence on mobility and density of the charge carriers [46]. Piezoresistors can also 
be fabricated using metals. Normally metals are mostly employed in the fabrication of strain gauges 
exploiting the resistance variation induced by changes in the geometry of the sensor, as explained in 
detail in the following section. However some metals, such nickel and platinum alloys, present a 
higher resistivity variation with respect to the resistance change induced by geometrical change. For 
these reasons many tactile sensors exploit metal piezoresistors either with simple geometry or as strain 
gauges, thus combining both resistivity and geometrical variation.  

In order to minimize the size of the sensing element, MEMS technology can greatly contribute in 
exploiting the high piezoresistive responses of such piezoresistors. In this way several advantages can 
be further achieved, such as high sensitivity coupled with small size and ease of integration in MEMS 
devices and on printed circuit boards (PCBs), which can be used as sensor electrodes [47,48]. In 
general, resistive tactile sensors, as well as the capacitive ones, require typically a simple signal 
conditioning and therefore MEMS piezoresistors can provide a large number of sensing elements per 
unit area.  

However, the major drawbacks of these semiconducting and metallic piezoresistors are their 
fragility and rigidity, together with the use of costly materials and temperature sensitivity. These 
disadvantages can be partly overcome by embedding the piezoresistors in flexible polymers, such as 
polyimide. From the material point of view, these solutions are not classical composites, where 
particles are homogeneously dispersed in a polymeric matrix. Here in contrast, most of the times rigid 
materials are integrated or embedded in a flexible substrate, in order to decrease the stiffness of the 
sensor, thus constituting a composite in a broader acceptation of this definition. Some examples were 
reported in the literature [49,50], showing the use of polyimide instead of fiberglass, which is 
commonly to make rigid PCBs. With a smart design on such flexible substrates, tactile sensors 
covering two-dimensional surfaces with small radii were demonstrated, even obtaining devices with 
the possibility of 3D sensing [51,52]. However, one must take into account that the increase of MEMS 
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piezoresistor flexibility is at the expense of sensitivity and partly of miniaturization, with piezoresistive 
sensors sometimes becoming bulky.  

MEMS force sensors embedded in flexible polyimide substrates were developed by  
Ahmed et al. [22], showing the ability to monitor forces and pressures on nonplanar surfaces. A 
nichrome (Ni-80%/Cr-20%) film of about 35-nm in thickness was deposited by multiple lithographic 
patterning steps on flexible polyimide substrate and used to construct a half Wheatstone bridge 
geometry in a suspended aluminum oxide (Al2O3) membrane layer (Figure 1). 

Figure 1. (a) Scheme of the MEMS force sensor showing the active (A1 and A2) and 
passive (P1 and P2) piezoresistors mounted in a half Wheatstone bridge configuration.  
(b) Optical microscope micrograph of the force sensor embedded in the flexible layer on 
top of the sensor © [2013] IEEE. Reprinted, with permission, from [22]. 

 

The half-Wheatstone bridge geometry was composed by two passive resistors P1 and P2 on the 
substrate and two active resistors A1 and A2 on the suspended membrane (see Figure 1a). In the ideal 
case all resistors are identical, i.e., P1 = A1 = P2 = A2 = R, and the change of the active resistances 
with strain are also equal, i.e., ΔA1 = ΔA2 = ΔR. Thus, the change in output voltage ΔVout of the bridge 
biased with Vin is: 

∆𝑉𝑜𝑢𝑡 =  
∆𝑅
𝑅

2 + ∆𝑅
𝑅
𝑉𝑖𝑛 ≈

∆𝑅
2𝑅

𝑉𝑖𝑛 (1) 

Therefore, the normalized change in resistance ΔR/R can be calculated from the change in output 
voltage ΔVout for a given input voltage Vin. The measurement of the MEMS force sensor was carried 
out assuming the change in output voltage between a no-load and full load conditions and using a  
load cell. 

An almost linear curve of the ΔVout for a given input voltage Vin was obtained by gradually 
increasing the applied compressive force. The maximum applied force was about 2.5 mN over an area 
of 283 μm × 283 μm for the sensor device, obtaining a force sensitivity of the sensors between  
0.266 V/N and 2.248 V/N, with an average sensitivity of 1.25 V/N. The average gauge factor, 
calculated by the authors combining the response measurements and the simulation of the designed 
sensor, was 1.75. 
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Despite the high piezoresistive response, piezoresistor materials made of silicon or metals such as 
NiCr or Cu-Ni on flexible substrates, as those mentioned above, suffer of ease of fracture under a large 
applied load. Therefore polymer-based composites filled with conductive particles are preferable for their 
broader range of application. In particular Carbon NanoTubes (CNTs)-polymer composites were already 
broadly used as mechanical strain sensors, since their resistance changes upon an applied pressure.  

Koiva et al. [23] developed a compact tactile sensor fingertip with embedded electronics using a 
Laser-Direct-Structuring (LDS) process (Figure 2). Thanks to this structuring process, the tactile 
sensor was designed to be added to free-form PCB surfaces with the remarkable possibility of creating 
very fine structures, down to 100 µm. The resistive sensing working principle was achieved using 
conductive metal tracks as electrodes and conductive foam or rubber as the sensor material. The 
possible sensor materials can also be composites, such as elastomer foam or rubber with added carbon 
particles or conductive fabrics. Therefore the coupling between the flex-printed PCB and the 
elastomeric sensing material allowed the authors to produce a tactile sensor deformable up to a small 
radius and with almost arbitrary 3D free-form shapes. The signal digitalization was obtained by 
converting into a voltage the resistance measured between the two electrodes, or an electrode and a 
common ground-plane shared by all tactels of the sensor array. In particular, a simple and constant 
pull-up resistor was attached to a constant power supply (voltage divider circuit). The voltage at the 
junction of the resistors was sampled by an analog-to-digital converter (ADC), therefore the data were 
provided in a digital form for either transmission and further signal processing. The measurement 
range could be easily shifted by varying the pull-up resistor value. In particular, higher resistances 
allowed the measurement of lower applied pressures, however higher signal-to-noise was detected and 
the maximum measurable applied strain was limited. To reduce the signal-to-noise ratio, the author 
directly integrated both the circuitry for analog voltage measurements and the digital communication 
into the fingertip. In particular as ADC, they developed a programmable module in the fingertip so that 
the data acquisition was managed in terms of high protocol configurability thus leading to good 
adaptability to different hardware systems. Using an internal 8 MHz clock, the chip required only one 
capacitor and a resistor (as external components) to operate. It featured 12 ADC inputs with a sampling 
resolution of 10 bits and a maximum combined sampling frequency of 40 kHz. The fingertip tactile 
sensor was finally equipped with 12 tactels, resulting in an average spatial resolution of about 5.5 mm. 
The performances of the sensing fingertip were evaluated by a customized measurement bench capable 
of exerting forces from 0 N to 80 N. The authors showed that their tactile sensor was quite sensitive to 
first touch (detection of 0.03 N/cm2) and the signal repeatability was very high. In addition, slip 
detection was also possible, since high sampling rates, at around 1 kHz, were used.  

Noda et al. [24] proposed and fabricated a tactile sensor based on silicon piezoresistors able to 
independently detect the shear stress in the two axial components. It consisted of an array of vertical 
piezoresistive cantilevers standing orthogonally to each other, thus able to detect the directions and the 
magnitudes of the applied shear stresses. The cantilevers were prepared by microfabrication 
technology from a silicon on insulator (SOI) wafer. The horizontal cantilevers were then vertically 
aligned with the help of a magnetic field which interacts with a Ni magnetic layer previously deposited 
on the SOI surface. To maintain the cantilevers standing without the magnetic field, parylene-C was 
vaporized on their surface. Finally the whole cantilever array was embedded in an elastic and flexible 
PDMS support and tested under shear stresses in the X- and Y-directions (Figure 3). In this way, the 
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standing cantilevers follow the elastic deformation of the PDMS material. The authors successfully 
reported the detection of a ΔR/R resistance variation for the −5.0 to 5.0 kPa shear stresses applied in 
vertical direction to the cantilever. The measured sensitivity was 20 times higher than that obtained for 
the shear stress applied in parallel direction. This result showed that the sensor was able to detect and 
distinguish one axial component of applied shear stress, with a 10% error occurred in the magnitude 
measurement of the shear stresses. The authors also proposed, as a future improvement on the sensor’s 
sensitivity, to change the elastic material.  

Figure 2. (a) The CAD image of the 3D-shaped electrode tracks; (b) The fingertip 
obtained after LDS process and chemical baths, with the integrated sensing conductive 
foam. Inset: the milled 3D-shaped sensing foam with mounting bracket; (c) The finished 
tactile sensor with embedded data acquisition electronics on the backside of the  
sensor © [2013] IEEE. Reprinted, with permission, from [23].  

 

Figure 3. (Top) Schematic of the tactile sensor fabricated with standing cantilever with 
piezoresistorfor shear stress detection. (Bottom) (A) FESEM and (B) photo of the standing 
cantilevers in PDMS. Reprint from [24], Copyright (2006), with permission from Elsevier.  

 

In another paper [25], a flexible, a soft and compliant tactile microsensor (SCTM) also based on a 
silicon piezoresitor was reported. The 3-D silicon microsensor was 1.4 mm3 in size and was embedded 
in a flexible and robust packaging having a minimum thickness of 2 mm in order to be finally 
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integrated in an anthropomorphic artificial hand. With this aim, tests of static calibration, maximum 
load, noise and dynamic characterizations were accurately carried out on the SCTM together with the 
electronic hardware and a processing algorithm. It was demonstrated that the SCTM had a higher 
loading range with respect to the bare silicon microsensor (only about 3 and 0.5 N for normal and 
shear loads, respectively). Indeed the integration of the sensor into a soft and flexible polyurethane 
material allowed the tactile sensor to withstand forces even higher (about 15 and 11 N for the normal 
and tangential static loads, respectively) to those involved in human fine grasping activities (about  
4 N). In addition the authors focused on slippage experiments, demonstrating that their SCTM was 
sensitive enough to detect a slip event, using contact surfaces with different roughness (aluminum and 
sandpaper probes). They also developed a customized processing algorithm in order to detect the 
instant of a slip event.  

3. Strain Gauges  

Strain gauges are electrical conductors whose resistance depends on their geometry. When the 
conductor is stretched at a level below its breakage or its permanent deformation, it becomes longer 
and its cross section thinner, thus inducing an increase of its electrical resistance. Normally strain 
gauges are designed as long and thin conductive patterns, arranged in a zig-zag configuration of 
parallel lines. In this way, a tensile stress in the direction parallel to the array of conductive lines 
results in a stretching of each line at the same time and in a sum of the resistance increase of each 
conductive path.  

In general the gauge factor of a thin metallic pattern is between 2 and 5 [53], thanks to the changes 
in either the length or the cross-sectional area: 

𝐺𝐹 = �∆𝑅/𝑅0
𝜀

� (2) 

When assuming constant both the resistivity and the volume of a metal film with resistance R, 
stretched to length L, having R0 and L0 as the corresponding initial values and mechanical strain  
ε [31,54]: 

𝑅
𝑅0

= �
𝐿
𝐿0
�
2

 (3) 

since: 
𝑅
𝑅0

= 1 + �
∆𝑅
𝑅0
� (4) 

and: 
𝐿
𝐿0

= 1 + 𝜀 (5) 

when ε < < 1: 

�∆𝑅
𝑅0

≈ 2𝜀� (6) 

which corresponds to a gauge factor of 2.  
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Strain gauges can be also made of semiconductor components, which exhibit a larger gauge factor if 
compared to metallic foils, due to the combination with the previously described piezoresistive effects. 
In this case, the resistivity changes quickly with the applied strain due to the dependence of the 
bandgap on interatomic distance, while the variations induced by geometrical change are smaller or, in 
the case of very simple geometry, almost negligible. It was indeed reported that the gauge factor of 
MEMS based on p-type single crystalline silicon can reach a value of 200 [55].  

The advantage of having MEMS strain gauges is based on the integration in a reduced space of a  
high-density sensor array and connection to electronics for signal processing. In particular, some 
efforts have been devoted in developing bio-inspired MEMS-based strain gauges sensors, thus able to 
mimic the form and functions of biological sensing systems, i.e., as smart sensing skins. However the 
limited data gathering capabilities, the low deformability, high fragility of strain gauges, and general 
packaging difficulties have limited the use of such MEMS-based sensors in tactile devices. 

To overcome the fragility issue, several authors have reported the embedding of strain gauges in 
polymeric flexible substrates [56,57] or covering the strain gauges with a protective polymeric  
layer [58]. The first attempts indeed were based on composite strain gauge structures, based on the 
integration of rigid elements, such as miniaturized metallic serpentines on polymeric substrates, able to 
adapt their geometry to the applied deformations, requested in the tactile sensing application field. 
However, such composed structures have not proven to be a reliable interface between a robotic 
manipulator and the manipulated object. 

Engel et al. [26] developed a multifunctional polymer-based sensing skin, trying to mimic some 
design and functionalities of the human skin. The developed device was able to sense the hardness, the 
thermal conductivity, the temperature, and the surface profile of an object. It was constituted by an 
array of sensor nodes, each composed by four distinct sensors exploiting the different functions  
(Figure 4). For the temperature measurement and compensation, a reference nickel Resistance 
Temperature Device (RTD) was employed. The thermal conductivity was measured with a gold heater 
and nickel RTD pair, and a membrane with a strain-gauge based on nickel-chrome alloy (NiCr,  
80:20 wt.%) was used for contact force and hardness sensing. Finally a NiCr strain gauge was 
employed as reference contact force and hardness sensor. The multimodal sensor skin was then built 
on a flexible polyimide substrate.  

The authors measured the hardness by a differential measurement among two resistances in the 
range of 10 to 80 Shore A. The resistance variation of each sensor was converted to a displacement 
measurement using calibration data, obtained by the change in resistance of the measurement sensor 
and the reference sensor in response to a known normal displacement. This trailblazing study however 
showed several limitations due to wires connections.  Indeed the use of the sensor in a real application 
is limited by the scalability of the wiring interconnects. Indeed, each node requires about 10 wires, and 
since they were closely packed (see Figure 4) with only a 5 × 5 array of sensing nodes covering an area 
25 mm × 25 mm, about 250 wires were required to collect all the data. It is therefore necessary a 
distributed signal processing and multiplexing architecture in order to integrate this structure on a wide 
area robotic sensing skin. 
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Figure 4. Scheme of the multifunctional sensing skin. (a) The single sensor node showing 
the four incorporated sensors: the reference temperature sensor; the thermal conductivity 
sensor; the contact force and the hardness sensors. (b) Each sensor node is arranged in an 
array to form the sensing skin, with skin curvature strain gauges, to map the skin  
surface. Reprint from [26], Copyright (2004), with permission from Elsevier.  

 

In another study Kim et al. [27] fabricated a polymeric MEMS flexible tactile sensor array together 
with interconnection terminals on the same polymer substrate, in order to integrate them as a sensor 
module (Figure 5).  

Figure 5. The NiCr strain gauge sensor array (32 × 32) with interconnection terminals. The 
inset displays a unit tactile sensor cell in the sensor array. Dashed red lines show the unit 
cells for temperature compensation in the sensing array. Reprinted from [27], Copyright 
(2009), with permission from Elsevier. 

 

The tactile sensing arrays were made as 4 × 4, 8 × 8, 16 × 16 and 32 × 32 sensing elements, 
constituted by NiCr strain gauges, and a flexible flat cable for signal interconnection. The size of the 
sensor unit cell is 1 mm × 1 mm and the overall sensing module size is 5.5 cm × 6.5 cm. To measure 
the sensor characteristics through the integrated interconnection terminals, normal force ranging from 
0 to 1 N was applied to a tactile sensor unit. The measured resistance increased linearly with the 
normal force in the range of 0–0.6 N, however a decrease of the resistance rate variation was observed 
above 0.6 N. 
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A microscale biomimetic tactile sensor with epidermal ridges was proposed by Zang et al. [28] to 
enhance the sensitivity of force detection. In particular the authors fabricated artificial epidermal ridges 
made of polydimethylsiloxane (PDMS), with 400 μm in width and 110 μm in height, and placed them 
on micro-fabricated copper strain gauge arrays, deposited on a polyimide substrate. The authors 
measured an increase of about 1.8-fold in the sensitivity of the strain gauge thanks to the artificial 
epidermal ridges, with respect of the same sensor without ridges. However this study lacks in the 
electronic design, sensor integration and in the evaluation of the specific sensor figures of merit.  

In a similar approach, Choi et al. [29] fabricated nichrome strain gauges on a polyimide film using a 
polymer micromachining technology. This flexible and three-axial tactile sensor can detect normal and 
shear loads and can be applied in a curved or compliant surface that requires slip detection and 
flexibility, such as a robotic fingertip. In particular the authors evaluated the optimal positions of strain 
gauges through strain distribution from finite element analysis. The sensor was experimentally tested 
by applying normal and shear loads from 0 N to 0.8 N and leading to sensitivity values of about  
206.6 mV/N for normal load and 70.1 mV/N for shear stresses. The composite structure showed a 
force capacity of 0.6 N in the three-axis direction and good linearity.  

To solve the wiring problems discussed above, Tata et al. [30] proposed a wearable strain gauge 
tactile sensors with wireless connections and designed for human motion detection. A 0.5 µm thick 
amorphous carbon was deposited by sputtering on a 125 μm thick polyimide film and laser 
micromachining was applied to design the strain gauge pattern. Finally PDMS was used to package the 
whole sensor, having final dimensions of 0.5 mm in width and 10 mm in length. The wearable unit was 
also equipped with an interface circuit able to convert the sensor analog signals into digital format 
feeding to a microprocessor. The signals were then sent wirelessly to a reader module, and the data were 
displayed on a remote computer, while being recorded continuously. The sensor was calibrated and the 
entire sensor and wireless system were mounted as a unit on a knee joint and tested during various types 
of physical exercises. This device presented several versatilities in the construction system and 
integration with electronics that can be easily exported to robotic tactile sensing applications.  

Lu et al. [31] similarly reported on a tactile sensor conceived for the measurement of physiological 
parameters of the human skins. However, it is an interesting example of tactile sensor which 
technology can be easily applied not only to the monitoring of biomedical parameters, but also to 
robotic sensing skin application. In particular the authors fabricated an all-elastomer strain gauge 
system, showing a high gauge factor (about 29) and flexibility, having a Young’s modulus of about 
244 kPa, thus falling in the range of the human skin. The device is made of composite carbon black 
(CB)-PDMS resistors for the fabrication of strain gauges, because of their high resistivity and strong 
dependence on the applied strain. In addition a thick, carbon nanotubes (CNT)-PDMS composite 
conductors are used for the interconnections, due to their relatively low resistivity and weak 
dependence on strain. An insulating PDMS matrix is also used as substrate (Figure 6).  

The overall device had an electrical response that depended almost entirely on the strain in the  
CB-PDMS and can be laminated on, forming a conformal contact to the human skin. The measured 
strains of the device when applied to human skin were between 11.2% and 22.6%. 
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Figure 6. The all-elastomer composite strain gauge with a flexible and compliant structure. 
The images show the device mounted on the wrist at different levels of bending. 
Reproduced with permission [31].   

 

4. Percolation Mechanism 

Functional materials composed by an insulating matrix and conductive filler were widely studied 
because of the tunability of the pressure sensing range varying composition and materials. The motion of 
the particles inside the matrix, generated by the applied load, induces a rearrangement of the conduction 
path and thus a variation of electrical resistance. Depending on the kind and shape of the filler, the 
conduction mechanism inside the composite could be percolation or quantum tunnelling (or also a 
combination of both) and the applied load could cause a decrease or an increase of the conductivity.  

In general a decrease of the electrical resistance is registered with low aspect ratio particles, such as 
metal powders and carbon black [59–64]. This effect is called the negative pressure coefficient of 
resistance (NPCR) effect. In contrast the resistance increases with compressive strain with high aspect 
ratio particles, i.e., carbon nanotubes (CNTs), graphite nanosheets and high structure carbon black 
agglomerates [32,65–71], leading to the positive pressure coefficient of resistance (PPCR) effect.  
The behaviour of these latter materials is described by the percolation theory, where the prompt 
insulator-conductor transition occurs in correspondence of a small variation of the conductive filler 
fraction defined as percolation threshold [72,73]. 

In contrast, in the NPCR group, two conduction mechanisms could occur, i.e., percolation, as in the 
PPCR case, and quantum tunnelling. The second mechanism will be described in detail in the 
following section. Anyway, one has to keep in mind that the composite is normally described by the 
predominant conduction mechanism, but also other conduction events attributable to different 
mechanisms are present, even if they are normally negligible [74].  

All the composite materials made up of a polymeric matrix and conductive fillers behave like an 
electrical insulators for concentrations of particles below the percolation threshold. Upon rising the 
filler concentration, the gap between two neighboring particles decreases to bring them in contact, thus 
leading to the formation of a local conductive path. When the local conductive paths are enough to 
cross the whole composite thickness, an effective conductive path is formed, producing a sharp 
increase of the bulk electrical conductivity of the material [75].  

A simplified description of the percolation conduction mechanism can be provided by considering 
the material as a porous medium and the electrical current as a liquid flowing through this medium. 
Then one has to evaluate the probability of the liquid passing through the porous matrix and reaching 
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the base. The composite is designed as a three dimensional matrix composed of points and connections 
that could be opened and closed, controlling the flow of the fluid. Any connection has a probability p 
of being open, letting the fluid flow, and vice versa a (1−p) probability of being closed. Considering 
the matrix as an infinite network, a probability of the fluid crossing the whole material also has to be 
defined. This global probability has two limit conditions (0 corresponding to electric insulator 
behaviour and 1 to electric conductor) and is a function of the local probability. Therefore there is a 
critical probability pc to switch the global probability of the system from 0 to 1, creating a path for the 
fluid to flow to the base. Similarly a critical concentration xc is defined around which there is a large 
conductivity (σ) variation with small concentration variations, switching the system from an insulating 
to a conducting behaviour:  

𝜎 ∝ (𝑥 − 𝑥𝑐)𝑡 (7) 

where t is the critical exponent that determines the trend of the function around the critical 
concentration [76]. Normally the percolation threshold is inversely proportional to the aspect ratio of 
the particles. 

A similar process could take place under the application of a compressive force. Without any load 
the particles are distant enough to guarantee an insulating behaviour, while when the composite is 
deformed, the particles come closer, touching each other, creating conductive paths that decrease the 
electrical resistance of the sample [75]. Actually this process is valid mainly for low aspect ratio 
particles, which tend to have a spherical shape. In fact in this case the compression could only induce a 
reduction of the polymeric interparticle gaps and thus an approaching between closer particles. For 
high aspect ratios, the applied force could cause also a reorientation and reshaping of the particles that 
could induce the destruction of the existing conductive network or a reduction of the conductivity of 
the filler [70,77].  

CNTs with different aspect ratios [32,66–69], graphene [70] and high structure carbon black [65] 
were for example used in different silicone-based nanocomposites, either methylvinyl silicone rubber 
(VMQ) or polydimethylsiloxane (PDMS). These composites are generally prepared by dispersing the 
carbon-based filler in the polymeric matrix by wet mixing conditions, thus employing a solvent and an 
ultrasonicator to guarantee a good dispersion [68]. After the solvent evaporation, the composite 
materials are cured and cut or moulded in different shapes for further testing. Electrical contact is 
afforded by metal sputtering or conductive paste obtaining full coverage of the top and bottom surface 
or patterned electrodes. 

Considering the CNTs, their extremely high aspect ratio ensures the formation of a conductive 
network in the nanocomposite at very low CNTs content. With respect to carbon black or metallic 
fillers, showing a much lower aspect ratio, the lower amount of CNT required to reach the percolation 
threshold results in better mechanical properties of the final polymeric composite, low viscosity and 
storage modulus, and finally less product costs [78]. Despite their advantages, CNTs can easily 
aggregate and form entanglements between them due to the intermolecular van der Waals forces. It is 
therefore difficult to homogeneously disperse CNTs in a polymer matrix; such a disadvantage has 
prevented the broad use of CNTs in piezoresistive composites. Many groups have tried to solve the 
problem by functionalizing the surface of CNTs with methyl (-CH3) or amine (-NH2) groups [66,79]. 
However the surface modification of CNTs can degrade both their electrical and mechanical 
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properties, as well as cause shortening of the CNTs, thus reducing the advantages of having high 
aspect ratio conductive fillers. Hwang et al. [32] have reported on a successful functionalization of 
multi-walled CNTs (MWCNT) by conductive thiophene molecules, thus obtaining well-dispersed and 
non-entangled CNTs fillers in a PDMS matrix and still guaranteeing low particle content. The overall 
resistance of the composite rises by increasing the external pressure, leading to the PPCR effect. The 
composite shows a piezoresistance response in the small pressure range 0–0.12 MPa, strongly 
dependent on the concentration of the thiophene molecules, as shown in Figure 7.  

Figure 7. (Left) SEM images of fractured surfaces of MWCNT/PDMS composite  
(a) without and (b) with thiopene molecules (1:1 weight ratio respect to CNT), showing the 
improvement in the dispersion process of the carbon nanotubes (white fibers in the 
images). (Right) Piezoresistance variation of the composite material as function of the 
thiophene molecule-MWCNT weight ratio. Reprinted from [32], Copyright (2011), with 
permission from Elsevier. 

 

Recently, Pyo et al. [33] have proposed a flexible tactile sensor based on four CNT-PDMS sensing 
parts placed on a polyimide substrate with Cr/Au interdigitated electrodes and surmounted by a bump 
structure made of SU-8. In details, a 2% in weight of CNTs were dispersed into the PDMS copolymer 
by further addition of curing agent at a ratio 1:10 with respect to the CNT-PDMS mixture. The final 
dimensions of the sensing composite part were 3 mm × 3 mm × 20 µm. When a compressive uniaxial 
load was applied on the bump, the four composite parts were uniformly and equally compressed and 
the overall electrical resistance increased. In addition, when a shear force was applied, the four 
piezoresistive composites responded in different manners, therefore the contribution of this lateral 
force could be easily discriminated from a uniaxial compressive one. The authors measured the linear 
variation of the relative resistance as a function of the normal force, applied with a micromanipulator 
from 0 to 2 N, as measured by a load cell. They obtained a ΔR/R varying from 0, at zero applied force, 
to about 14% at 2 N.  

In another interesting work, Lay et al. produced a tactile composite sensor by aligning CNTs into a 
PDMS matrix through dielectrophoresis (DEP) on interdigitated electrodes [34]. The novelty of the 
presented approach is that the array of CNT was capable of retaining over time the resistance variation 
upon an exerted uniaxial pressure. At the beginning, the aligned CNTs formed a conductive path 
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among the interdigitated electrodes. When compressing the composite with an external force, the array 
was distorted and the conductive paths were removed, thus leading to an increase of the overall 
resistivity of the composite material. This effect could be however easily erased, bringing back the 
composite resistivity to the initial value, by applying again the DEP process among the interdigitated 
electrodes (Figure 8a). By adding conducting silver nanoparticles together with the CNTs, the 
resistivity of the CNT-based composite was further lowered, thus matching the dynamic range of the 
sensor read-out circuit. In particular the authors integrated the resistivity read-out circuit with the DEP 
driving source. Two multiplexers were employed to provide the driving voltage to the composite 
sensor and to receive, by signal scanning, the acquired signals from it upon pressure application. The 
sensing data were then sent to a PC for visual representation. To display the effectiveness of their 
approach, the 8 × 8 sensor matrix was compressed by different solid PMMA shapes, retaining over 
time the shape of the used stamps when the applied force was removed (Figure 8b). The applied shapes 
can be therefore visualized by a software interface. By re-applying the DEP signal, the images of the 
stamps could be erased. 

Figure 8. (a) Scheme of the tactile sensor working principle, where the CNTs are aligned 
through DEP across the interdigitated electrodes (left panel); After a compressive stress, 
the CNT conductive path is destroyed, increasing the resistivity of the overall composite 
material. (b) The PMMA stamps (bottom panel) used to apply a pressure on the tactile 
sensing composite. On the top part of the figure, the shapes of the stamps are retained from 
the sensor, as visualized by a software interface © [2012] IEEE. Reprinted, with 
permission, from [34]. 

 

The PPCR effect was also verified in piezoresistive nanocomposites using graphene or graphite as 
conductive fillers [70]. In particular it was reported that these graphene-PDMS composites can reach 
high levels of sensitivity (R/R0 > 400 under the pressure of 1.2 MPa) with a very small graphene 
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content (only 1.19% vol), as well as excellent repeatability, small hysteresis, long-term durability and 
soft and flexible composite materials. The authors referred the exponential increase or the R/R0 with 
the applied pressure due to the high specific surface area of graphene, all forming a conductive 
network at low particle content. Indeed the graphene nanosheets in such low amount in the matrix were 
able to reorient along the in-plane direction during the uniaxial compression and follow the movement 
of the polymeric chains. This led to the continuous destruction and reconstruction of the conducting 
network, resulting in an overall decrease of direct contacts between the nanosheets and a dramatic 
increase of the average electron tunnelling distance, as shown in Figure 9. 

Figure 9. A schematic of the mechanical behaviour of graphene/graphite composite under 
the application of a uniaxial force. Reproduced with permission [71].   

 

The majority of tactile sensor devices exploiting the percolation mechanism employed composite 
materials containing carbon black as filler in a volume percentage close to the percolation threshold, 
thus showing NPCR effect [35,36,40,80]. The classic design of these tactile sensors is based on 
discrete sensing cells disposed in a homogenous array to detect the applied load. The measurement is 
performed by applying a voltage and reading the resulting current from each tactel, by means of a 
multiplexer, until all the matrix is covered. The tactels can mount two different electrode 
configurations [81]: double sided contact, by crossing horizontally and vertically aligned electrode 
lines on the two sides of the piezoresistive composite [40,42,82], and single sided contact, by placing 
both the electrodes on the back side of the sensing material, normally creating an interdigitated pattern. 
Flexible tactile sensors implementing interdigitated electrodes with a carbon piezoresistive composite 
were presented by Yang et al. [35,36]. In their work an array up to 32 × 32 sensing element on copper 
metallized polyimide (PI) film was fabricated defining the electrodes by a micromachining technique 
and then spotting the composite material using a numerical-control dispenser, as shown in Figure 10. 
Moreover the same number of temperature sensing chips were integrated on the back of the PI film and 
employed as temperature-sensing cell, still preserving the flexibility of the whole device. By means of 
a dedicated scanning circuit and acquisition and visualization software, they were able to obtain 
simultaneously a map of the temperature and applied load on the sensor.   

Another multifunctional tactile sensor device was proposed by Yuji et al. [37]. This solution is 
based on a single composite material, able to sense not only the contact force, but also the temperature 
change and the contact face number per one tactile sensor. This interesting goal was achieved by using 
four pressure-conductive rubber sensors electrically connected in parallel and a selective data 
processing method. When a pressure is applied to one of the four material faces, the contact resistance 
of the relative rubber face decreases. In addition, for equal applied pressures, the resistance values rise 
by increasing the temperature in a range from 20 to 40 °C and this temperature dependence is obtained 
in the first 1 to 5 s. Thus this time can be used to acquire the temperature values from the sensor 
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device, then after 5 s the resistance variation can be used to monitor the pressure value and the contact 
face number. Based on this time parameter, the authors then developed an architecture for data 
processing able to select, depending on the input time, the input values and to discriminate their 
contribution, obtaining multifunctional data processing and information relative to the temperature, 
pressure and contact face number. 

Figure 10. (Left) Two different pattern of interdigitated electrodes used by Yang et al. in 
their tactile sensor, (a) before and (b) after the deposition of the piezoresistive composite. 
(Right) Image of (c) the top of the sensor containing the tactile sensing elements and the 
temperature sensing pads, and of (d) the back with the temperature sensors. Reprinted  
from [36], Copyright (2007), with permission from Elsevier.  

 

A novel architecture was proposed by Cheng et al. to fabricate an anthropomorphic robot skin with 
a large 8 × 8 area of highly stretchable tactile sensing arrays [38,39]. PDMS was employed both for the 
fabrication of the skin structure and as matrix of the piezoresistive conductive composite with carbon 
black, copper and silver powder as fillers (Figure 11a). The sensing material was placed in the spacing 
of orthogonally crossing spiral wire electrodes that can withstand high deformation and twisting up to 
70° without any damage in the structure or functionality, as shown in Figure 11c. The electrodes were 
prepared by rolling copper wires around nylon line by means of a winding machine. The array was 
integrated in a flexible PDMS film, shaped as an arm, and mounted and tested as sensing skin. 
Integration of wires into a piezoresistive composite was also exploited by Shimojo et al. mounting four 
different sensing arrays, with a high sensitivity in the range 0–200 kPa, on the tip of each finger of a 
robot hand [40]. The sensors were tested in grasping simple shapes (cone, sphere, column and human 
arm) and they were able to successfully characterize all the steps of the operations and distinguish 
between the different forms.  
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Figure 11. (a) Process flow of the preparation of the piezoresistive composite. (b) Image 
of the whole sensor showing each tactels composed by the composite disposed at  
the intersection between the spiral electrodes. (c) Example of the high stretchability and 
twistability of the sensor. Reprinted from [39], Copyright (2009), with permission  
from Elsevier. 

 

Another interesting design is the coupling of the piezoresistive composites with flexible  
organic field effect transistors (OFETs) that integrate a sensor element with the acquisition  
electronics [41,83,84]. Somaya et al. fabricated an OFET on a polyimide or a 
poly(ethylenenaphthalate) film, depositing pentacene as channel layer and polyimide as gate dielectric 
layer. The transistors show a mobility of 1 cm2/Vs in the saturation regime and an on/off ratio around 
105–106, sufficient values to obtain a well-defined mapping of pressure. The top of the transistor is 
then coupled with a layer of piezoresistive composite between two electrodes, one of them connected 
to the drain of the OFET, as shown in Figure 12c. In this configuration of a fixed gate voltage, when 
the resistance of the composite decreases, the source-drain current increases proportionally. This 
configuration guarantees a high sensitivity (10 kPa of minimum detectable pressure) and a much lower 
power consumption compared to the classical device which simply measured the electrical resistance. 
Moreover the sensor was completely stretchable and deformable, showing a stable signal expanding 
the device up to 25% of the initial dimension, with and without the application of a pressure, as shown 
in Figure 12a. Additionally, the pressure sensor array was integrated with an array of thermal sensors 
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in order to monitor the two physical quantities simultaneously. The thermal sensors were manufactured 
by coupling on the top of the OFET an organic diode and connecting it in series to the drain [41].  

Figure 12. (A) Source-drain current as function of the expansion of the device with and 
without application of pressure. (B) Image of pressure sensor matrix put on an egg and the 
corresponding spatial distribution of pressure under the application of local load.  
(C) A schematic of the structure of the pressure and the thermal sensor cells with the 
organic transistors. Reproduced from [41], Copyright 2005 National Academy of  
Sciences, USA. 

 

5. Quantum Tunnelling Conduction Mechanism  

As already reported above, the piezoresistive working principle coupled with flexible composite 
materials can fulfill several requirements for tactile sensing devices. In particular, the complete 
coverage and the efficient coupling to the robot surface [85,86] can actually be accomplished with a 
continuous sensing layer covering the machine surface. This requirement is however difficult to 
achieve when using MEMS piezoresistors, which in contrast show a localized and punctual characteristic.  

In contrast, high resolution and precision for the robot interaction with the external environment can 
be easily achieved by a distributed array of tactile sensors throughout the whole surface using a 
composite piezoresistive material. However, one of the major disadvantages of the piezoresistive 
composite based on the percolative working mechanism is the low dynamic range of sensitivity. This 
problem can be successfully overcome using piezoresistive composite materials based on quantum 
tunnelling conduction mechanism.  

In these composites a small variation of the external load induces a huge change of the electrical 
conductivity [64,87,88], and thus an increase of the sensitivity. The conductive particles are dispersed 
very close to each other, however they remain fully coated with a polymeric layer because of their 
particular morphology. Therefore, the main difference with respect to the percolative composites consists 
in the permanent separation of the particle from each other by a thin layer of insulating polymer, 
representing the tunnelling barrier [89]. In this composite, even if the content of filler is well above the 
expected percolation threshold, no percolation path are formed in the uncompressed state and also during 
the application of a compressive forces in the pressure range of interest of tactile sensor.  

The quantum tunnelling mechanism is achieved thanks to the particular morphology of the 
conductive fillers, presenting either sharp and nanostructured tips at the surface or very high aspect 
ratios of the particles. In general, in the absence of any mechanical deformation, the resistance value of 
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the whole composite is extremely high (it is comparable to the matrix one), leading to an insulator. In 
contrast, when the material is compressed, stretched or twisted, the mechanical deformation induces a 
reduction of the polymer layer thickness among the conductive spiky fillers. Therefore the tunnelling 
barrier decreases and the fillers form a sequence of tunnelling pathways. The probability of tunnelling 
phenomena increases, leading to a large reduction of the overall electrical resistance of the composite, 
as sketched in Figure 13.  

The shape and dimension of the conductive filler particles play therefore a fundamental role in the 
quantum tunnelling mechanism, as well as the filler nature and amount [90]. In particular, the sharp 
and nanostructured tips at the filler surface are responsible for a local electric field enhancement [91] 
which considerably increases the probability of tunnelling through the polymeric insulating  
barrier [64,92].  

Figure 13. Scheme of the quantum tunnelling conduction mechanism in  
insulator-to-conductor piezoresistive composite under uniaxial pressure. 

 

The major drawback of these composites, as for the percolative ones, is the low repeatability of the 
measurements. Since the matrix is normally composed of an elastomer, the sensing materials present 
hysteresis phenomena when cycling measurements are performed. In contrast no destruction of the 
sharp tips on the particles surface occurs in the tactile pressure range because the soft matrix prevents 
any damage.  

During the last decade, different models were used to explain the conduction mechanism, such as 
electrical field induced emission [93], Richardson-Schottky transmission types and Pole-Frenkel 
conduction [94]. However all these models only represent secondary order conduction and are therefore 
negligible mechanisms. In contrast, the tunnelling conduction is the dominant mechanism in these 
composites, whereas the percolation one can be considered negligible in the pressure ranges 
conventionally used to test the tactile sensor devices. However, it has to be noted that for very high 
pressures the percolation becomes predominant because the contact between conductive particles strictly 
close to each other cannot be avoided, even in the presence of the thin insulating polymeric layer.  

In piezoresistive composites the whole electrical resistance is a function of both the resistance 
through each conducting particle and the polymer matrix. Assuming that the resistance of the matrix is 
constant everywhere, the resistance of the paths perpendicular to the current flow may be neglected, 
and, thus, the number of conducting particles between electrodes becomes a factor in this relationship, 
as well as the number of conducting paths [59]. The total resistance can then be described as: 
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𝑅 =
(𝐿 − 1)𝑅𝑚 + 𝐿𝑅𝑐

𝑆
≈
𝐿(𝑅𝑚 + 𝐿𝑅𝑐)

𝑆
 (8) 

where R is the composite resistance, Rm the resistance between two adjacent particles, Rc the resistance 
across one particle, L the number of particles forming one conducting path, and S the number of 
conducting paths. 

From Equation (8) it is clear that the overall electrical resistance R in polymer composites is the 
resistance between two neighboring particles (Rm) within the conducting network. Rm is in turn dictated 
by the quantum mechanical tunnelling through the insulating polymer layer [95] and therefore is a 
function of the interparticle separation. 

Starting from this simple Equation (8), the experimentally observed piezoresistance in quantum 
tunnelling composite is found to be well described by mathematical models based on quantum 
mechanical tunnelling mechanism [59,60,65,96], as described in the following. 

The basic unit in these piezoresistive mathematical models is constituted by the tunnelling junction 
composed by two particles, separated by an insulating polymer layer. The computation is then 
extended to the whole sample, by considering the conductive paths across the material as constituted 
by chains of tunnelling junctions. The tunnelling current flowing at low applied voltage in the basic 
unit of the model was expressed by Simmons [97] as: 

𝐼 =
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where m and e are the electron mass and charge respectively, h the Plank’s constant, V the applied 
voltage, d and φ are the width and the height, respectively, of the potential barrier between two 
adjacent particles and a2 is the effective cross-sectional area where the tunnelling occurs. 

Starting from this equation, Zhang et al. [59,96] compute the resistance of a single barrier and then, 
considering the effect of all the tunnelling paths, the total resistance R of the composite sample as: 
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where L is the number of particles forming one tunnelling path and S is the total number of paths in  
a sample. 

Assuming that the application of a uniaxial pressure would induce a reduction of the interparticle 
separation and thus an increase of the tunnelling probability, the piezoresistive variation in these 
quantum tunnelling composites can be expressed as:  
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where p is the applied pressure and G the composite compressive modulus. 
Interestingly the piezoresistive composites based on the tunnelling conduction mechanism also 

show huge variations of electrical resistance when subjected to tensile pressure. It is usually expected 
that stretching the material would lead to an increase of the interparticle gap in the direction of the 
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force, thus increasing the electrical resistance. However, since the polymeric matrices used in these 
composites are commonly nearly or purely incompressible, when stretched in one direction the 
material contracts in the directions perpendicular to the applied load by keeping the volume constant. 
This effect would cause the particles to get closer to each other in the direction perpendicular to the 
applied force. Since the conductive particles are randomly distributed along the material and are not 
perfectly aligned along planes, the deformation in the direction perpendicular to the stretching would 
produce a redistribution of the fillers in the composite, thus creating tunnelling paths along the 
samples. In this way, the resistance of the sample decreases exponentially with the applied pressure by 
following the tunnelling conduction mechanism and this variation can be expressed as follows [96]: 
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The first material exploiting the tunnelling conduction mechanism was presented by Bloor et al. in 
2005 [64,98] by mixing nickel particles in an elastomeric matrix, and subsequently a tactile device 
fabricated with QTC was implemented on the NASA Robonaut [99]. Their material shows an electrical 
resistance reduction up to twelve orders of magnitude when compressed, stretched or bended. 

Several scientific works [63,64,82,98,100] have also reported on the use of different metal  
micro- and nano-particles showing nanostructured spiky tips as fillers in tunnelling conduction 
composites. In particular, the shape and dimension of the filler particles was demonstrated to be very 
relevant on the final piezoresistive performances of the composite [90]. In that work a comparison 
between three different metal fillers in PDMS-based composites is reported: commercial nickel [100] 
and copper [42,101] spiky-particles, and chemically synthesized highly pointed gold nanostars [87].  

The composites were in general prepared by incorporating the metallic powders in the PDMS by 
gentle mixing, in order to avoid the destruction of the tips on the surface of the particles. In the absence 
of an applied pressure, the electrical resistance of the nickel and copper composite was circa 1 GΩ, 
while for the gold composite was around 100 GΩ. 

Different figures of merit concerning the morphology of the fillers were evaluated and correlated 
with the corresponding functional response of the composites. In particular the authors took in 
consideration the following morphological parameters: (i) the average tip radius Rt, (ii) the aspect ratio 
between the height (Ht) and Full Width at Half Maximum (FWHM) of the tip, and (iii) the ratio 
between the Ht and the particle core diameter (Dcore). Figure 14 shows a scheme of these 
morphological features. 

The obtained results showed how the morphological features of the nanostructured particles can 
influence the minimum and the maximum required amount of the fillers to obtain similar piezoresistive 
performances among the different composites. This allowed therefore the selection of the best filler and 
easy tuning of the functional properties of the composites in order to reach the required sensor sensitivity. 

The three composite samples were characterized under compressive pressure up to 2 MPa. The 
measured electric resistance variations of the three composites are plotted in Figure 15 as a function of 
the applied mechanical pressure, obtained for the optimized compositions of the final composites. In 
particular, from the experience acquired in their previous works [42,87,100], the authors were able to 
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identify the minimum weight amount per each kind of filler required to obtain an appreciable and 
comparable tunnelling conduction effect between the different composites. Therefore, the weight ratio 
of 3:1 for the PDMS-Ni, 2:1 for PDMS-Cu, and 1:1 for the PDMS-Au composites were used [90]. 
Obviously, lower filler amounts with respect to the indicated ratios would have led to an insulating 
behaviour of the overall composites. 

Figure 14. The scheme of the geometrical parameters considered in the comparison study 
of quantum tunnelling piezoresistive composites. Reprinted from [90].  

 

Figure 15. Electric resistance variation of the piezoresistive composites, obtained with the 
minimum filler amount, as a function of the applied uniaxial pressure. 

 

As explained above, here a negative pressure coefficient effect (NPCR) was observed: when 
subjected to mechanical compressive load, the polymer thickness separating each metal particle 
reduced, and the probability of tunnelling phenomena increased, resulting in an exponential reduction 
of the bulk electrical resistance. This effect is particularly evident for both PDMS-Ni (grey curve) and 
PDMS-Cu (red curve) composites. In particular, the gauge factors, calculated with the method of 
Abyaneh and Kulkarni [88], were about 18 for the nickel-based composite, and approximately 10 for 
both the PDMS-Cu and PDMS-Au ones. These gauge factors provide an evaluation of the strain 
sensitivity of the aforementioned composites, and these values could be enhanced by increasing the 
metallic filler to polymer ratio. However, one should note that the PDMS-Ni composite showed the 
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highest filler to polymer ratio (3:1), whereas only a ratio 1:1 was employed for obtaining a 
piezoresistive response from the PDMS-Au composite. This difference can be clearly understood by 
analyzing the geometrical features of the three different metal particles, as reported in Table 7.  

Table 7. Geometrical parameters of the nanostrucutred spiky particles. Reprinted  
from [90].  

Metal Particles Rt 
a [nm] Htip/FWHM b Htip/Dcore 

c Filler:PDMS 
Weight Ratio 

Ni 43 1.1 0.09 3.1 
Cu 975 3.6 0.37 2:1 
Au 17 2.3 0.34 1:1 

a Average tip radius; b Aspect ratio between the tip height (Ht) and its full-width at half-maximum (FWHM);  
c  Ratio between the tip height (Ht) and the core diameter of the particle (Dcore). 

Both copper and gold particles have higher Htip/Dcore and Htip/FMWH ratios with respect to nickel 
ones. Both figures of merit imply that the tips were sharper and slender, thus being responsible for the 
local electric field enhancement that considerably increased the tunnelling probability through the 
polymeric insulating barrier in the composite. Both PDMS-Cu and PDMS-Au composites showed 
indeed a remarkable tunnelling conduction behaviour at lower filler amounts (2:1 for PDMS-Cu and 
1:1 for PDMS-Au) with respect to the weight ratio used for the nickel-based composite (3:1).  

In addition, thanks to their very small tip radius (Rtip), the gold nanoparticles could give the better 
performances in term of lower filler to polymer ratio, producing similar values of piezoresistance. The 
advantages of using spiky and nanosized particles, like the gold one presented here and in the previous 
works [88,91], drastically reduces the piezoresistive film thickness and promote the integration with 
MEMS technologies. 

Similarly, silver nanostructures were employed as conductive fillers for functional sensing 
composites. Hong et al. [102] investigated the electrical and thermal conductivities of a silver 
flake/thermosetting polymer composite. The silver flake size, the filler distribution and amount into the 
polymer matrix were studied as relevant parameters influencing the electrical volume resistivity and 
the thermal conductivity of the composite. Therefore, concerning the materials used for quantum 
tunnelling composites, the great advantage is to use nanometer sized and nanostructure-shaped fillers, 
in order to obtain flexible, thin, and light-weight performing piezoresistive composites, which can be 
well adaptable to tactile sensor applications. 

A part these issues, the research has also to deal with the tactile sensor positioning and architecture 
on the robot surface, the electronic configuration and hardware, the methods to access and acquire the 
sensing data, and the algorithms to process and interpret the acquired signal in real time [4,103]. 

Generally speaking, when the tactile skin consists in a continuous layer of functional composite 
sandwiched between a matrix of top and bottom electrodes, one already has an array of distributed and 
numerous tactile sensors over the robot surface. A high density of sensors can generate sufficient data 
to improve the precision of the robotic motion in an unstructured environment and object recognition. 
However, the large density of sensors and their spatial positioning have to be accurately matched with 
the current technology for data handling and processing. Therefore this issue can be a limitation to the 
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continue miniaturization and high density of distributed tactile sensors. A continuous improvement in 
the increase of maximum essential data extraction is mandatory for an efficient tactile signal processing.  

Design of an ad-hoc electronics able to read out the sensing signals and further process them  
to obtain data representation and an as much as possible realistic interpretation was recently  
developed [43]. In that work, the authors integrated a continuous and flexible piezoresistive quantum 
tunnelling composite based on spiky nickel particles with a customized electronic read-out circuit. The 
circuit was able to read the resistance variations of the composite sensor upon a compressive load and 
process these signals upon their spatial positioning with a software interface. As a result, a real-time 
tridimensional graphical representation of the compressed region on the tactile device was achieved. 

In details, the developed sensor was prepared by the hot embossing technique (area: 40 mm × 40 mm 
and thickness: 1 mm) with an 8 × 8 electrode matrix obtained by patterning two copper metalized 
polyimide foils used as bottom and top electrodes, respectively. For the data acquisition, the distributed 
sensing area was modeled as a two-dimensional array of resistor nodes, which resistance varied upon 
the exerted pressure intensity on each node. The instantaneous resistance value was obtained by 
measuring the current flowing through each node at a fixed voltage. Each resistor of the matrix was 
connected to the measuring circuit through two analog multiplexers used for monitoring rows and 
columns respectively. The presented quantum tunnelling piezoresistive device was able to vary each 
node resistance by several decades, up to nine orders of magnitude. This huge sensitivity can be a 
problem for data acquisition by the read-out circuit. The challenge was successfully overcome by using 
a single temperature compensated logarithmic transimpedance amplifier, ensuring an almost uniform 
profile of the current, with respect to the huge and exponential variation of the current versus the 
applied pressure in each node.  

In order to obtain a real-time response and further visualization of the sensing area, the 
measurements on each matrix node were carried out at a frequency of 1 kHz; therefore the whole 8 × 8 
matrix was sampled at a frequency of about 16 Hz. A microcontroller performed a continuous and 
sequential scanning of the nodes and sent the data to a PC. After the completion of 64 measurements, 
the PC software plotted a grid where each node corresponded to the sensor matrix node. In Figure 16 
the height of each grid node and thus the color scale in the 3-D representation corresponded to the 
pressure applied on each corresponding site on the tactile sensor. To improve the visual 3-D 
representation with smooth transitions among each node, the represented grid was increased up to  
34 × 34 nodes [43].  

Recently it was also proposed a completely innovative approach to measure the applied load on the 
quantum tunnelling piezoresistive composites reported above, by exploiting not only their electrical 
resistance variation under the application of a pressure, but also their capacitance was also  
proposed [44]. Since the material basic unit consists of an insulating dielectric layer (the tunnelling 
barrier) between two metallic particles, it forms a capacitor. When deformed, the interparticle layer 
decreased, increasing the capacitance of the unit and consequently the one of the whole composite 
sample. A new sensor architecture was designed to exploit both the resistance and the capacitance 
variation to measure pressure with a very high sensitivity and fast response [44]. The read-out circuit 
exploits a quasi-digital solution, converting resistance (R) and capacitance (C) values of the sensor in 
to a frequency (F) signal. The R, C to F converter guarantees low power consumption, complexity and 
dimension being completely fabricated with CMOS technology [104]. The signal is then wireless 
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transmitted to the PC interface for elaboration by an Impulse-radio Ultra-wide-band (IR-UWB) 
transmitter [105]. The quasi-digital signal is compatible with the IR-UWB circuit and can be 
transmitted without any further elaboration, reducing transmission time and power. The signal is then 
elaborated by a PC which converts frequency values into pressure ones. A schematic of the system is 
presented in Figure 17b. This solution can be really interesting for implementation on robots, because 
thanks to the small dimensions of the circuit it is possible to increase the number of converters in a 
single CMOS chip, controlling several sensors simultaneously without using a multiplexer, which 
reduces the read-out process. Moreover the wireless transmission can reduce the cable complexity on 
the robotic machine. 

Figure 16. 3-D visual representation of the distributed pressures on the tactile sensing 
matrix when a load is applied on selected nodes: (a) a punctual compressive strain applied 
with a pen, and (b) a manually pressed hex key. In blue are represented the uncompressed 
nodes, whereas in red are the nodes which dynamic saturate under the applied compressive 
strain. Reprinted from [43], Copyright (2013), with permission from Elsevier.  

 

In this configuration the piezoresistive sensor is extremely sensitive [45]. Static pressure 
measurements were performed on the sensing element by applying different loads. Thanks to this 
measurement system it was possible to resolve 1 g of applied load, as reported in Figure 17a. The 
system is very sensitive to small load, while it tends to saturate for higher ones (over 1,500 g). Samples 
with different area (10 × 10 mm2 and 20 × 20 mm2) were tested, showing different variations of the 
resonant oscillation frequency and demonstrating the very high sensitivity of this type of sensor. 
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Figure 17. (a) Resonant oscillating frequency as function of the applied static load for two 
different sensors and (b) schematic of the whole sensing device. 

 

6. Conclusions  

The analysis of the state-of-the-art of tactile sensor devices evidences a predominance of solutions 
exploiting piezoresistivity as transduction mechanism. The ease and highly reproducible fabrication 
techniques have shown to be fundamental for the diffusion of this kind of devices. However, the key 
parameter is the wide range of functional materials available for the sensor development. The choice of 
the sensing material allows indeed tuning the working range of the sensor, reaching high sensitivity 
and obtaining different mechanical properties and robustness, depending on the application and 
environment of utilization. 

Among the devices based on resistive solutions, flexible composite materials give the possibility to 
satisfy quite all the requirements presented in Table 1, because of the quite infinite combination of 
properties obtainable by mixing different materials, varying composition ratio and orientation of the 
filler. The main limitation of the piezoresistive materials is still represented by the hysteresis in the 
sensor output that could reduce the sensitivity and the repeatability. However several solutions to 
overcome this problem were investigated in the choice of the materials as well as in the conditioning 
electronics, leading to some works with performing and repeatable results. 

Here, the review of the tactile sensors studies exploiting flexible piezoresistive composites is divided 
according to the conduction mechanism in piezoresistors, strain gauges, percolation and quantum 
tunnelling devices. Alternative classifications could have also be done based on the type of functional 
materials, system architectures or mechanical properties; however the selected organization allowed also 
a differentiation of the presented sensors corresponding to their sensitivity and applications. The majority 
of the reviewed solutions are based on classical read-out architecture for resistive sensors, even if some 
innovative techniques are presented, such as organic field emitter transistor (OFET) and resistive and 
capacitance to frequency (R, C to F) converter, resulting in high sensitive devices.  
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Tactile devices with piezoresistive composites as sensing materials were already reached, even with 
some limitations. Improved performances can thus be thus obtained, allowing an effective utilization in 
robots and returning reliable and rapid pressure feedback signals for performing exploration, dexterous 
manipulation and control tasks. 

Moreover a new trend in developing multifunctional devices is growing faster. New perspective 
solutions measuring on the same chip either pressure (also in the three dimensions), temperature, 
hardness and thermal conductivity were recently developed and constitute the new field to which the 
tactile sensors can expand and feed new research perspectives.  
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