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Abstract: Context-awareness is an interesting topic in mobile navigation scenarios where 

the context of the application is highly dynamic. Using context-aware computing, 

navigation services consider the situation of user, not only in the design process, but in real 

time while the device is in use. The basic idea is that mobile navigation services can 

provide different services based on different contexts—where contexts are related to the 

user’s activity and the device placement. Context-aware systems are concerned with the 

following challenges which are addressed in this paper: context acquisition, context 

understanding, and context-aware application adaptation. The proposed approach in this 

paper is using low-cost sensors in a multi-level fusion scheme to improve the accuracy and 

robustness of context-aware navigation system. The experimental results demonstrate the 

capabilities of the context-aware Personal Navigation Systems (PNS) for outdoor personal 

navigation using a smartphone. 

Keywords: context-aware; personal navigation service; sensor fusion; activity recognition; 

vision-aided navigation 

 

1. Introduction 

The emergence of wireless communication and mobile devices equipped with global positioning 

system (GPS) ignited the idea of personal navigation systems (PNS). PNS includes positioning 

capability and navigation functions to provide location information using portable devices for 
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individuals. Context-awareness is an emerging research topic in the area of PNS. Context-aware 

systems take into account contextual information in order to adapt their operations to the current 

context without explicit user intervention. The phrase “user context” is characterized by the situation 

of the user in terms of his/her activity, location, preferences and environment [1]. Useful context 

information in PNS is related to the user’s activity (e.g., walking, driving) and the device placement. 

Such contextual information can provide context-specific services for PNSs. In PNS, the user’s 

mobility necessitates an adaptive behavior according to changing circumstances such as in-vehicle or 

on walk modes [2]. Moreover, unlike other navigation systems, a mobile device is not held in a fixed 

position and can spontaneously move with the user. When processing multi-sensor data in a PNS, 

sensors’ placement impacts the positioning solutions. Since the mobile device is either mounted on the 

body or carried by the user in hand, the orientation output of a mobile device depends on its placement 

with respect to the user. One approach to overcome this issue is to identify the user activity and device 

placements and customize the navigation solution using the recognized context information. 

With the advances in micro-electro-mechanical system (MEMS) sensor technologies on mobile 

devices (e.g., accelerometer, gyroscope, magnetometer), collecting a vast amount of information about 

the user is feasible in an automatic way; however, it is still difficult to organize such information into a 

coherent and expressive representation of the user’s physical activity [3,4]. In other words, there is a 

gap between low-level sensor readings and their high-level context descriptions. The main objective of 

this paper is developing a context-aware system which robustly recognizes user activity and device 

placement based on fusion of smartphone’s low-cost sensors and then, adapting the pedestrian 

navigation solution based on the user’s contexts. 

There are a few studies aimed at supporting PNS computations using context information [5–7]. 

This research is one of the original works in supporting the personal navigation services by providing 

context information. This paper contributes to the intelligent PNS area in the following three aspects: 

 Sensor integration: As the accelerometers are usually embedded on the mobile devices, most of 

the existing activity recognition systems use only accelerometers and rarely consider fusion of 

other sensors [5]. As an improvement to the previous works, accelerometer, gyroscope as well 

as magnetometer sensors are integrated to recognize activity context more reliably. Moreover, 

in most of the research works in this area, the device is fixed to the users’ body or has a 

predetermined orientation. However, in this paper no assumption is made about how users 

carry their mobile phones. 

 Context detection algorithm: The most advantageous methodology for context detection is 

fusing multi-sensor and multi-source data. Since the context information may be acquired from 

heterogeneous sources, defining an appropriate strategy to integrate various sources of 

information is necessary. Therefore, a hybrid multi-level context detection algorithm is 

developed to integrate data-driven fusion at the signal level and knowledge-driven fusion at the 

decision level. Moreover, fuzzy inference engine is used for uncertainty modeling of the hybrid 

method. This algorithm provides more reliable and readable method which is less sensitive to 

the noise of the signals. 
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 PNS application: One of the main contributions of this paper is development of a context 

recognition algorithm for vision aided GPS navigation of a walking person while holding the 

smartphone in different orientation. This is an original work in PNS which improve the vision 

aided navigation solution using context information. By using context information, the  

vision-based algorithm can be aware of the appropriate user mode and the device orientation to 

adapt detection of the velocity and orientation changes using visual sensor. 

2. Background and Related Works 

Context-aware applications use context information such as user’s activity to evaluate the user 

and/or the environment situation and then reason about the system’s decisions based on the context 

information. While different methodologies have been studied for the automatic recognition of human 

activities context and environmental situation for various context-aware applications (e.g., health-care, 

sport, and social networking [8–11]), this study is one of the first works that applies user activity 

context in PNS and specifically in vision-aided navigation. A new hybrid paradigm is introduced for 

context recognition and applying the context for PNS application. In navigation applications, the useful 

context includes the user’s activity (e.g., walking, driving) and the device placement and orientation. 

The research literature in activity recognition using multi-sensor information focuses on two types 

of approaches: data-driven and knowledge-driven paradigms. Data-driven paradigms which employ 

the fusion of different sensors typically follow a hierarchical approach [11]. First the sensors’ 

providers collect and track useful data about the user’s motions. The next step is to extract features and 

characteristics of the raw measurements using statistical techniques. Finally, a machine learning 

algorithm is used to recognize the user’s activity based on the comparison of the extracted features 

with those that are already extracted for each mode [5]. These techniques are used for simple and low-level 

activities and differ on the number of used sensors, considered activities, adopted learning algorithms, 

and many other parameters. The accuracy of the data-driven techniques depends mainly on the 

complexity of the activities, availability of the sensor data, finding the optimum features, accuracy of 

the training sets and using the best machine learning method for the specific application. Therefore, to 

detect the low-level activity contexts, different sensor signals, features sets and classification 

techniques are examined in this research to find the optimum data-driven context detection algorithm for 

PNS. The accuracy of this data-driven method is further improved by using high-level knowledge-driven 

algorithms. As an improvement to the previous works, accelerometers, gyroscopes and magnetometers 

are integrated to recognize activity context more reliably. Moreover, in most of the research works in 

this area, the specialized accelerometers are fixed to the users’ body or have a certain orientation. This 

assumption usually does not hold for the usual case of carrying the phone in the hand or pocket. 

However, in this study no assumption is made about how users carry their mobile phones. 

Knowledge-driven paradigms for reasoning about human activity have been investigated in 

ubiquitous computing and artificial intelligence. Various formalisms are developed in this respect and 

these methods differ in the expressiveness of the logic, the implicit or explicit representation of 

contexts, and the complexity of reasoning [12]. Recently, logic-based knowledge representation 

formalisms have emerged in activity reasoning because of their high expressiveness combined with 

desirable computational properties [12]. Also, ontological approaches have been used for activity 
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modeling in order to define the formal semantics of human activities by means of the operators of the 

ontological language. Then, ontological reasoning is used to recognize that a user is performing a 

certain activity using some evidences (e.g., sensor data, location of persons and objects, properties of 

actors involved). Most of the knowledge-driven techniques have been used in pervasive computation 

for reasoning about the environmental situation and inferring complex and high-level activities such as 

sleeping, brushing teeth, cooking or being in a meeting. To improve the data-driven classification, a 

rule-based engine is developed to reason about higher-level activities by incorporating GPS and 

temperature sensors as well as correlation of walking pattern. A high-level decision-level fusion is 

applied to detect high-level context information from multiple information sources. This paper is one 

of the first works in navigation context detection which use a fuzzy based decision-level fusion 

algorithm in combination with a statistical data-driven recognition technique to improve the accuracy 

and consistency of activity context. 

To integrate the advantages of both data- and knowledge-driven approaches, hybrid mythology is 

recommended in pervasive computation research field [13]. A hybrid knowledge-driven approach is 

proposed in [8] for real-time and continuous activity recognition using multi-sensor data in smart 

homes. This study makes extensive use of domain knowledge in the life cycle of activity recognition 

based on an ontology-based semantic reasoning and classification. In another work [14], knowledge 

based Bayesian Network was examined to incorporate prior knowledge to reduce the amount of 

training data. A constrained structure learning method is used in this study to learn activities such as 

walking, running, leaving and entering car, and etc. using camera stream. In another work [15], 

ambiguity learning has been developed to detect basic activities such as walking and running using 

accelerometer and GPS sensors on a smartphone for health-care purposes. This method is based on a 

logic-based framework to decompose complex activities into simpler ones and integrate it with 

machine learning techniques to process sensor data. However, one limitation in almost all of these 

techniques is that there is no support for imperfect information and consideration of uncertainty. 

Uncertainty is an integral part of the activity recognition and is mostly caused by the imperfectness and 

incompleteness of sensed data. Hence, to have more reliable results, the modeling of uncertainty is an 

essential step. This research improves the previous hybrid methodologies by using fuzzy inference for 

uncertainty modeling. The proposed methodology aims at integrating the data-driven paradigm with 

the knowledge-oriented paradigm to solve activity detection problems. Fuzzy inference system is used 

to transform the data into higher-level descriptions of human activities for uncertainty modeling and 

considering experts’ rules and other information sources. This method is capable of handling the 

uncertainty of the signal processing activity detection, removing the conflicts and preserving 

consistency of detected activities, filling the gaps, and fusing various sources of information. 

Conventionally, acceleration sensors have been applied in most of the physical activity recognition 

research works because they are small, inexpensive, light-weight, and consume little power [16]. 

However, the fusion of multiple sensors including several accelerometers, gyroscopes, GPS, camera, 

and infra-red (IR) motion detectors not only improves the results but is rather mandatory for an 

accurate activity recognition system, as noted by Kern, et al. [1]. In this research, a smartphone such as 

Samsung Note1 is employed as a multiple sensor device to recognize the interesting activities for 

PNSs. Smartphones have been recently used in monitoring human activities because of their portability 

(small size and light weight), considerable computing power, embedding of various sensors, ability to 
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send and receive data, and their increasing popularity. A wide variety of research works has been 

conducted in activity recognition using smartphones [3,5,9,17]. As the smartphones are limited in 

terms of energy and computing power, different approaches have been suggested to overcome such a 

challenge. In the first group of studies, the complete recognition procedure can be done on the mobile 

device [10]. This needs simplified recognition process and hardware-friendly approaches designed for 

pattern recognition techniques [9]. In the second group [3,5,17], a portion of computation is done on 

the mobile phone and the other part can be done on a central location or a server computer. These 

systems send the data to the server and the recognition process is performed on the server, then the 

results are sent back to the mobile phone. In this case, calculation capacity would not be an issue, but 

on the other hand, data transfer is the problem. In this research, we used the client-server architecture 

to employ more computing power in order to find the best set of sensors, features and learning 

algorithm and then, designing the most accurate and fastest approach for detection of navigation 

contexts. However, computations of the activity context-recognition can be performed on the mobile 

client. Moreover, this is one of the first research works in the field of activity recognition using 

smartphone which attempts to consider a variety of sensors (e.g., accelerometer, gyroscope, 

magnetometer, GPS and temperature) and to find the best set of sensors for a specific application. 

3. Context-Aware PNS using Multi-Level Sensor Fusion 

Information gathered by a single source is usually limited and may not be fully reliable, accurate 

and complete; therefore, the proposed approach in this research is using multi-sensor data in a multi-level 

fusion scheme to improve the accuracy and robustness of context-aware PNS. Multi-sensor fusion is 

the process of synergistic combination of evidences from different sources to provide a better 

judgment. One of the important issues concerning information fusion is to determine how this 

information can be integrated to produce more accurate outcomes. Depending on the stage at which 

fusion takes place, it is often divided into three categories: sensor level, feature level and decision  

level [18]. Figure 1 shows a multi-level sensor fusion pyramid along with the input of each level. 

Figure 1. Multi-level sensor fusion pyramid. 

 

The choice of a suitable fusion level depends on information type and applications. In sensor or 

low-level fusion, the integration techniques works directly on the raw measurements obtained from 

sensors. Feature or median-level fusion works on the extracted features which are available from 

different sources of information. Feature-level fusion is an appropriate level when features are 

provided from different sensors. Decision level fusion techniques take place at the decisions and 
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interpretations from different knowledge sources. These techniques are more suitable when 

information sources are naturally diverse. The comparison of fusion techniques in different levels is 

listed in Table 1. As there is no simple rule for selecting the proper fusion technique, a wide range of 

integration techniques are potentially applicable for each fusion level. 

Table 1. Comparison of three different levels of fusion. 

Fusion Level Advantages Disadvantages Application Examples 

Sensor level 

Simple and real-time  

Problem independent  

Accuracy improvement 

Sensor dependent  

Sensitivity to noise and  

sensor alignment 

Location determination using Kalman 

filter, particle filter, etc. 

Feature level 
Less sensitivity to sensorial 

aspects 

Necessity of finding optimum 

features and feature extraction  

Activity recognition using Bayesian 

networks, support vector machine, etc. 

Decision 

Level 

Fusion of diverse type of 

information  

Robustness improvement 

Problem specific solution  

Dependency on external knowledge 

Context reasoning using Fuzzy reasoning, 

Bayesian decision theory, etc. 

A context-aware system is concerned with the context detection, context reasoning and application 

adaptation based on the recognized context. In this paper, different techniques and models will be used 

for fusion in different levels. Sensor level fusion is used in location determination; feature level fusion 

is illustrated in activity recognition; and decision level fusion is applied for context reasoning to infer 

the context information. The application of the fusion approaches show success with techniques 

ranging from probabilistic theory to fuzzy and expert systems. In Figure 2, simplistic system 

architecture of a context-aware PNS is shown. 

Figure 2. Schematic diagram of the context-aware navigation services architecture. 

 

4. Context Recognition using Feature-Level Fusion 

The primary contexts relevant to the mobile navigation services can be divided into two categories: 

user activity, and device placement. User activity context (e.g., stationary, walking, running, 

ascending/descending stairs, using an elevator) refers to a sequence of motion patterns executed by a 

single person and at least lasting for a short duration of time. Another important context in PNS is that 

“where the device is located with respect to the user”. Usually a mobile device can be carried out by 

the user in an arbitrary placement (e.g., on the belt, in the pocket, in the bag, in the hand for talking, 

texting or while arm swing). Although there is a wide variety of research in activity recognition  
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using wearable sensors; a limited studies use a mobile device to collect data for activity  

recognition [3,5,6,17,19]. Although the activity recognition results in almost all of these research 

works are promising; however, they didn’t consider the impact of carrying the phone in different 

placements and diverse range of activities. Inspired by these results, we have used accelerometer, 

gyroscope and magnetometer sensors to consider both motion and orientation of the device. To 

recognize context information, a feature-level fusion scheme is applied using the extracted features 

from each sensor instead of the raw sensor data. Since the feature set contains richer information, 

integration at this level provides better recognition results. As the fusion does not use the raw sensor 

data, the scalability and sensor independency is increased; however, it requires transforming data to an 

appropriate feature space. Figure 3 demonstrates the procedure of feature level fusion which integrates 

multi-sensors data. 

Figure 3. Activity recognition procedure using feature level fusion. 

 

Table 2. The useful time and frequency domain features for context detection. 

Feature Space Description 

T
im

e-
D

o
m

ai
n

 

Mean    
   

 
   

 
 where    are the samples,         

Standard 

Deviation 
     

 

   
          

    where    are the samples,         

Inter-axis 

Correlation 

         
       

 
         

 
        

 
    

      
      

 
    

 
      

      
 
    

 
  

   
 
   

 where    and    are the samples 

from two axes,         

Zero-Crossing 

Ratio 

    
 

   
               

    where s is a signal of length N and the indicator 

function      is 1 if its argument A is true and 0 otherwise 

F
re

q
u
en

cy
-D

o
m

ai
n
 

Frequency 

Range Power 

            
          

  
   where              is the Nth primitive root of 

unity(e.g., the frequency of walking is about        [22], so, this frequency 

band separates activities such as walking and running) 

Spectral 

Energy 

                (where   is the angular frequency and       is Fourier 

Transform of the signal 

Spectral 

Entropy 

                         where    are the frequency components for a 

given band and       is the probability of    

As shown in Figure 3, the raw data captured by sensors is pre-processed for calibration and noise 

reduction. Then, signal processing algorithm is used to derive an appropriate set of features from the 

measurements. The potential number of features that can be used is numerous; however, the used 
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features need to be carefully selected to perform real-time and robust context recognition. After feature 

extraction, classification techniques can be used to classify the feature space. There is a wide variety of 

feature extraction and classification techniques; and often selecting the best one depends on the 

application [20]. In this research the following features (Table 2) has been used in time and frequency 

domains for context detection based on inertial data. 

These features are used as inputs in the classification methods, namely Bayesian Network (BN), 

Naïve Bays (NB), and Artificial Neural Network (ANN) which are listed in Table 3. In order to select 

the best technique, these classifiers have been evaluated using various datasets by applying Waikato 

Environment for Knowledge Analysis (WEKA), a free popular software for machine learning 

algorithms written in Java, developed at the University of Waikato, New Zealand toolbox [21]. The 

details of classification methods can be found in [22]. 

Table 3. Categorization of the classification methods. 

Classification 

Methods 
Description 

Naïve Bayes 

NB is a simple probabilistic classifier which uses Bayes’ theorem with naive independence 

assumptions. This assumption simplifies the estimation of                            

from the training data. 

Bayesian 

Network  

BN is a probabilistic graphical model that encodes probabilistic dependencies among the 

corresponding variables by using training dataset. BN learns relationships between activity 

classes and features to predict the class labels for a new sample.  

Artificial Neural 

Network 

ANNs are capable of “learning” by a number of known training patterns. In this research the 

used ANN has three layers; input layer, hidden layer and output layer. A simple back 

propagation algorithm (using RMSE) is used as the learning process. 

4.1. Experiment and Results 

To find the optimum set of sensors and features that contributes to an accurate context detection 

algorithm, an activity recognition module is developed. Using the activity recognition module and 

extensive experiments, the performance of activity recognition module has been evaluated for different 

user’s modes and motions. A Samsung Galaxy Note 1 smartphone was used for the purpose of data 

collection for this study. The software architecture of the proposed context-aware model for navigation 

services is client-server architecture. In this architecture, application logic can be split between the 

local android device and a server-side resource that can tap into larger databases and computing power. 

For example, recorded accelerometer data on the local android device are preprocessed and the mean 

value of each sample window sent to a web server where the data is compared against a database of 

context patterns. Using the Wi-Fi networks, the data can be synchronized with the server immediately. 

To gather data from the phone, an application is developed to capture and send the data to a server 

computer. This application can be used in real time and collects data with a timestamp. End users 

access applications through a light-weight mobile application while the main software and user's data 

are stored on servers at a remote location. All required sensor data for detection is pre-processed and 

sent to the server automatically or by the user push. In the next step, after processing data for context 

detection and finding the appropriate navigation solution, the results are sent back to the mobile user. 

http://en.wikipedia.org/wiki/Free_software
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Activity data was collected from four subjects consisting of two males and two females, their age 

ranging from 26 to 40. In order to collect the test data, the smartphone was loosely placed in different 

orientations including in the bag, in the jacket pocket, on the belt, in hand close to ear for talking, and 

down at one's side while arm is swinging. No special requirement has been imposed on how to wear 

the smartphone except for its location on the body. Each activity with a different device placement 

mode was performed for two minutes and stored in the database (DB) on the server. To build the 

reference data, subjects were asked to annotate main activities with start and finishing times. 

The best set of sensors for activity recognition is the ones with the highest correlation with the 

activity classes. Accelerometer sensors have been widely used for motion detection. Gyroscope is 

useful for capturing user’s motion and device orientation changes. Orientation determination is a 

significant feature to distinguish among sets of on-body device placements and determining the device 

orientation in each placement. Magnetometer sensor also helps determining the orientation as well as 

absolute heading information. In addition to such physical hardware-sensors, orientation software-sensor 

(or soft-sensor) provided by android API can be used to estimate the device orientation. This sensor 

fuses three accelerometer, gyroscope and magnetometer sensor signals to output the orientation angles 

(roll, pitch, and yaw). These angles describe the orientation of the device coordinate system with 

respect to the local navigation reference frame. The output of the orientation soft-sensor can be either 

used as an independent sensor or as a means to project other sensor data from device’s coordinate 

system to the reference navigation system. The results of context recognition using different sensors 

have been investigated for the whole dataset. Figure 4a gives the overall classification accuracies of 

the three recognition scenarios: user’s activity, device placement, and both activity and device 

placement. In this investigation, a BN classifier was applied using all the features. Time efficiency is a 

critical issue when using smartphones. Figure 4b shows time efficiency obtained from different sets of 

sensors for the DB of all users and all activities. Although this figure is showing the time consumption 

for a specific computer, it is useful for comparing the time efficiency achieved by using different 

sensors. By comparing Figure 4a,b, it is obvious that although applying all the sensor information 

leads to the highest accuracy, using accelerometer and orientation information has a better balance 

between accuracy and battery consumption. 

After selecting the appropriate sensors, the data is divided into two-second segments and features 

are extracted from 80 readings conducted within segments. The two-second duration is chosen because 

the experiments show that it provides sufficient time to capture meaningful features involved in 

different activities. The signal windows have 50% overlap. To investigate the feature extraction, 

various combinations of sensors are considered for discerning each set of activity and device 

placement. To increase robustness of activity recognition and reduce computations, a SVM (support 

vector machine) and gain-ratio based feature selection method is applied and a set of four features has 

been selected with the same level of accuracy for classification approach [23]. Table 4 lists the best set 

of features selected using SVM and gain-ratio feature evaluator. Also, the corresponding recognition 

accuracy using BN classifier for each set of features is mentioned in that table. 
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Figure 4. Results of contexts recognition using BN classifier and all the seven features:  

(a) Overall accuracy of different sensors; (b) Time consumption of different sensors. 

  

(a) (b) 

Table 4. Selected feature using SVM and gain-ratio feature evaluator and their 

corresponding recognition accuracy (Classifier: BN). 

Recognition Scenario Selected Feature Using SVM Selected Feature Using Gain Ratio 

Recognition of User Activity 

Mean Mean 

Standard Deviation Standard Deviation 

Spectral Energy Frequency Range Power 

Frequency Range Power Spectral Entropy 

Accuracy 98.1% 97.3% 

Comparative studies on classification algorithms are difficult due to the lack of universally accepted 

quantitative performance evaluation measures. Many researchers use the classification error (overall 

accuracy) for quality measurement; therefore, this research adopts a similar approach [23]. The 10-fold 

cross-validation is used to evaluate the classification models. After each folder is tested, we compute 

the average classification error of all the folders as the overall accuracy. 

Figure 5 shows the context recognition rate for BN, NB and ANN classifiers using four features 

selected by SVM feature evaluator. By investigating each activity’s recognition rate, it can be inferred 

that the classification models distinguish between the device placements and user activities with an 

overall accuracy of 95%. Although ANN requires more computational capabilities in comparison to 

BN and NB methods, the accuracies obtained from the three classifiers are close to each other (Table 5). 

This could be the result of the fact that the activities are discriminated by the four extracted features 

with a high accuracy. 
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Figure 5. Recognition accuracy rate using different classifier for different activity modes-

feature space: four essential features selected by SVM feature evaluator method. 

 

Table 5. Comparison of different classifiers in activity recognition of the DB of 120 min 

data using four essential features selected by SVM method. 

Classifier Accuracy Time 

Bayes Network 84.96 0.72 

Naive Bayes Classifier 81.24 0.04 

ANN(Multi-Layer Perceptron) 79.18 1.84 

To improve efficiency of the feature-level fusion and establish a good balance between accuracy 

and computational cost, the optimum set of sensors, features and the best classifier have been selected. 

Results showed that using accelerometers are efficient in recognition of user motions, but not enough 

for recognition of device placement; therefore, we added the orientation soft-sensor (based on the 

fusion of accelerometer, magnetometer and gyroscope), which can relieve the effect of the orientation 

changes on the performance of activity classification. Experiments conducted for feature selection 

demonstrated that when feature selection methods were applied, it was successful in removing 

redundancy in features and thus reducing computations. For activity recognition, four features have 

been chosen instead of all the features to reduce computational load without compromising accuracy. 

Compared to the more complex classifiers such as ANN, the results showed that the BNs yielded a 

similar performance, having a more extensible algorithm structure and requiring fewer computations. 

The BN classifier provides an overall recognition accuracy of 84.95% on a variety of six activities and 

six device positions using only four features provided by SVM feature selection method. 

5. Context Reasoning Using Decision-Level Fusion 

Using the results of the previous section, it can be observed that some of the activities (such as 

walking and using stairs) and some of the device placements (such as on-belt and trousers front pocket 

positions) were misclassified or cross-classified. This can be improved by reasoning about context 

information in higher level decision fusion using new information sources such as walking patterns 

and user’s constraint. Context reasoning is required to handle the uncertainty of the recognized 
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activities, remove the conflicts, preserve consistency of detected context, fill the gaps, and fuse various 

sources of information [24]. The correlation which exists in user’s motion, environment and device 

orientation persuades mining the association rules between them. Then, combining these rules using a 

decision level fusion algorithm may generate a more powerful understanding of the current situation. 

“Primary” contexts, including location, activity and time, and fusion of them in the decision level 

might generate valuable knowledge which acts as a guide into other sources of contextual information [5]. 

For example, knowing the current location and current time, the system could have a pretty good idea 

of the user’s current activity which can be used in context detection by adding association rules. In this 

research, after determination of location and recognition of activities, high level contexts are detected 

by incorporating association rules between the primary contexts in a reasoning engine. The decision 

level fusion applied in context reasoning engine improves efficiency of context detection algorithm by 

applying new rules which is acquired from various source of information such as historical context 

information, expert knowledge, user preferences or constraints. Figure 6 shows a decision level fusion 

which integrates heterogeneous source of knowledge, information and sensors. Context reasoning 

consists of context DB and context reasoning engines. The context reasoning engine infers deduced 

contexts, checking the consistency and monitoring the context information. Sensed and inferred 

context data can be converted to useful information according to the inference rules. 

Figure 6. Context reasoning using decision level fusion. 

 

5.1. Fuzzy Inference System (FIS) 

Fuzzy Inference System (FIS) is a method in which the parameters that influence the decision 

making process can be fused using a human like reasoning strategy. This is achieved by defining the so 

called linguistic variables; linguistic labels and membership functions [25]. The fuzzy reasoning 

process is then realized using the fuzzy if-then rules that enable the linguistic statements to be treated 

mathematically [25]. In this research, FIS is applied to model the context uncertainty and incorporate 

new source of knowledge using human rules. FIS was used for device placements and indoor/outdoor 

environment detection. The proposed linguistic variables (Table 6) can be obtained from different 

sources of information such as GPS, temperature and GIS (Geographic Information System) analysis. 

For each of the linguistic variables, membership functions are defined by an experienced person. 

For example, Figure 7 shows the membership function defined for the walking pattern correlation 

which is a trapezoidal function. To have a fuzzy definition for the concept of context extraction, an 

output membership function must be defined as well. The output membership functions take different 
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contexts as linguistic variables. It varies between 0 (stating that the context cannot be detected) and 1 

(denoting perfect context detection possibility). 

Table 6. Definition of fuzzy input variables [20]. 

Linguistic Variables Values 

Walking pattern correlation Proper (>0.6); Medium (>0.2 & <0.8); Poor (<0.4) 

Connectivity between activities High (<0.8); Medium (>0.4 and <0.7); low (>0.5) 

GPS DOP Good (1–4);Moderate (5–10); Fair (10–20);Poor (>20) 

GPS velocity Driving (>6 (m));Pedestrian (<8 (m)) 

Temperature Cold (<17 °C); Normal (>17 and <27 °C);Hot (>27 °C) 

Figure 7. Fuzzy trapezoidal membership function defined for the walking pattern correlation. 

 

Having determined the linguistic variables and corresponding membership functions, the next step 

is to determine the fuzzy rules between the input and the output membership functions. These rules are 

generated from association rules of the context DB and modified by an experienced person [20]. Based 

on the defined membership functions and the rules, fuzzy reasoning for the conjugate point 

determination is carried out in a Mamdani type fuzzy reasoning structure [25]. In the following four 

sample rules for detecting context information are presented in Figure 8. 

Figure 8. Evaluation of fuzzy rules using FIS. 

 

Selecting the relevant input-output variables and an appropriate set of rules has direct influence on 

FIS performance. In designing rule repository, specific constraints can be defined to incorporate 

common-sense knowledge. This reduces the amount of required training data and makes the rule 

mining computationally efficient. An example of such a constraint is that a person cannot drive while 

in an indoor environment. Therefore, the rule repository is composed of a number of predicates 
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generated by the user and designer along with the mined association rules. In the rule based engine, 

different types of rules have different levels of confidence and reliability. 

5.2. Experiment and Results 

After using FIS the results of context recognition is shown in Figure 9 for the same dataset. This 

figure depicts that using a context reasoning engine the overall accuracy for different context 

information has enhanced significantly. Feature-level fusion has the learning capability from sample 

datasets. Results of this paper show that feature-level algorithms are efficient in recognition of user 

motions, but inefficient in recognition of device location and orientation. One of the drawbacks of 

feature-level fusion is that they are not good for human interpretation of their internal representation 

and they cannot use human-like rules. On the other hand, most of these methods are based on the 

probabilistic assumptions of conditional independency and Gaussian distribution of probability 

distribution function. In contrast, decision-level fusion using fuzzy inference engine is based on human 

readable fuzzy rules. Context reasoning engine can improve consistency of decisions and handle 

uncertainty of classification using appropriate rules. This method is also efficient in computations. 

However, the construction of fuzzy rules & the determination of membership functions are subjective. 

Figure 9. Recognition rates for different device positions using FIS algorithm. 

 

To cope with uncertainty in context detection, the hybrid method was investigated using a 

combination of learning based on BN and explicit rules written in possibility using FIS. The accuracy 

of the hybrid method is better than each method and is 97%, which is very promising (Table 7). 

Table 7. Comparison of multi-layer fusion techniques’ accuracy. 

Method Overall Accuracy (%) 

Feature-Level Fusion (BN) 84.96 

Decision-Level Fusion (FIS) 43.0 

Hybrid Method (integration of BN and FIS) 97.1 

6. Location Determination Using Sensor-Level Fusion 

PNS requires continuous location determination and tracking of a mobile user with a certain 

accuracy and reliability. Detecting location of a pedestrian user is a very challenging task as (s)he 
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moves in spaces where the usual positioning methods cannot work continuously in standalone mode. 

Location determination in indoor and outdoor environments is the main challenges towards building a 

ubiquitous PNS. Indoor/outdoor positioning technologies based on multi-sensor system including 

satellite and terrestrial positioning techniques is addressed in various research works [6,26,27]. 

Although positioning technologies is widely argued in the past few years, developing a system that 

enables ubiquitous location determination is still open for researchers. Most of the research work 

attempts to integrate multiple sensors/system [28]. Various sources of information can be loosely 

integrated to estimate position and orientation of the device in a way that is more accurate and 

pervasive than any of the individual sensors. In this research a context-aware system is developed to 

integrate measurements of different sensors using a sensor-level fusion. In this system, multi-sensor 

fusion is examined using camera and GPS sensors embedded on a smartphone. This system uses an 

integrated approach based on Kalman filter (KF). The details of the system can be found in [29,30]. 

Figure 10 shows the architecture of the location determination system which uses KF as the  

sensor-level fusion algorithm. 

Figure 10. Multi-sensor pedestrian navigation diagram using context-aware vision-aided observation. 

 

The design of the integrated pedestrian navigation algorithm is shown in Figure 10. When 

processing vision-based navigation measurements, sensors’ placement impacts the solution. Since the 

mobile device is either mounted on the body or carried by the user in hand, the orientation output of a 

mobile device depends on its placement with respect to the user. One approach to overcome this issue 

is to identify the user activity and device placements and customize the navigation solution using the 

recognized context information. The contexts that are useful for vision-aided system include: device 

orientation (face-up/down, vertical or portrait), device location (texting with one/two hand(s)), activity 

of the user (walking) and environment (indoor/outdoor). By texting we refer to the position of the user 

while texting and therefore it includes all similar positions such as surfing, playing, reading and etc. 

Texting mode requires the user to hold the device in front of her/him using one or both hands. The 

heading estimation from visual camera has been calibrated for this mode. Moreover, the heading 

measurements from visual sensor are compensated for the cases which the orientation of the device is 

changing instead of the orientation of the user by using the device orientation context. Also, the 

estimation of the velocity from camera is improved by a scale factor which changes adaptively based 

on the user mode such as walking, stairs, and running context information. The other context that can 

be used in this case is the environment (indoor/outdoor). This is used for selection of the sensors and 
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definition of the device dynamic and observation model in the KF. For example, in the case of outdoor 

environment, GPS measurements can be used if its accuracy is acceptable. 

When the context is changed, this triggered the context-aware PNS services to be refreshed by the 

update context information [22]. In this research as it has been mention in [22], an ontology-based 

model is developed using web ontology language (OWL). Context ontology applies axiom such as 

owl:subclass, owl:inverseOf, owl:unionOf, owl:disjointWith and owl:sameAs which are provided in 

OWL as shown in the following example: 

<owl: Class rdf:ID='Walking'> 

 <rdfs:subClassof> 

       <owl:Restriction> 

  <owl:onProperty rdf:resource='Step_length'/> 

  <owl:toClass rdf:resource ='#UserActivity'/> 

  <owl:classifiedAsrdfs:resource'ftp://305678/classification#Alph_Reference'/> 

        </owl:Restriction> 

 </rdfs:subClassof> 

</owl:Class> 

The ontology-based context metadata is generated using Protégé-OWL editor and is stored in the 

repository and retrievable by the inference engine. 

6.1. Vision-Based Pedestrian Navigation Using Computer Vision Algorithm 

Vision sensors are ideal for PNS since they are available in good resolution on almost all 

smartphones [29,30]. Vision-aided navigation has already been used for decades in navigation of 

robots; however, deploying it in pedestrian navigation has become a research topic only in the last few 

years [31,32]. The vision sensor is used to capture the user’s motion using consecutive image frames in 

real time (also known as visual odometry). Device’s displacement and orientation is estimated based 

on a real-time motion estimation of a single camera moving freely through an environment [32]. This 

system doesn’t need any special infrastructure and makes use of camera as an ideal aiding system. 

This estimation can be useful in position and heading estimation of pedestrians; however, there are 

various issues when processing the video frames from a hand-held device’s camera. Firstly, the 

measurements are relative; thus, estimation of absolute quantities needs initialization of the navigation 

parameters such as initial value for position and orientation. Furthermore, the observation scale cannot 

be obtained using only vision system and another sensor or a known dimension reference has to be 

used in order to retrieve the scale of the observation. Another issue is that the orientation of the mobile 

device affects the heading and velocity estimation of the camera. To overcome these issues, a  

context-aware vision-aided service is proposed to provide navigation solution using fusion of GPS and 

vision sensor. This service is aware of user and device context to use appropriate algorithm for each 

case to fuse navigation sensor data at a sensor level. For example, when the context information shows 

that device is in “texting” or “talking” mode, the observation from camera can be used for navigation. 

A KF is used to improve the navigation solution when the user is walking and the phone is in his/her 

hand. This method is based on the integration of the user’s relative motion estimation (changes of 
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velocity and heading angle) based on the video frame matching and absolute position information 

provided by GPS.In this paper, a computer vision algorithm is developed to find the motion vector 

between two successive frames using an image feature matching algorithm. The motion vectors 

between two successive frames are then employed for estimation of forward motion velocity and the 

azimuth rotation angle. Motion estimation from video is a well-studied research in computer vision  

community [33]. Recently, a variety of local invariant descriptors have made remarkable progresses 

for motion estimation such as Speeded Up Robust Features (SURF). This method show excellent 

performance for image transformations, scale changes, rotation, blur, and illumination changes, etc. [34]. 

To detect the motion vectors, interest (key) points are detected from the frames using SURF algorithm. 

SURF key points are extracted in both successive frames, and then, the bidirectional nearest neighbor 

method, RANdom SAmpling Consensus (RANSAC) method [35] and dominant line direction method 

are used to realize the coarse-to-fine matching of key points [34]. The algorithm is shown in Figure 11. 

Figure 11. Flow-chart of the computer vision algorithm. 

 

The matched interest points of two successive frames are determined using Euclidean distance 

between the descriptors of those points. Then, the candidate motion vectors are defined as the vectors 

starting form an interest point in one frame and ending at its corresponding matched point in the next 

frame. Figure 12 shows the matched features in two successive frames, candidate motion vectors (red), 

and acceptable motion vectors (green). As shown in Figure 12a,b, some of the matched points could be 

incorrect due to the existence of repeated similar points in the frames. Therefore, the candidate motion 

vectors should be filtered out to remove the inconsistent vectors. This filtering is based on discrepancy 

in length or orientation of the candidate vector. The RANSAC algorithm is used to find the compatible 

vectors using vector angle and length criteria. The accepted motion vectors are then averaged to make 

the average motion vector. The accuracy of the average motion vector depends on the number of the 

compatible vectors and variance of the angles and lengths of these vectors. Figure 12c shows the 

number of acceptable motion vectors from the first 20 motion vectors detected as the best matches in 

the successive frames. 

Under the assumption of having context information of the hand-held device alignment (texting 

mode and landscape forward alignment), the vertical component of the average motion vector is a 

measure of the forward motion speed. The horizontal component of the average motion vector is a 

measure of the azimuth change between two successive frames. To calibrate the scale approximation 

between the motion vector and both the forward velocity and the azimuth changes, a reference track is 

navigated using the motion vectors only. The transformation parameters between the motion vector 

and forward speed and azimuth change are estimated, so that the navigation solution corresponds to the 
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reference solution. Using the estimated scaling parameters, the forward motion velocity and the 

azimuth changes can be approximated between any two successive frames with the help of the average 

motion vector. The estimation of the velocity from camera is improved by a scale factor which changes 

adaptively based on the user mode such as walking, stairs, and running context information. Also the 

heading measurements from visual sensor are compensated for the cases which the orientation of the 

device is changing instead of the orientation of the user by using the device orientation context. 

Figure 12. The matched features, candidate motion vectors (red), and accepted motion 

vectors (green) in two different cases: (a) forward motion and (b) change of the heading; 

(c) The number of the accepted motion vectors for two consecutive frames. 

  

(a) (b) 

 

(c) 

Relative measurements from the visual odometery algorithm tend to accumulate error over time, 

resulting in long-term drifts. To limit this drift, it is necessary to augment such a relative navigation 

system with global positioning system such as GPS. 

6.2. Vision-Aided Pedestrian Navigation using Sensor Fusion Algorithm 

The core of the vision-aided pedestrian navigation system consists of GPS position and velocity 

measurements as well as the position aid (velocity and heading change rate) provided from video 

image frames. These measurements are integrated using a KF filter [7] that is presented briefly in the 

following section. In this research, the dynamic system is defined based on a walking user while 
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texting in an outdoor environment. In order to model the characteristics of the two-dimensional motion 

of a walking user, PDR algorithm is used. PDR is the determination of a new position from the 

knowledge of a previously known position, using the current distance and heading information. The 

coordinates         of a new position with respect to a previously known position             can be 

computed as follows: 
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where  ,   represent the absolute position in the East and North coordinate, both in meters, V (m/s) is 

the speed and   (radian) is the heading defined with the origin north and clockwise positive the origin. 

α is a scale factor for incorporating the user’s context. In the scenario of this paper, it is equal to 1 

while the user is walking. However, this factor can be adaptively estimated for the cases of running 

using the step frequency [22] or walking down/up the stairs. The absolute observations from GPS and 

measurements obtained from camera have been integrated using a KF. This filter uses the dynamic 

model to make a prediction of the state in the next time step. Then, it uses an observation model to 

compare the predicted and observed states. The dynamic model of a KF is:                 ; 

where,    is the state vector,      represents the transition matrix that relates the state of a previous 

time to the current time, and    is the process noise which is assumed to be drawn from a zero 

mean multivariate normal distribution with covariance   (           ) [36]. In this case, the 

dynamic equations for vision aided GPS is: 
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where    (radian/s) is the heading change rate and    (radian/  ) is the derivative of heading change 

rate. The variable Δt presents the time between two epochs. The state vector in this system is: 
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To avoid linearization, the state transition matrix is defined here simplified as: 
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   is approximated as a constant matrix at every time epoch  . General form of the observation 

model is:           ; where   , is the observation vector,    is the observation model which 

relates the state space into the observed space and    is the observation noise which is assumed to be 

zero mean and Gaussian white noise with covariance    (         ) ).The number of measurements 
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fed to the filter is varied on an epoch-to-epoch basis based on the availability of the sensors and its data 

rate. The non-availability situation of the visual aiding is based on the matching accuracy and was 

discussed in the computer vision section. The accuracy of the GPS sensor is also available on the 

android smartphones. The full-scale measurement vector (    is as follows: 

                  
         (10) 

The KF works in two phases: the prediction and the update. In the first phase, the filter propagates 

the states and state’s accuracies using the dynamic matrix      and      
  (estimated in the previous 

epoch), based on this equation:     
         

 . Then the covariance matrix    can be estimated 

using      
 . The usual equation to calculate   

  is:   
        

   
      . In the update phase the 

state is corrected by a blending of prediction solution with the update measurements based on  

   
     

             
  ; where,    is the Kalman gain obtained by      
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The update of the covariance takes place with this equation:   
    

         
 . 

6.3. Experiments and Results 

The potential of the proposed method are evaluated through comprehensive experimental tests 

conducted on a wide variety of datasets using the back video camera of a Samsung Galaxy Note 

smartphone. A dataset with two combined user context was collected for testing the total context-aware 

and navigation solution. The user walked along the side-line of a tennis court in a close loop. During 

the loop, the user changed the placement twice before and after making turns which represents a very 

challenging situation for vision navigation. Using the classification algorithm, the system recognized 

the mode change and adapts the most suitable vision-based heading estimation automatically. Then, to 

accomplish vision-aided solution, images resolution was down-sampled to 320 × 240 pixels. The 

frame rate of 4 Hz was chosen to capture motions vectors for walking mode. 

Figure 13a shows the extracted motion vectors, and Figure 13b shows the graphical comparison of 

the context-aware vision-aided GPS navigation using KF, vision-based navigation and GPS 

measurements. This figure shows that how vision-based measurements improve GPS navigation while 

both of them are not perfect enough in standalone mode. GPS solution in comparison with the vision 

sensor is not accurate enough and unable to discern turns. The reference trajectory is a tennis court 

located between two buildings and therefore, the smartphone’s GPS navigation solution (red dots) has 

been degraded. 

In Figure 13c, the KF and vision-based solutions are compared for the changes of heading 

estimation between two successive frames. In Figure 13d, the velocity estimation of the vision-based 

solution is compared with KF solution which is almost constant for a walking pedestrian.As previously 

shown for context-aware vision-aided navigation, the error of GPS navigation solution compared to the 

reference tennis court is reduced from 6.2 m in the case of using GPS only measurement to 2.7 m in 

the case of using vision-aided solution. By using context information, the vision-based algorithm can 

be aware of the appropriate user mode and the device orientation to improve and adapt it to the user’s 

mode. To illustrate the usefulness of using context information for vision-based navigation, when the 

user was about to change his heading direction and turn 90° around the angles of tennis court, they 

were asked to change the device direction orientation from portrait to landscape (90° rotation). It 
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means that the user heading changes about 90°, however the device heading changes about 90° ± 90° 

(“±” depends on the heading direction if it is clockwise or counterclockwise). Table 8 summarizes the 

navigation performance of the GPS navigation, a vision-aided navigation solution without considering 

context information and a context-aware vision-aided navigation which consider the change in device 

orientation from portrait to landscape (when the device heading changes about 90°). The experiment 

confirms previous findings where using the context information, the algorithm can distinguish between 

the orientation from user heading and device rotation. Therefore, context-aware velocity and 

orientation changes updates from visual sensor improve navigation solution in a smarter way. 

Figure 13. Vision aided GPS navigation: (a) An extracted video frame; (b) Vision-aided 

GPS in comparison with vision-based and GPS-only solution; (c) Heading angle changes 

estimated from visual sensor and KF; (d) velocity estimation using visual sensor and KF. 

 

 

(a) (b) 

  

(c) (d) 
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Table 8. Improvement in context-aware vision-aided GPS navigation in compare with GPS navigation. 

Navigation 

Solution 

Root Mean Square 

Error (m) 

Standard Deviation 

(m) 

Minimum Error 

(m) 

Maximum Error 

(m) 

GPS 6.2038 4.0522 0.9911 13.4886 

vision-aided GPS 6.6798 5.7653 1.3135 16.1863 

Context-aware  

vision-aided GPS 
2.6798 0.7442 1.2857 4.0558 

As the smartphones are limited in terms of energy and computing power, another critical factor of 

the system performance is its computation time. For the context recognition procedure, a portion of 

computation including pre-processing is done on the mobile phone and the recognition process is 

performed on a central location or a server computer. Then, the results are sent back to the mobile 

phone for context-aware vision-aided solution. By evaluating time efficiency of different steps in 

context recognition, clearly the feature extraction is the most time consuming procedure. Table 9 

describes the time budget of each step in context detection for activities recognition. Time efficiency in 

this table is obtained from a specific scenario of tennis court which is one minute sample data and in 

this case, optimum number of sensors and features are applied. However, it is useful for comparing the 

time efficiency achieved by this system. Sensor’s signals are divided into two-second segments and 

features are extracted from 80 readings within segments. The preprocessing, noise reduction, 

calibration and segmentation of the signal are running on a Samsung Galaxy Note 1 which has a  

1.4 GHz Dual Core Processor. The core signal processing and classification algorithms are written in 

Java programming language and running a CORE i7 CPU @ 2.7 GHz computer as a server. Also, the 

vision-based navigation solution is a real-time procedure running on the smartphone. To accomplish 

real-time vision-aided solution, images resolution was down-sampled to 320 × 240 pixels. The frame 

rate of 4 Hz was chosen to capture motions vectors for walking mode. 

Table 9. Time efficiency of different steps in context recognition and vision-aided navigation. 

Procedure (for One Minute Sample Data) Environment Time (ms) 

Signal pre-processing Mobile device 180 

Feature extraction Server 220 

Classification Server 50 

Context reasoning Server 260 

Procedure (for Processing One Image Frame) Environment Time (ms) 

Vision-based solution (Surf, Matching and finding motion  

vectors using context information) 
Mobile device 200 

Vision-aided GPS KF Mobile device 5 

7. Conclusions and Future Work 

The research investigates the design and development issues related to a context-aware personal 

navigation services for vision-aided navigation system. This paper contributes to the intelligent 

navigation computation domain using multi-level information fusion. A context-aware system is 

concerned with the acquisition of context (using sensors to recognize a context), the abstraction and 
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understanding of context (modeling low-level context to infer about the user’s situation), and 

adaptation of application behavior based on the recognized context. Since the context information may 

be acquired from multiple distributed and heterogeneous sources, defining an appropriate strategy to 

integrate various sources of information is necessary. To develop an approach for context recognition, 

two levels of fusion is used in this research: (a) Feature level fusion algorithms to combine data 

coming from different sensors by extracting useful features. (b) Decision-level fusion algorithms to 

detect high-level context information from multiple information sources and user constraints. 

Feature-level context detection algorithm focuses on evaluation analysis of classifiers’ accuracy and 

providing reliable results for selecting the best set of sensors and features to optimize the performance 

of activity-logging applications on smartphones. Also extensive analysis was performed to investigate 

the effect of a separate estimation of user activity and device placement or considering both of them 

together. As an improvement to the previous works, accelerometer and gyroscope as well as other 

sensors such as GPS are integrated to recognize activity context more reliably. Moreover, no 

assumption has been considered for carrying mobile phone. 

A high-level decision fusion is used to detect high-level context information from multiple 

information sources, such as user constraints and spatial-temporal dependency of recognized activities. 

This fusion algorithm contains three main steps: (i) Finding the rules for extracting activities, device 

status, and location; (ii) Collecting expert knowledge about the activity recognition and  

(iii) Implementing a rule-based system that includes a FIS for more reliable and readable results. 

Finally, in this paper, a vision-aided pedestrian navigation algorithm is proposed to improve GPS 

solution. Based on the experimental results, the field test shows that texting mode (which is the proper 

mode for vision sensor) can be detected from accelerometer sensor with the accuracy of 82%. In this 

mode, the orientation of the device (i.e., landscape or portrait mode) can be detected with an accuracy 

of 93%. Once context detection is performed, proper computer vision algorithm is applied accordingly 

to extract the motion vectors from successive frames. The motion vector is used to estimate user’s 

motion. Then, in a sensor-level fusion algorithm, the GPS positions, velocity and vision-based velocity 

and the changes in heading angles are integrated. Pedestrian field tests were performed to verify the 

usefulness of the integrated algorithm. Context-aware vision-aided GPS solution outperform GPS only 

solution by 43%. The results are promising for combined vision-based GPS navigation and showed 

great potential for accurate, reliable and seamless navigation and positioning. 

Although several important aspects of context-aware PNS using mobile devices and smartphones 

have been studied in this paper, there are still some open research problems worth further 

consideration. Overall classification performance can be improved by optimizing the methodologies 

based on the computing power. In this paper, data was only collected from four people, and a 

classification model was generated on top of this limited data set. To generate an adaptive model based 

on more training data from new users, it is interesting to have a larger population and build more 

useful and interesting applications. Also, considering other activities, such as bicycling, using transit, 

train or bus can be useful for PNS. Implementation of a robust context-aware PDR algorithm is another 

topic which is future research for the completion of on-foot navigation. This will include the 

appropriate changes in the KF states, prediction and update equations to integrate the PDR, wireless 

location estimation, vision and GPS solution for a ubiquitous indoor/outdoor navigation solution. 
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Considering walking slow and fast, taking stairs and elevator for PDR and vision solution can be a 

useful adaptation for improving navigation solution. 
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