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Abstract: Exchanging too many messages for fault detection will cause not only a
degradation of the network quality of service, but also represents a huge burden on the
limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault
detection through aided judgment of neighbors for wireless sensor networks. The algorithm
considers the serious influence of sensing measurement loss and therefore uses Markov
decision processes for filling in missing data. Most important of all, fault misjudgments
caused by uncertainty conditions are the main drawbacks of traditional distributed fault
detection mechanisms. We draw on the experience of evidence fusion rules based on
information entropy theory and the degree of disagreement function to increase the
accuracy of fault detection. Simulation results demonstrate our algorithm can effectively
reduce communication energy overhead due to message exchanges and provide a higher
detection accuracy ratio.
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1. Introduction

Sensors can be rapidly deployed into large areas and perform monitoring tasks by autonomous
wireless communication methods. In disaster prevention applications, for example, nodes detect and
estimate environmental information, and then forecast when and where a natural calamity may occur.
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Although users always hope that the network will provide excellent monitoring and gathering functions,
it seems inevitable that sensors to experience faults caused by some extrinsic and intrinsic factors.
Generally, a fault is an unexpected change in the network, which leads to measurement errors, system
breakdown or communication failure.

Faults are generally classified as crash, timing, omission, incorrect computation, fail breakdown,
authenticated Byzantine, etc. [1]. From another point of view, crash faults are classified as
communication faults, since under those conditions, a sensor can’t communicate with others because it
has a failure in its communication module or the link is down. Contrarily, all other faults are viewed as
data faults, which means the faulty sensors can communicate with each other, but the sensed or transmitted
data is not correct [2,3]. To avoid erroneous judgments due to faults, broken-down nodes should be
detected and isolated from other functioning nodes. Fault detection should make an unambiguous
decision about whether the behavior of a sensor deviates from other common measurements.

Sensors always form a local view of the fault state of sensors by collecting measurements from their
one-hop neighbors. Neighbor cooperation is one approach to fault detection, whereby a sensor uses
neighbor measurements to decide its own fault state collaboratively [4—6]. This is demonstrated to be
efficacious for fault information collection and diagnosis because it alleviates the overheads of sink
nodes or base stations in order to avoid network bottlenecks. Accordingly, a novel challenge for fault
detection in wireless sensor networks (WSNS) is how to reduce the energy consumption when exchanging
messages is the main means of fault detection in the distributed environment. Moreover, the dynamic
network topology and signal loss caused by long propagation delays and signal fading influence the
efficiency of fault detection in some advanced medical care or battlefield response applications.

In the majority voting algorithm based on neighbor cooperation detection, the normal measurements
of sensors that are located close to each other are assumed to be spatially correlated, while the fault data
are uncorrelated. The tendency state of a sensor is determined as possibly faulty (LF) or possibly good
(LG) by comparing its own readings with those of its one-hop neighbors in a voting process. If the
number of LG neighbors that have correlated readings is greater than or equal to half, then it is fault-free,
otherwise it is deemed faulty. The weighted voting approach uses geographic distance or degree of trust
as the deciding factor when calculating the sensor state, but these methods perform in WSNs better based
on the hypothesis of higher average connectivity degree. Actually, sensors are usually deployed in a
lower connectivity environment, in which exchanged readings are too few to make an appropriate
comparison and decision (e.g., in Figure 1a frontier node only has one neighbor). Then the detection
accuracy rate decreases as the fault rate increases. Moreover, the faults caused by attacks are unevenly
distributed in the case of intrusion monitoring because the hostile signals without a fixed routing will
randomly affect or tamper with readings.

In this paper, we mainly focus on sensing faults other than communication faults. After analyzing the
defects of traditional algorithms, we present an Uncertainty-based Distributed Fault Detection (UDFD)
mechanism for wireless sensor networks. The main contributions of uDFD are as follows:

(1) Propose the uncertainty-based distributed fault detection algorithm, which can avoid decreasing
fault detection accuracy when the failure ratio becomes higher. In addition, the accuracy of fault
detection remains at a high level regardless of a lower connectivity scene;
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(2) Data loss will influence the fault judgment because each sensor determines its own state step by step
according to its neighbors’ measurements. The paper represents a data forecast model based
on a Markov decision processes for filling in lost data to provide reference data for others’
state determinations;

(3) We classify two types of sensors’ tendency states: Possible Good (LG) and Undetermined (Un).
LG nodes contribute to judge nodes’ ultimate state. The Un nodes are both in an uncertainty
status, so we must determine the ultimate status of an Un node. Here we design belief probability
assignment (BPA) functions for different evidences that reflect the states of Un nodes. What’s more,
an evidence fusion rule based on information entropy theory is used to avoid evidence conflicts.

Figure 1. Fault detection illustration.
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The rest of the paper is organized as follows: Section 2 describes some related works in the area of
fault detection in WSNs. Section 3 introduces our Uncertainty-based Distributed Fault Detection
algorithm (UDFD) and the concrete mechanisms involved. Section 4 depicts the simulation results with
respect to typical fault detection algorithms like DFD and IDFD, and demonstrates our algorithm’s
efficiency and superiority. In Section 5, we conclude the paper.

2. Related Works

In this section, we briefly review related works in the area of distributed and centralized fault
detection in WSNs. The authors in [4] proposed and evaluated a localized fault detection scheme (DFD)
to identify faulty sensors. An improved DFD scheme was proposed by Jiang in [5]. Neighbors always
exchange sensing measurements periodically, therefore a sensor judges its own state (as good or
faulty) according to neighbors’ values. A faulty identification algorithm reported in [7] is completely
localized and requires lower computational overhead, and it can easily be scaled to large sensor
networks. In the algorithm, the reading of a sensor is compared with its neighbors’ median readings. If
the difference is large or large but negative, the sensor is deemed as faulty. If half of neighbors are faulty
and the number of neighbors is even, the algorithm cannot detect faults.

Krishnamachari and co-workers proposed in [8] a distributed solution for the canonical task of binary
detection of interesting environmental events. They explicitly take into account the possibility of
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measurement faults and develop a distributed Bayesian scheme for detecting and correcting faults. Each
sensor node identifies its own status based on local comparisons of sensed data with some thresholds and
dissemination of the test results [9]. Time redundancy is used to tolerate transient sensing and
communication faults. To eliminate the delay involved in z time redundancy scheme, a sliding window is
employed with some data storage for comparison with previous results.

The MANNA scheme [10] creates a manager located externally to the WSN. It has a global vision of
the network and can perform complex tasks that would not be possible inside the network. Management
activities take place when sensor nodes are collecting and sending temperature data. Every node will
check its energy level and send a message to the manager/agent whenever there is a state change. The
manager can then obtain the coverage map and energy level of all sensors based upon the collected
information. To detect node failures, the manager sends GET operations to retrieve the node state.
Without hearing from the nodes, the manager will consult the energy map to check its residual energy. In
this way, MANNA architecture is able to locate faulty sensor nodes. However, this approach requires an
external manager to perform the centralized diagnosis and the communication between nodes and the
manager is too expensive for WSNs.

Tsang-Yi et al. [11] proposed a distributed fault-tolerant decision fusion in the presence of sensor
faults. The collaborative sensor fault detection (CSFD) scheme is proposed to eliminate unreliable local
decisions. In this approach, the local sensors send their decisions sequentially to a fusion center. This
scheme establishes an upper bound on the fusion error probability based on a pre-designed fusion rule.
This upper bound assumes identical local decision rules and fault-free environments. They proposed a
criterion to search the faulty sensor nodes which is based on this error boundary. Once the fusion center
identifies the faulty sensor nodes, all corresponding local decisions are removed from the computation of
the likelihood ratios that are adopted to make the final decision. This approach considers crash and
incorrect computation faults.

In [12], a taxonomy for classification of faults in sensor networks and the first on-line model-based
testing technique are introduced. The technique considers the impact of readings of a particular sensor on
the consistency of multi-sensor fusion. A sensor is most likely to be faulty if its elimination significantly
improves the consistency of the results. A way to distinguish random noise is to run a maximum
likelihood or Bayesian approach on the multi-sensor fusion measurements. If the accuracy of final
results of multisensory fusion improves after running these procedures, random noise should exist. To
get a consistent mapping of the sensed phenomena, different sensors’ measurements need to be
combined in a model. This cross-validation-based technique can be applied to a broad set of fault
models. It is generic and can be applied to an arbitrary system of sensors that use an arbitrary type of data
fusion. However, this technique is centralized. Sensor node information must be collected and sent to the
base station to conduct the on-line fault detection.

Miao et al. [13] presented an online lightweight failure detection scheme named Agnostic Diagnosis
(AD). This approach is motivated by the fact that the system metrics of sensors (e.g., radio-on time,
number of packets transmitted) usually exhibit certain correlation patterns. This approach collects
22 types of metrics that are classified into four categories: (1) timing metrics (e.g.,
RadioOnTimeCounter). They denote the accumulative radio-on time; (2) traffic metrics (e.q.,
TransmitCounter). They record the accumulative number of packets transmitted by a sensor node; (3) task
metrics (e.g., TaskExecCounter). This is the accumulative number of tasks executed; (4) other metrics
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such as Parent Change Counter, which counts the number of parent changes. AD exploits the
correlations between the metrics of each sensor using a correlation graph that describes the status of the
sensor node. By mining through the periodically updated correlation graphs, abnormal correlations are
detected in time. Specifically, in addition to predefined faults (i.e., with known types and symptoms),
silent failures caused by Byzantine faults are considered.

Exchanging too many messages for fault detection will cause not only a degradation of the network
quality of service, but also a huge burden on the limited energy of sensors. Hence, we design an
uncertainty-based distributed fault detection based on neighbor cooperation in WSNs. It adopts
auto-correlated test results to describe different sensing states from day to day, and the information
entropy-based D-S evidence theory will be introduced to deduce actual states for undetermined nodes.

3. Uncertainty-Based Fault Detection Mechanism
3.1. The DFD and IDFD Schemes and Their Drawbacks

This section presents the DFD algorithm proposed by Chen [4] and IDFD algorithm described by
Jiang [5] to give an overview of distributed fault detection, and then analyzes these algorithms’
drawbacks. Chen [4] introduced a localized fault detection method by exchanging measures in WSNSs. It
is assumed that x; is the measurement of node i. We define di‘j to represent the measured difference

between node i and j at time t, while Ad;" is measurement difference from time t; to tj..:
dj =x —X; 1)
At ta [N ti t t
AdijI :dijl _dijl —(XiI _le )_(XiI _le) (2

When ‘dfj‘ is less than or equal to a predefined threshold 6, , we will consider a test result c;; is set to

0, or else it continuously calculates [Ad;*|. If |Adg"| > 6, (6, is also a predefined threshold), then
cij = 1, otherwise c;; = 0. Here the expression c;; = 1 means node i and node j are possibly in different
states. Next, the tendency status (possibly a faulty LF or possibly a good LG) is determined according to
following formula [14]:
LF if Y c; >[|N;|/2]
Ti = jeN; (3)
LG otherwise

where ﬂ N; |—| is the number of one-hop neighbors of node i. The formula states that a sensor is deemed

to be possibly good only if there are less than HNi|/ﬂ neighbors whose test results are 1. In order to

process the second round test, each node needs to send its tendency state to its one-hop neighbors. In the
DFD algorithm, in the end state the node Z; is decided to be fault-free only if a difference » is greater

than or equal to [|N;|/2], otherwise i is undetermined. Here y=>(1-c;)—> ¢;=> (1-2c;)
(VieN;, T, =LG). In order to promote identification efficiency for undetermined sensors, these nodes

repeatedly check whether their neighbor’s state is fault-free or not. If such a neighbor exists, then the
sensor is faulty (fault-free) according to the test result 1(0) between them. A sensor may not decide its
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own state because the states of neighbors are in conflict, e.g., Z; = Z, = GOOD. At the same time, cj; # Cxi.
Then Z; is GOOD if T; = LG, or else Z; is FAULT.

Jiang [5] considers the determinant condition Z (1-2c;) > ﬂNi|/2—| in the DFD algorithm

jeN;&T; =LG
is too harsh and this will lead some normal nodes to be misdiagnosed as faulty, so the determinant
condition for a normal node is amended as:

ZjeNi&TJ:LG G <|_|Ni|/2—'Tj:|_G (4)

If there is no tendency status of a neighbor as LG, then the final determinant status is set as normal
(faulty) based on T; = LG (T; = LF). Although this mechanism promotes the fault detection accuracy to a
certain extent through simulation demonstration, it doesn’t have a clear way to resolve conflicts or
erroneous judgments as illustrated in Figure 1.

In Figure 1a, it calculates ¢1, = 0, ¢33 =0, and c14 = 0 for node 1. Then Ty is set as LG according to
Equation (3). In the same way, we get T, = LF, T3 = LF, T, = LF. Node 1 has no neighbor whose
tendency status is LG, and then the final determinant status is set as normal based on the rule of Ti = LG.
This is an obvious erroneous judgment.

The tendency states in Figure 1b are calculated as follows: T, = LF, T, = LG, T3 = LF, T, = LG. For
node 1, > o oG =L 1o +0p_ o =1, and ﬂNi|/2—|Tj:LG =2/2=1. The node 1 is decided as

faulty according to Equation (4). Actually, node 1 is a normal sensor. Node 1 will make a mistake when
the number of normal neighbors equals the number of faulty neighbors. The premise is that their initial
detection tendency states are LG.

By analyzing misjudgment conditions of traditional algorithms, a defect is that an indeterminacy
occurs on the condition “="
is that these algorithms ignore the effect of sensors’ own measurements which are approximate at the
same time on adjacent days (e.g., 8 June and 9 June). The analogous and historical readings of the same
node contribute to determine the faulty state under vague conditions.

Moreover, most distributed fault detection mechanisms assume that sensors have the ability to
acquire every measurement and cooperatively judge the state of each other. When the sensor’s
communication module has a failure, but the acquisition module is active, the readings can’t be
perceived by the sensor. In a distributed collaborative process, nodes diagnose data faults based
primarily on neighbors’ data. Once a neighbor’s data is missing, it will affect the accuracy of fault
diagnosis, e.g., in Figure 1b, node 4 can’t determine its own status when node 1 has no data.

in Equation (4), and thus the node is not reducible to good or faulty. Another

3.2. Uncertainty-Based Distributed Fault Detection Algorithm

In the paper, we mainly resolve the following problems: (1) data missing before exchanging readings;
(2) misjudgments caused by indeterminacy conditions. The problem of missing data due to
communication faults will affect the determination accuracy when comparing neighbors’ measurements.
To solve the data loss, a faulty sensing node should fill in the missing measurements to provide the
reference. Secondly, the represented algorithm adopts the auto-correlated test results to describe the
status of differences between different days. Finally, those undetermined appearances may occur in the
above-mentioned section. The information entropy and the degree of disagreement function combined
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in evidence fusion theory are improved accordingly to help to deduce their actual states. In addition, using
information entropy in the evidence fusion can reduce evidence conflicts and increase detection accuracy.

3.2.1. Definitions

We list the notations in the uDFD algorithm as follows:

p: Probability of fault of a sensor;
e N;: Aset of neighbors of node i;
e x”': Measurement value of node i at time t on day D;

e [|N;]]: Number of one-hop neighbors of node i;

. ditj: Measurement difference between node i and j at time t on the same day according to

Formula (1);
. Adij“' : Measurement difference between node i and j from time t; to ti+; on the same day

according to Formula (2);
e Ad>': Measurement difference of node i at the same time t on different day;
e cjj: Test result between node iand j, ¢; €{0,1};
e Ti: Tendency value of a sensor, T. e{LG,Un};
o Z;: Determined detection status of a sensor, Z, e{GOOD, FAULT};
e 01, 0, 05: Predefined threshold values about d;, Ad;", Ad?™;
e Num;i({G}): Number of good neighbors of node i;
e  Num;({F}): Number of faulty neighbors of node i.

3.2.2. Fault Detection
The main processes of the uDFD algorithm based on neighbor cooperation are summarized as

follows. The key technology for solving the two problems is described in Sections 3.2.3 and 3.2.4.

Stage 1: Each sensor acquires the readings from its own sensing module. If no data is acquired, then it
fills up the missing data. After that, it exchanges the measurement at time t on day D with its neighbors
and calculates the test result Cj; (It’s assumed that C;; = 0 at the initial time):

1 If [AdD'|<@,, then set Cj=0;

2: elseCj=1,

3: endif

4: If |di|>6,, thenCy=1

5. elseif ‘di‘j‘s 0, && ‘Adij“' ‘ > 6,, then Cjj = 1;
6: else C;=0;

7:  endif

8: Repeat the above steps until all of test results about neighbors are obtained.

Stage 2: Node i generates the tendency value based on c; (V) :
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9. If D+ <H%—‘+l,then Ti=LG;
j

10: else Ti = Un;
11: endif
12: Broadcast the tendency status if T; = LG.

Stage 3: Calculate the determined status of LG nodes:
13: IfTi=LG && (3j)j e{LG};

14: 1f ) C; < Num(N,)+1 , then Z; = Good;
j=LG i=LG
15: else Z; = Fault;
16: end if
17: else if T; = LG && no any neighbor is LG, then T; = Un;
18: endif

19: A LG node can determine its own status (good or faulty), and only good sensors broadcast
their states in order to save transmission overheads.

Stage 4: A node whose tendency status is Un determines the actual state by using entropy-based
evidence combination mechanism:

20: Nodei (i e{LF,Un}) receives the evidence of good neighbors.

21: Combine the evidences generated by measurements by adopting information entropy-based
evidence fusion, and acquire the combined BPA functions m ({G}), m ({F}),and m (\¥);

22: Node i finds the node j which matches the min (mj (G} - m*({G}))W ;

23: if cj =1, then Z; = FAULT, else Z; = GOOD;
24: endif
25: Determined node broadcasts its status if it’s a good sensor.

Broadcasting not only uses up nodes’ energy but also occupies the channel bandwidth, so the main
method of saving energy consumption in our algorithm is that only particular states in different stages
(LG and GOOQOD) are broadcast. In Step 12, only the node whose tendency status is equal to LG
broadcasts the value. The reason is that only LG neighbors participate in final state determination in Step 14.
Similarly, only good sensors broadcast their states in order to save energy transmission overhead.

3.2.3. Missing Data Preprocessing Mechanism

In the paper, we mainly focus on sensing faults rather than communication faults. When missing data
occurs because of a sensing fault, it will affect the accuracy of fault diagnosis. This means X' has

been lost because the communication module has failed, which subsequently influences the reference
data for other sensors’ faulty state determination. It is necessary for node i to fill in the missing data and
send it to neighbors. In this section, we use a Markov decision processes based on neighbors’ historical
data to predict the current missing measurement values of node i. Relying the features of Markov theory
which can reflect the influence of random factors and extension to the stochastic process which is
dynamic and fluctuating is considered and we combine the historical data of node i with its neighbors’
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historical data, and then form a fusion historical data vector, which can be adaptively adjusted according
to the significance of neighbors’ measurements. Therefore, the state transition matrix of Markov is
adopted to predict the value and sign of the reading difference between two days. The steps for data
missing preprocess preprocessing are as follows:

Steps:

(1) For each node jeN,, where N; is the set of all the neighbors of node i, fetch the previous m

historical measurements of node j, and these historical measurements correspond to an m dimensional
vector Vj, that is V, = (X7, X7 XP™HY);

(2) Calculate the reputation value Cj; for each neighbor of node i, that is for each node jeN,, we

have C;=e™, where 4 :lZE‘:l‘XjD‘k"—XiD‘“‘. Note that for a different node i, node j has
m

1
different reputation values and a smaller value for A will increase the reputation value of node j;

(3) Here we introduce Mahalanobis distance to evaluate the similarity distance between node i and its
neighbors. Then the prediction results should keep Mahalanobis distance changes within a predefined
threshold. For each node j e N,, calculate the Mahalanobis’s distance D(Vi ,Vj) between vectors V;
and Vj, in order to evaluate the similarity of node i and all its neighbors. That is
D(V,,V,) = \j(\/i -V,)" X7(V,-V,), where X is the covariance matrix of V; and V;;

(4) Assume that V. is a fusion of the historical measurements of node i and all its neighbors, which

is used in the Markov decision processes to predict the current measurement of node i. It is also an m
dimensional vector and can be calculated as follows:

. e
Vo =axV+ xS iy, (5)

= INi] J
Zk:lcik

In this data-fusion formula, the historical measurement vector V; is weighted by the reputation value
of node j, and the factors a and f (a+ £ =1) indicate to what extent a node trusts itself and neighbors.

Here a=/=05.

(5) According to the result of fusion in Step 4, use Markov decision processes to predict the current
measurement of node i, then we can get X°*;

(6) For each node jeN;, recalculate the Mahalanobis’s distance D'(V{;V[) between vectors V/
and V/. That is D'(vi',vj'):\/(\/i'—v;)Tz'*l(\/i’—v;), here V' and V/ are (m + 1) dimensional
vectors, and V;'= (X, XPTTH L XPTOXPY) V] = (XD XM X XY, B s the
covariance matrix of V' and Vj’;

(N 1f vjeN;, D'(VV/)- D(Vi Vi ) <@, where @ is a predefined threshold, then there is no need to

adjust the fusion factor a and the predicted value X' can be adopted. Otherwise, the predicted value

X' increases the differences between node i and node j, so the fusion factor a needs to be reduced
appropriately, in order to decrease the proportion of neighbors” measurements in the calculation of V. ;

(8) If the fusion factor a has been adjusted in Step 7, then return to Step 4. Otherwise, this
algorithm ends.
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In order to predict the missing data X.”* in Step 5 of the above algorithm, we draw on the experience
of Markov decision processes [15,16]. Firstly, according to V," which is calculated in Step 4 of the
,...,‘XiAD‘Z"‘) and it is

above algorithm, we can get the corresponding vector X, = (‘XiAD‘m"‘,‘XiAD‘””“

an (m — 1) dimensional vector and can be considered as an independent and identical distributed

Markov chain.
Then, we classify the state of each component in vector X, by an average-standard deviation

classification method. Assume that state s can be expressed as E, [min,, max,], where min_ and
max, indicate the lower bound and upper bound of state s.

Then the sample average is:

1 & .
— X.Aij,t
“= (6)
The standard deviation is:
S _ l Zm:(‘x_AD—j,t‘_ﬂ)Z (7)
m_2 j=2 I

According to central-limit theorem [17], we divide the sliding interval of historical fault data
into five states, that is E =(x«—3S,u4-S), E,=[u-S,u-05S), E,=[x—-05S,u+05S),

E,=[u+05S, u+S),and E;,=[u+S, u+3S). The state of each component in the difference vector
X, depending on which sliding interval it belongs to.
The transition probability matrix P can be calculated as follows. Assume that M indicates the

sample numbers that state Es transfers to state E; in one step, and Ms indicates the sample numbers of
MY - -
state Es before transfer. Then we get p¥ =M—St, where p® means the transition probability of

st
S

shifting from state Es to state E; by one step. Therefore the 5 <5 transition probability matrix is:
Py P
PY = Cod
B
For any component | X“°"Y| (j=1, 2, ... m), the probability distribution vector is:
”(D_j):(”l(D_j)’ﬁz(D_j)’7Z'3(D_j)l7[4(D_j)’7[5(D_j)) (8)
Assume that |X“P?Y| is in state Es, then the probability distribution vector of it is
n(D-2)=(0,0,1,0,0). As the probability distribution vector z(D—2) and the transition probability
matrix P® are known, then the probability distribution vector of | X0 s
n(D-1)=n(D-2)xP"Y, the corresponding state in max{z,(D-1), se{L2,3 4,5} is the state
| X 2P| belongs to. If | X“°™ | is in state s, then the specific value of | X“°™V| is determined

as follows:
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n_,(D-1)
nsfl(D—l)+7zS(D—l)+7r

‘XiAD_l’t‘=mins>< (D—l)

min, +max, n (D-1)
+ X
2 n_(D-1)+xn (D-1)+x,,(D-1)
m,,(D-1)
T, ( D —1)+71:S (D —1)+7t5+l(D -1)

S+1

©9)

+max, x

Continue to introduce Markov decision processes to predict the signs (positive and negative) of
| X 2P| For the vector X/ = (X (*P-™0 X (4P-ma X 22721y "we define that state E; corresponds to

. . . . MO
positive, and state E, corresponds to negative. Then we get the transition probability p/* = M—S‘, and

0 p |
Py P
between positive and negative. Also for any component | XY, (j = 1, 2,...,m), the probability
distribution vector is z'(D—j)=(z (D-j),7, (D—j).Assumethat |X“°"*"]| is a positive, then

the transition probability matrix P'® :( ] which reflects the probability of transferences

the probability distribution vector of it is n’(D—Z):(L 0). As the probability distribution vector

7'(D-2) and the transition probability matrix P'® are known, then the probability distribution
vector of the sign of [X**™| is a'(D-1)=a'(D-2)xP'® , the corresponding state in
max{z(D-1),s e{L,2}} indicates the sign of | X*>™*V |,

3.2.4. Information Entropy Based Evidence Confusion

As the Un nodes are both in uncertainty status, we need to find a mechanism to determine the status of
these nodes. Dempster-Shafer evidence theory is an effective method for dealing with uncertainty
problems, but the results obtained are counterintuitive when the evidences conflict highly with each
other [18,19].

In the improved evidence fusion algorithm we propose, the possible events can be depicted as
evidences. Through combination rules, evidences are aggregated into a comprehensive belief probability

assignment under uncertainty conditions. It’s assumed that a set of hypotheses about node status is
denoted as frame of discernment ® ={G, F}. The symbol G represents a good sensor, and F is faulty.

The power set 2° includes all of subsets of ®. Here 2° ={{®}{G}{F}{¥}}, each symbol of

which respectively represents the hypotheses about impossible, good, faulty, and uncertainty.
The belief probability assignment (BPA) functions of node i are depicted as follows:

m: 2’ —[0,1] (10)
m, (®)=0 (11)

We define the BPA function for good status is:
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—E(fx +1 0<é, <u—o;
7(5)(‘21)2
1_e 207
m{G}) = B a— U-o,<& Su+o; (12)
05—‘):—X & >U +o
) 4,Ul X 1 1
0 &y 22U,

Similarly, the BPA function for faulty status is:

Sx 0<¢&, <u —o
4y
7(5)(‘2'1)
l-e %
m({F}) = 5 U -0y <&y SU +0y (13)
0.5
— &y Sx > U +0;
H
1 & 22y

a & <u —o;
m{¥p=.e ** u -0, <& <u+o, (14)
05—52 £ > U +o
0 &y 22U,

Here we design an expectation deviation function &, . It’s assumed that the measurement value of

nodes at time t on day D is a random variable, which has the expectation EX and variance . Define

|X - EX|

S=——
(o}

&, indicates the data offset between node i and the average of good neighbors. The larger &, s, the

that means the multiple relation between o, and the difference between X and EX.

more probable that the node is faulty. With the increase of & , m({G}) reduces, on the contrary,
m({F}) rises.
In Section 3.1, we have discussed that one of the defects of traditional algorithms is that an

indeterminacy occurs for the “=" condition in Equation (4), and thus the node is not reducible to good or
faulty. Therefore, we define the range (4 —o,, 14 +0,) within which the status of this node has higher

uncertainty (the probability of this node being fault is moderate) and m(¥)~ N(z,0,) when
& e(w—oyu+0). When & =y, m({¥})=1, which means the uncertainty reaches the top
(depicted in the Figure 2).The definitions of m(G), m(F) and m(¥) express this meaning above and
provide a good description of the influence of changing &, on evidence.
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In Equation (14), when &, e (4 —oy, 14 +0;), We can see that:
P(& > +0o,)<e™? (15)
According to the Chebyshev inequality:
p{]X—EX|28}S(52/82 (16)
Make &’ =e"’c? then &=e"*c. The formula expands as follows:

P{—l X —EX] >e V<o ™? (17)
O

Figure 2. The BPA functions.
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According to Equations (15) and (16), we get x4 +o,=e*. Here, we define o1 = 0.1,
and then u; = 0.68. After all above, m({G}), m({F}) and m(¥) can be calculated by
Equations (12)—(14), respectively.

In D-S evidence theory, if there are more than two BPAs that need to be combined, then the
combination rule is defined as follows:

) _ ZﬂilBi :ZHi:lmi (B) (18)

m(Z K

where K is the mass that is assigned to the empty set @, and K :ZDN E}:(Dl_[ilmi(Bi). But the

traditional Dempster-Shafer evidence has a very obvious disadvantage when being used in our algorithm
of fault detection. For example:
ml: m(G) =0.8, m(F)=0.2, m(¥) =0,
m2: m(G) = 0.8, m(F) =0.2, m(¥) =0.
The fused result is m(G) = 0.94, m(F) = 0.06, m(¥) =0. However, the result extremely negates F in
the traditional Dempster-Shafer evidence fusion. Obliterating conflict roughly and running
normalization processes leads to extreme differences between G and F. This will cause errors in the

judgment of sensors’ states when using uDFD. That is because the node i will find the node j which
matches the min( m; ({G}—m*({G}))—’ . Too extreme evidence will influence the effect of
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comprehensive evidence. Based on this, we propose a new evidence fusion rule combined with
information entropy theory. According to conflicts to the entirety presented by information divergences,
we classify evidences into several sets. By fusing the results from different sets, this prevents extreme
extension of differences between G and F. By this evidence fusion algorithm, we can finally determine
the nodes’ status.

In classical theories of information, Shannon Entropy measures the amount of information, while the
amount of information reflects the uncertainty in random events. Considering different evidences should
be assigned different fusion weight according to its amount of information, so, in this section, the
theories of entropy and the degree of disagreement function which measures the information
discrepancy are introduced into combination rules for evidence conflicts and increase the accuracy of

fault determination for Un nodes. Firstly, we introduce some definitions. The information divergence
D(p|lg) between discrete random variables p and q is defined as below [20]:

p(X)
a(x)

It is obvious that D(p||g) >0 assume that M, indicates the Ith evidence and M, =(m,,m,,,...,m,),

D(p|la) = Zp(x)log (19)

where m; is called a focal element. Here, i”:l m, =1,m, >0,0<i<n,1<| <s,wherenis the number of

focal elements in each evidence and s indicates the amount of evidences.
D, is defined as follows:

ZD(M M) = sz.l |n (20)
j=1i=1
It indicates the degree of differences between M, and the whole evidences. It is determined by the
average of the information divergence between M; and each evidence. After this, define ¢, as the
percentage of the whole difference degree that M, occupies. It is calculated as follows:

o, =D /iDi (21)

According to d;, evidences are going to be classified into several subsets. Evidences which have
similar o) are aggregated in the same subset. Before classification, the demarcation point A is confirmed
as below, which means the average differences between J;:

- ep o yla-d @)

1=1i=1+1

Assume that C, is the resultant subset and P is the collection of 6. The pseudo code of the
classification algorithm is as follows:

1:r=0;

2: While P is not empty, do

3: Randomly, choose any one element from P and put it into C,. Remark this element as C,4;
4: Remove C,; from P;

5:Loopl, forl=1tos

6: Loop2, forj=1to |C,| (|C,| isthe cardinality of |C,|)
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7:1f |5 -C,
8: End if;

9: End loop2;
10: Put ¢ into C; and remove it from P;
11: End loopl;

12: r++;

13: End while.

> A, then continue loopl,;

After classification, the difference between o, of each evidence in the same subset is less than A, that
is, evidences have a smaller extent of conflict in each subset. Assume that there are m subsets and the
weight of each subset is defined as CW, =|C,|/s, where |C,| is the number of evidences in each subset.

Evidences in each subset will be fused with weights to get the aggregative center of C,, and the
weighting fusion is based on information entropy.
Information entropy indicates the amount of information an evidence has. The larger the information

entropy is, the less amount of information the evidence has. Define that the information entropy of
evidence M, =(m,,m,,...,m,) is calculated as follows [21]:

H, :ij, Inm, (23)
j=1
If © is a focal element in M,, then a larger m,(®) means M, has less amount of information, so the

amount of information of M, can be calculated according to the following formula:
V, =[1-m (®) ]x f (H,)=[1-m (©) |xe™ (24)

A smaller weight will be assigned to an evidence which has less amount of information, so the weight
allocation of each evidence is as follows:

W - V,/ZEV, ,if 3l whereV, #0 (25)
1IC,|, if v1,v,=0

Then we can get the aggregative center of C, by using an improved D-S formula. For any focal
element “A”, the result of fusion is n,(A)= p(A)+Kq(A), where:

Cr|

p(A)= > [Im®A) (26)

ICrly A 1=1
i:1A‘7A

3
q(A)= 2 W, xm (A) 27)
K=A (28)

Here, p(A) represents the traditional way to fuse evidences and q(A) represents the average support
degrees from each evidence to A. When K is large enough, the influence from q(A) is increased.
Assume that there are m subsets and n, is the aggregative center of C;, then the final result of fusion is:

m(A)=(3" (€W, xnk(A»)/(zm(A» (29)
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4. Simulation Analysis
4.1. Simulation Setting

We use the MATLAB simulation tool to demonstrate our model. As shown in Figure 3, a square
with a side length of 100 m is constructed in our model, in which sensors are deployed and form the
network. Ten temperature sources are deployed in the square as the sensing objects of sensors. The
distance between two sources is no less than L. Every temperature source randomly generates
temperature data x which ranges from —5 to 40 °C. These readings simulate the temperature variation of
four seasons, which means it has regularity and smoothness. Second, n sensors are deployed in this
square and each of them selects the nearest temperature source which must be in the sensing range. If no
temperature source exists within sensing range, a sensor is set to not work, which means no sensing from
a temperature source and no communication with neighbor nodes.

Figure 3. Topology description.

[ temperature working _ dormant

sources nodes < nodes
100 —=2HEE T — T T

[}
o O oogcp
QD_D o] o} o @n o i
o}
o] o]
805 e [e] L8] o Lo w —
a® o
7o N o O .
* o}
B0 o * “ -
m] x " o O
a0+ o] * g
o F o, o
o} o}
0 < o " O oo} 7
- o} O
30+ O o} o o <A
08} O L
ot @ -
Ed @Oo
x O & o] o)
o} e o 0 o .
® ooo o] ©
®
D 1 1 1 1 1 Iop % Io

0 10 20 30 40 a0 [=in] 70 80 90 100

Each working node establishes its variation of sensed data according to the distance to its temperature
source, which can be described by the formulas below:

X = X+0 /10 (30)
Xpnin =X—0 /10 (31)

X, and X . arethe upper and lower bounds of the data range, respectively. x is the temperature
X.ax)- 0 is the distance

generated by the temperature sources and it is uniformly distributed in ( X
between a sensor and its temperature source. In every sensing moment, a sensor chooses a random value
between X . and X as itssensing data.

min ?

Each sensor node chooses other nodes which are within its communication range (communication
radius is represented by R) and have the same temperature source as its neighbor nodes. After this, each
node creates a set of neighbor nodes and the wireless sensor network is formed.

Two cases of uniformly distributed fault nodes and intensively distributed fault nodes are simulated.
The first case is used in comparison when the number of nodes ranges. In the second case, we set squares
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which are located at a random coordinate as a fault region. We compare the detection effects for different
scales of intensive faults by changing the area of a square. According to the sensing data designation,
dataranging from X . to X . are