
Sensors 2014, 14, 12900-12936; doi:10.3390/s140712900 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Review 

Automatic Fall Monitoring: A Review 

Natthapon Pannurat 1, Surapa Thiemjarus 2,* and Ekawit Nantajeewarawat 1 

1 Sirindhorn International Institute of Technology, Thammasat University, Pathumthani 12121, 

Thailand; E-Mails: p_natthapon@yahoo.com (N.P.); ekawit@siit.tu.ac.th (E.N.) 
2 National Electronics and Computer Technology Center, Pathumthani 12120, Thailand 

* Author to whom correspondence should be addressed; E-Mail: surapa.thiemjarus@nectec.or.th;  

Tel.: +66-2-5646-900 (ext. 2479). 

Received: 8 April 2014; in revised form: 2 July 2014 / Accepted: 7 July 2014 /  

Published: 18 July 2014 

 

Abstract: Falls and fall-related injuries are major incidents, especially for elderly people, 

which often mark the onset of major deterioration of health. More than one-third of  

home-dwelling people aged 65 or above and two-thirds of those in residential care fall once 

or more each year. Reliable fall detection, as well as prevention, is an important research 

topic for monitoring elderly living alone in residential or hospital units. The aim of this 

study is to review the existing fall detection systems and some of the key research 

challenges faced by the research community in this field. We categorize the existing 

platforms into two groups: wearable and ambient devices; the classification methods are 

divided into rule-based and machine learning techniques. The relative merit and potential 

drawbacks are discussed, and we also outline some of the outstanding research challenges 

that emerging new platforms need to address. 
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1. Introduction 

Falls represent one of the leading causes of deaths and injuries in the elderly population. According 

to Lord et al. [1], more than one-third of home-dwelling people aged 65 or above and two-thirds of 

those in residential care fall one or more times each year. More than two-thirds of people who have 

experienced a fall are prone to falling again [2]. Vellas et al. [3] reported that 219 out of 487 elderly 

subjects had experienced a fall during a two-year study period and one-third of which developed a fear 
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of falling after the incident. The psychological consequences often lead to decreased mobility and 

independence among elderly population [4]. Falls can occur on level surfaces, mostly in living rooms, 

bedrooms, kitchens, bathrooms, or hallways [5]. The rate of fall-related injuries is generally higher 

among women [6] and the medical costs increase rapidly with age [7]. Damages caused by falls include 

tissue injuries, lacerations, joint dislocations, bone fractures and head trauma. Carroll et al. [8] reported 

that the total direct medical costs of fall injuries among elderly people in the U.S. in 1997 were  

$6.2 billion. The costs increased to $19 billion in 2000 [7] and $30 billion in 2010 [9]. Fall-related injury 

is considered one of the 20 most expensive medical conditions among community-dwelling elderly 

population [7]. Most elderly people are unable to get up by themselves after a fall and it was reported 

that, even without direct injures, half of those who experienced an extended period of lying on the 

floor (>1 h) died within six months after the incident [10]. 

Fall is defined as “an event which results in a person coming to rest inadvertently on the ground or 

other lower level”. This definition has been used as a baseline in many fall prevention and fall-risk 

assessment studies [11–14], and covers most types of falls targeted by fall detection research. 

Variations of fall definitions from different perspectives of seniors, health care providers and research 

communities can be found in [15]. Thus far, there are several review papers on fall detection and 

prevention. Noury et al. [16,17] reported a short review on fall detection methods and proposed a set 

of protocols to evaluate fall detection algorithms. In the study, a fall is divided into four phases, i.e., 

prefall, critical (impact), postfall and recovery phases, and fall detection algorithms are categorized based 

on whether they focus on “direct” detection of the critical phase or postfall phase. The critical phase, which 

consists of a sudden body movement towards the ground, lasts for approximately 300–500 ms. 

In 2008, Yu [18] presented a survey on approaches and principles of fall detection. Based on the 

initial state, fall characteristics are divided into three classes, i.e., fall from sleeping, fall from sitting, 

and fall from walking or standing. The detection methods are categorized based on device types into 

wearable, vision, and ambient devices. In 2009, Perry et al. [19] provided a brief survey on methods 

for real-time fall detection, categorizing them into methods that measure only acceleration, methods 

that use combination of sensors and methods that do not measure acceleration. It was also observed 

that every fall had a negative peak in the acceleration data; moreover, the acceleration change from 

positive to negative values and the speed of this change were important for fall detection. 

In 2010, Hijaz et al. [20] presented another short survey on fall detection and daily activity 

monitoring, categorizing them into vision-based, ambient-sensor-based, and kinematic-sensor-based 

approaches. The relative weaknesses and strengths of each approach were discussed. In 2012, 

Mubashir et al. [21] presented another survey following the similar categorization, but with more 

detailed subcategories. Bai et al. [22] described the characteristics of a fall based on three parameters: 

weightlessness, impact, and overturning of the body. Weightlessness usually occurs at the beginning of 

a fall. During this period, the acceleration values along three axes are close to 0 g. This is followed by 

an impact which generates the peak signal, the value of which is usually greater than 1.8 g. 

Overturning of the body after a fall can be determined by the difference in acceleration signals along 

the three axes before the weightlessness stage and after the fall. 

Recently, El-Bendary et al. [23] described causes and consequences of elderly falls, presented  

the contributions and challenges of existing fall detection techniques, and provided a review  

of commercial products for fall detection and prevention. In this study, existing commercial products 
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are categorized as wearable and hand-held solutions, movement sensing solutions, and anti-wandering 

solutions. None of the aforementioned survey provides details on implementation and evaluation that 

enable quantitative comparison across different systems. Hegde et al. [24] published a fall detection 

review classifying the technologies into four approaches, adding combined wearable and ambient sensors 

as another separate approach. Only eight wearable-sensor-based fall detection studies were compared in 

terms of sensor types, sensor placements and performance measures. Igual et al. [25] presented a survey of 

selected 66 out of 327 research publications on fall detection conducted during 2005 to 2012, categorizing 

them as context-aware-, wearable-accelerometer- and smartphone-based systems. 

Although several studies have tried to establish a common evaluation benchmark, only certain 

aspects of the systems have been addressed. The purpose of this paper is to provide a comprehensive 

overview of fall monitoring techniques, related commercial products, existing research problems as 

well as future trends. We will provide an in-depth review of wearable-sensor-based fall detection 

experiments. The rest of the paper is structured as follows: Section 2 provides a generic overview of 

fall detection systems and presents the timeline of key features in fall detection research with 

representative studies. Section 3 summarizes and compares important aspects of wearable fall 

detection systems. Section 4 presents a summary of commercial products related to fall 

detection/monitoring. Section 5 describes the future research trends. Section 6 concludes this paper. 

2. Fall Detection Systems 

Figure 1 depicts a typical fall detection system. The flow of real-time fall detection system starts 

with the detection device(s) sending motion data to a processing unit. When the algorithm captures a 

fall, alarm/action will be triggered. This can be in forms of alert sound (to attract attention and help 

from people in the vicinity), immediate intervention (e.g., inflating an airbag), or sending alarm 

messages to family members and/or caregivers. The information may also include time of the incident, 

location, direction, and status (conscious/unconscious) of the faller. 

Figure 1. A system overview of a typical fall detection system. 
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The first fall monitoring system was developed in the early 1970s. It was designed to send out an 

alert message when a remote transmitter button was pressed by the user [26]. Automatic fall 

monitoring research, on the other hand, has been conducted since 1990s. Lord and Colvin [27] studied 

causes and effects of falls in elderly population in an attempt to prevent falls and proposed the use of an 

accelerometer for fall detection. The first prototype system was developed in 1998 by William et al. [28], 

using a piezoelectric shock sensor to detect the abnormal peak due to falling and a mercury tilt switch 

to detect the orientation of the wearer after a fall. One of the first fall detection experiments was based 

on video cameras. Gu [29] conducted an experiment using three Broadcast Television Systems (BTS) 

and illustrated that horizontal and vertical velocities can be used to distinguish falls from normal 

activities. In 2002, Prado et al. [30] developed a prototype of fall detection system based on two  

dual-axial accelerometers worn as a patch on the back of the user at the height of the sacrum. Noury [31] 

developed a smart fall sensor consisting of a piezoelectric accelerometer, a position tilt switch, and a 

vibration sensor. A simple algorithm was presented, however, the results showed that the algorithm 

was too sensitive. Degen et al. [32] presented a wrist-worn fall detector for elderly population. The 

device was easy to wear but yielded only 65% sensitivity. Sixsmith et al. [33] used an array of low-cost 

infrared cameras mounted on the wall. An alarm was triggered either by an excessive period of 

inactivity or detection of a fall. Experiments on 20 fall and 10 non-fall scenarios performed by an actor, 

however, showed that the system could detect only 30 percent of actual falls. In 2006, Kang et al. [34] 

developed a wrist-worn integrated health monitoring device consisting of a fall detector and modules for 

measuring single-channel electro-cardiogram (ECG), noninvasive blood pressure (NIBP), pulse oximetry 

(SpO2), respiration rate, and body surface temperature (BST). Nyan et al. [35] conducted fall detection 

experiments based on a combined use of a high speed camera and three gyroscopes embedded within a 

garment near the chest, trunk (below the armpit), and waist. The camera was used to study the body 

configuration during a fall while the angular rate was used for fall detection. Miaou et al. [36] conducted 

fall detection based on an omni-camera and personal information (e.g., ratio between height and width and 

a body mass index) stored in a database. The system actually performed lying detection and yielded an 

accuracy of 70% and 81% with and without personal information, respectively. Alwan et al. [37] designed 

a fall detection system based on floor vibration using a piezoelectric sensor. Even though 100% detection 

rate was reported, the fall events were simulated using anthropomorphic dummies. 

In 2007, Srinivasan et al. [38] studied automatic fall detection based on a tri-axial accelerometer 

and Passive Infrared Sensors (PIRs). The wearable tri-axial accelerometer was placed on the subject’s 

waist to capture fall events while the PIRs were mounted on the wall to provide longitudinal motion 

information. Motionless signals from PIR sensors were used to confirm fall events. A wearable sensor 

was not only placed on the subject’s body, but also placed on an assistive device. Almeida et al. [39] 

presented a walking stick with a gyroscope embedded at its base for detecting fall and measuring 

walking pace. A fall was detected based on the magnitude of the resultant angular velocity along 

sideward and forward axes. The pace was derived from the summation of angular velocity between 

two adjacent peaks divided by the time interval between the two peaks. Warnings were given when  

a user walks faster than his/her normal speed. Lin et al. [40] performed fall detection based on an 

optical sensor and nine micro mercury switches embedded into a smart coat. The optical sensor placed 

on the left waist was used to detect a fall, while the micro mercury switches were used to identify the 
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fall characteristics (i.e., forward or backward) and user’s activities (i.e., lying, sitting, standing, or 

forward bending). 

In 2008, Doukas and Maglogiannis [41] proposed a combined use of an accelerometer and a 

microphone placed on the foot. Based on short-time Fourier transform, it was reported that low 

frequency sound signals were generated with high amplitude during ground impact and could be used 

to detect fall events. Grassi et al. [42] combined the use of a 3D time-of-flight camera, a wearable 

Micro-Electro-Mechanical Systems (MEMS) accelerometer, and a microphone for fall detection. 

Three sensors integrated on a custom board were separately processed and evaluated with suitable 

algorithms. Popescu et al. [43] proposed to use an array of acoustic sensors for fall detection. In 2010, 

Rimminen et al. [44] presented the use of near-field imaging floor sensors for fall detection. Fall 

classification was performed using a two-state Markov chain and pose estimation based on Bayesian 

filtering. Tzeng et al. [45] used a floor pressure sensor for detecting high impact on the floor and an 

infrared camera to identify subject’s actions. Bianchi et al. [46] developed their fall detection system 

based on a barometric pressure sensor and a tri-axial accelerometer placed on the waist. Based on the 

assumption that the atmospheric pressures between the waist and the ground are different, the 

experimental results showed that the sensor information can provide useful information towards fall 

detection. Dai et al. [47,48] introduced the use of mobile-phone-based fall detection. In 2011,  

Gjoreski et al. [49] performed fall detection by placing tri-axial accelerometers on the chest, waist, 

thigh, and ankle. They reported that sensor placement on the chest or waist was suitable for fall 

detection but a combination of four sensors yielded the best performance. Li et al. [50] detected falls 

by using accelerometers placed on different parts of the body (i.e., chest, waist, wrist, thigh, ankle) 

combined with information derived from sensors placed on furniture (i.e., bed and chair). 

Recently, fall detection based on tri-axial accelerometers embedded in smart phones has become 

increasingly popular. Fang et al. [51] compared the accuracy of fall detection based on a smart phone 

positioned on the waist, chest and thigh and reported that the chest is the optimal placement. The 

advantage of using a smart phone for fall detection is that it can also be used to send out warning 

messages and/or track the location of a faller. Koshmak et al. [52] conducted a fall detection 

experiment on seven novice skiers by asking each of them to carry a smart phone while skiing. Heart 

rate and oxygen saturation were also measured during the experiment, and unexpected variations in 

pulse signals were observed during critical situations. A few studies [53,54], however, reported that a 

tri-axial accelerometer embedded in a smart phone can be of relatively low quality and thus resulted in 

poorer fall detection performance compared to other standard commercially available accelerometers. 

Kau and Chen [55] conducted a study on smart phone-based fall detection using a tri-axial 

accelerometer and an electronic compass. 

The recent introduction of the Microsoft Kinect has drawn the interests of many researchers back to 

vision-based fall detection. Based on the Kinect, Stone et al. [56] presented a two-state fall detection 

technique and validated the system on a large dataset collected in 13 apartments. The dataset consists 

of approximately 3339 days of continuous data, comprising 454 falls (with 445 falls performed by 

actors and nine natural falls). Ma et al. [57] presented a depth-based human fall detection technique, 

combining two computer vision techniques, i.e., shape-based and learning-based classifiers. An 

insightful review on Kinect-based computer vision research and applications can be found in [58]. 

Table 1 shows examples of the existing ambient-sensor-based fall detection experiments. 
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Table 1. Ambient-sensor-based fall detection experiments. 

Author Sensor Types #Subjects #Fall Types #ADLs Features Methods Performance 

Ma et al.  

(2014) [57] 
Kinect RGBD camera 

 
1 5 Silhouette, curvature scale space 

SVM, extreme  

learning machine 

Sen = 91.15%  

Spe = 77.14%  

Acc = 86.83% 

Stone et al.  

(2014) [56] 
Kinect RGBD camera 

 
3 3 

Minimum vertical, average vertical  

velocity, maximum vertical acceleration, 

occlusion adjusted change in the number  

of elements on the x-y plane after  

projection of points below knee height, 

minimum frame-to-frame vertical velocity 

On-ground event 

segmentation, 

ensemble decision 

trees 

71% detection when 

near sensor and no 

occlusion 5% detection 

when distance >4.0 m 

Li et al.  

(2012) [59] 
Microphone array 

 
20 20 Mel-frequency cepstral coefficients TB 

Sen = 97%,  

Spe = 97%,  

Acc = 97% 

Zhang et al.  

(2012) [60] 
Kinect RGBD camera 

 
2 3 

Deformation on the joint structure, 

subject’s height 
kNN, SVM Acc = 76%–98% 

Belshaw et al.  

(2011) [61] 
Camera 

 
1 1 Silhouette, lighting, optical flow SVM, LR, ANN 

Sen = 92%  

Spe = 95% 

Khan and Sohn  

(2011) [62] 
Camera 

 
4 2 N/A 

HMM, LDA, 

KDA, RT, GPF 
Acc = 95.8% 

Rimminen et al.  

(2010) [44] 

A matrix of near-field 

imaging floor sensors  
9 7 

Number of observations, longest 

dimension, sum of magnitude 
Markov chain 

Sen = 90.7%  

Spe = 90.6% 

Tzeng et al.  

(2010) [45] 

Infrared camera,  

floor pressure sensor  
3 3 

Floor pressure signal, standard  

deviation of vertical and horizontal 

projection histograms, aspect ratio 

TB, RB 

Sen = 93.3%–96.7%  

Sen = 88.9%–100%  

Acc = 91.1%–98.3% 
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Table 1. Cont. 

Author Sensor Types #Subjects #Fall Types #ADLs Features Methods Performance 

Nyan et al.  

(2008) [63] 

Camera,  

retroreflective markers  
5 5 

Tilt angles of thigh and torso (with respect 

to the vertical axis) and their correlation 
TB N/A 

Vishwakarma et al. 

(2007) [64] 
Camera 

 
3 1 

Aspect ratio, horizontal and vertical 

gradients, tilt angle of horizontal axis of 

bounding box (with respect to the vertical 

axis) 

GMM, FST 

Sen = 36%–100%  

Spe = 83%–100%  

Acc = 51%–100% 

Alwan et al.  

(2006) [37] 
Floor vibration sensor 

 
3 1 Raw vibration signal TB Sen = 100% 

Miaou et al.  

(2006) [36] 
Camera 

 
1 1 Silhouette, aspect ratio RB 

Sen = 78%–90%  

Spe = 60%–86%  

Acc = 70%–81% 

Sixsmith et al.  

(2004) [33] 
Infrared array camera 

 
2 4 Vertical velocity ANN 

Sen = 35.7%  

Spe = 100% 

Wu Ge (2000) [29] Camera 
 

3 6 Vertical and horizontal velocities TB 
Sen = 97.83%  

Spe = 100% 

Notes: Sen = Sensitivity, Spe = Specificity, Acc = Accuracy, ADL = Activities of Daily Living, SVM = Support Vector Machine, TB = Threshold-Based,  

RB = Rule-Based, LR = Logistic Regression, RT = R-Transform, ANN = Artificial Neural Network, HMM = Hidden Markov Model, GMM = Gaussian Mixture Model, 

LDA = Linear Discriminant Analysis, KDA = Kernel Discriminant Analysis, GPF = Gaussian Probability Density Function, FST = Finite State Machine, kNN = k-Nearest 

Neighbor. n represents the number of sensory channels/subjects. , Male; , Female; , Dummy; , Young male/female; , Unknown gender/age. 
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3. Wearable Fall Detection Systems 

This section focuses on a detailed overview of different aspects of fall detection, including sensor 

types and placement, subject details, activities of daily living (ADLs) and fall protocols, features, 

classification methods, and performance evaluation. 

3.1. Sensor Placement 

The wearable sensors that have been used in fall detection include tilt switches, accelerometers, 

gyroscopes, pressure sensors, and microphones. Among these, an accelerometer is considered one of the 

most effective and commonly used devices. Existing fall detection studies have been conducted with 

different sensor positions. With a single wearable sensor, the most common placement is the wearer’s 

waist [32,38,46,65–77]. Other positions are the wrist [50,78–82], head [83], neck [84], trunk [85–88],  

chest [89,90], back [91–93], shoulder [94], armpit [95], ear [96,97], thigh [98], or foot [41,99]. 

Multiple sensors are sometimes used to enhance the fall detection algorithms [49,50,63,80,100–105] or 

to search for an effective sensor placement [35,48,49,78,79,81,82,89,106,107]. The devices are usually 

placed both on the upper body (i.e., head, neck, chest, trunk, and waist) and lower body (i.e., thigh, 

angle, and foot). The most common position on the lower body part is the thigh, which is usually combined 

with the chest/trunk [49,50,78,100–102,104,107] or waist [49,50,80,103]. Some studies, however, placed 

sensors only on the upper body [35,79,81,107,108]. 

Figure 2. Different positions for sensor placement. 

 

Several studies on optimal sensor placement have been conducted. Kangas et al. [81] studied fall 

detection by placing accelerometers on the subject’s head, waist, and wrist. It was reported that the 

waist and head were efficient positions, while the wrist was not. Bourke et al. [107] placed sensors on 

the trunk and thigh, and reported the trunk as the better position. Bagnasco et al. [79] placed sensors on 

the waist, chest, and wrist, and reported the chest as the optimal position. Gjoreski et al. [49] compared 

sensors placed at the chest, waist, right ankle, and right thigh, and on the other hand, reported the waist 

as the optimal position. Dai et al. [48] conducted an experiment with smart phones placed on the 

Head [81–83,105] 

Neck [80, 84]

Chest [35,48–50,78,79,98,
90,101,104–106] 

Thigh [48–50,55,78,80,
98,101–104,106,107] 

Ankle [49,50,105]
Foot [41, 99]

Wrist [50,78–82] 

Ear [96, 97] 

Shoulder [94]

Under armpit [95]

Back [91–93] 

Front Back

Waist [32,35,38,46,48–50,52,53,
65–77,79–82,103,105,106] 
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subject’s chest, waist, and thigh. The waist was also reported as the optimal placement. With a similar 

experiment setting, Fang et al. [106] reported that better performance was achieved when the sensor 

was placed near the center of mass. The results showed that the chest was the optimal position, but 

placement on the waist was recommended as it was more comfortable. Figure 2 summarizes the 

different sensor positions used in existing fall detection experiments. 

3.2. Experimental Protocols 

Most fall detection algorithms are designed based on datasets containing a mixture of ADLs 

(including fall-like activities) and simulated falls. The summaries of ADLs and simulated fall protocols 

used in previous fall detection studies are given in Tables 2 and 3, respectively. 

The common ADLs include standing, walking (level), walking (up/down stairs), running/jogging, 

jumping, sitting down on chair, getting up from chair, lying down on bed, getting up from bed, and 

picking up object from floor. Other ADLs used in few studies and are not listed in Table 2 include ice 

skating [52], answering phone [53], waving phone [55], having chest pain [62], climbing into bed [46], 

hand shaking [79], having headache [62], hopping [38], jumping into bed [50], rotating in chair [38], 

sitting on or getting up from different types of chairs (i.e., armchair, kitchen chair, stool) [88,89,107], 

and getting in and out of bathtub [29]. Some studies also include in their protocols transition activities, 

such as sit-stand, stand-sit [67], sit-lie, lie-sit [72,85,90,103], stand-walk [90], and walk-turn-walk. 

In addition to Table 3, other types of falls include backward to lateral fall, forward fall with forward 

arm protection [44], faint [62,105], fall forward with 90° turn, fall while picking up something, 

collapse [96], and fall vertically [71]. Aziz et al. [105] involved different loss of balance gestures  

in their fall protocols, for example, while descending from standing to sitting, while rising from sitting 

to standing, while turning, and while reaching. In [81], Kangas et al. asked subjects to perform  

forward and lateral falls with a simulated missing step (i.e., when stepping down from a platform). 

Gjoreski et al. [49] included slow falls with an attempt to hold onto the furniture in their data 

collection protocol. Brown [74] divided falls into simple fall (fall end up lying) and complex fall  

(fall end up with a vertical posture). Chen et al. [65] and Wang et al. [97] divided postures before a  

fall into stand, sit-to-stand, stand-to-sit, walk, walk backward, stoop, jump, and lie on the bed.  

Anania et al. [87] divided falls into four types, i.e., while resting, walking, running, and jumping. 

Types of falls that are difficult to be classified are varied across different studies. Bianchi et al. [46] 

conducted a fall detection experiment with eight types of falls and eight types of ADLs and reported 

falls with recovery as the most difficult fall to detect. Kangas et al. [81] reported that among forward, 

backward, and sideward falls, backward fall was most difficult to detect. Tolkiehn et al. [76] found 

that out of 13 types of falls, forward falls onto the knees were the most difficult to classify. 

3.3. Features 

A feature extraction module plays an important role in fall detection. Its goal is to extract 

parameters which represent discriminative information, such as body orientation, mechanical vibration, 

impact, activities, and/or velocity profile, to be used as input of a classification model. 
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Table 2. Activities of Daily Living (ADL) protocols. 
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[65]      ●     ●      ●   ●        ●      ● ● ●  

[48]                 ●  ●        ●       ●    

[83]    ●       ●      ●    ●             ● ● ● ● 

[85]                            ●      ●    

[80]          ●         ●        ●       ●    

[102]          ●         ●         ●          

[68]   ● ●   ●    ●          ●             ● ● ●  

[104]      ●     ●           ●        ●    ● ● ●  
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[71]   ●          ●        ●             ●    

[86]    ●                 ●     ●        ●    

[87]      ●           ●                 ●    

[89]           ●         ● ●             ●    

[88]  ● ● ● ●      ●          ●   ●          ●    

[78]            ● ● ● ●    ●        ●       ●    

[41]                  ●                ●    

[81]       ●                           ● ● ●  

[103]          ●                         ● ●  

[97]          ●         ●        ●       ● ● ●  

[107]  ● ● ●                ● ●             ●    

[99]                 ●                 ●    

[82]       ●                           ● ● ●  

[38]                   ●        ●       ● ● ●  

[72]          ●                        ●    

[35]   ● ●   ●             ● ●             ●    

[73]                   ●               ●    

[74]      ● ●          ●  ●          ●     ●  ●  

[96]             ●    ●    ●             ●  ●  
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Table 3. Simulated fall protocols. 
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[55]            ●                                
[75] ●        ● ● ●  ●    
[84] ●        ● ●  ● ●    
[52] ●        ●  ● ●    
[106]         ●      
[69]         ● ●   ● ● ● ● 
[105]           ●  ● 
[79] ●        ●  ● ●    
[49]             ● 
[70]  ●  ●      ● ● ● ●   ● ●    
[93]         ● ● ● ●    
[53] ●        ●  ● ●    
[50] ●        ● ●  ● ●    
[98] ●       ● ●     
[101] ●        ●  ● ●    
[76]   ● ●  ●   ● ● ● ● ●   ● ● ● ● ●    
[66]         ●     
[46]    ●      ● ● ●   ● ● ● ●    
[67]      ● ●    ● ● ● ● ● ●    
[48] ●        ●  ●    
[83] ●        ●  ●   ● 
[85] ●        ●  ● ●    
[92] ●             
[80]         ●      
[102] ●        ●  ●    
[77] ●        ● ●  ●    
[68]         ● ●   ● ● ● ● 
[104] ●             
[71] ●        ● ● ●  ● ●    
[86]          ●  ●    
[89]      ● ●    ● ● ● ● ● ●    
[88]      ● ●    ● ● ● ● ● ●    
[78] ●        ●  ● ●    
[41]         ●      
[81] ●  ● ● ● ●     ● ●  ●    
[103] ●        ●  ● ●    
[107]      ● ●    ● ● ● ● ● ●    
[99]         ●      
[90] ●        ●  ● ●    
[82] ●        ●  ●    
[38] ●        ●  ● ●    
[35] ●          ● ●    
[73] ●        ●     
[96] ●   ●      ● ●     
[32] ●        ●  ●    
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Table 4 provides a list of features used in the existing fall detection experiments described in Table 5. 

The features are extracted from an accelerometer (denoted by a), a gyroscope (denoted by ω), or a 

pressure sensor (denoted by p). Most of the features are extracted from acceleration signals. Mean, 

standard deviation, sum vector magnitude, and tilt angles are simple, yet informative, features 

commonly used in existing fall detection experiments. Generic equations such as mean, standard 

deviation and variance can be applied to any motion sensors and therefore the inputs of the equations 

are denoted by x. 

Mean (F1) and standard deviation (F2) can be calculated along each of the three axes (x, y, and z). 

Means are informative for detection of static activities (e.g., lying, sitting, and standing), while 

standard deviations are informative for distinguishing between static and dynamic activities and for 

classifying dynamic activities (e.g., walking, running, and jumping). Others informative features for 

classification of static activities include the angle between the device and ground (F20, F26) and the 

angle between the device and the gravitational vector (F22, F23, F24, F29, F32, F33). The later can be 

represented in various forms, namely, tilt angle (F23), inclination angle (F24), orientation angle (F29), 

sagittal angle (F32), lateral angle (F33), and device orientation change (F27). To calculate the angle 

between the device and the gravitational vector, some studies used the Earth’s standard acceleration 

due to gravity (g) [67,104] or the sum vector magnitude (F5) equal to 1g (assuming no movement in a 

static activity) [46,49] in their equations. During static activities, the motion signals measured from a 

device are quite stable, and therefore the standard deviation is lower than those of static activities. 

Besides standard deviation, several studies used signal magnitude area (F10) to distinguish between 

static and dynamic activities [46,72,90,91]. 

Table 4. Features for fall detection experiments. 

No. Feature Equation 

F1 Mean 
1μ

1

N
xiN i

= 
=

 

F2 Standard deviation ( )21σ μ
1

N
xiN i

= −
=

 

F3 Variance ( )212σ μ
1

N
xiN i

= −
=  

F4 Standard deviation magnitude 2 2 2σ σ σ σx y z= + +  

F5 Sum vector magnitude 2 2 2a a a ax y z= + +  

F6 Sum vector on horizontal plane 2 2a a ax zh = +  

F7 Standard deviation of sum vector magnitude 
1σ μ

1

N
a ia aN i

 = −  
 =  

F8 
Difference between maximum and minimum 

values of sum vector magnitude 
max( ) min( )max mina a aΔ = −−  

F9 Root mean square of sum vector magnitude 
1 2

r
1

N
a ams iN i

= 
=  

F10 Signal magnitude area ( ) ( ) ( )1

0 0 0

t t t
SMA a t dt a t dt a t dtx y zt

 
 = + +   
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Table 4. Cont. 

No. Feature Equation 

F11 Activity signal magnitude area ( ) ( ) ( )
2

2 1
1

1 2 2 2ASMA
t

a t a t a t dtx y zt t t

 
 = + + −  
   

F12 Reference velocity ( )( )υ
ttilt

a t g dtref
trest

= −  

F13 Velocity ( )( )a t g dtυ = −
 

F14 Velocity (approximate) ( )( ) ( )( ) ( )( )22 2
υ2 a t dt a t dt a t dt gdtx y z= + + −     

F15 Vertical acceleration 
1 2 2 2

2
a a a gv dynamicg

 = − − 
 

 

F16 Maximum vertical acceleration ( )max
max( )va az=

 

F17 Average acceleration change ( ) ( )( )11
1

00

n
a a t a t

T T in

−
Δ = + −

− =
 

F18 Overall acceleration value 
2 2a a aoverall

  = Ε − Ε    
 

F19 
Acceleration amplitude at absolute vertical 

direction 
sin θ sin θ cosθ cosθa a a av x z y y z y z= + −

F20 Angle between device and ground ( ) ( ) ( )sin , sin , sina a ax x y y z zρ = ρ = ρ =

F21 Angle between device and gravity 
1 1sin , sinx y

aa yx
g g

  − −  θ = θ =         

F22 
Angle between z axis and vertical (with  

respect to the gravity) 
2 2θ atan2 a a ,ax y z

 = + 
 

F23 Tilt angle (with respect to the gravity) ( )1θ cos az
−=

F24 Inclination angle (with respect to the gravity) 
1cos

az
g

 −θ =   
   

F25 
Posture (inclination angle with respect to the 
gravity, calculated using dot-product method) 

( ) ( )
( )

1801cos
g t gs rt
g t gs r

 ⋅  −  θ =    π⋅   

 

 
 

F26 
Orientation of person’s trunk (with respect to 

the ground) 

2 2
1tan

a ax y

az

 + −ρ =  
  
 

 

F27 Device orientation change 
μ μ μ 1801cos

2 2 2 2 2 2μ μ μ .

a a ax x y y z z

a a ax y z x y z

 
+ +  −θ =   π  + + + + 

 
 

F28 Orientation change ( ) ( )b at tθ = ⋅a a

F29 Orientation angle (with respect to the gravity) 
1cos

2 2 2

az

a a ax y z

 
 −θ =  
 + + 
 

 

F30 Ratio between two consecutive angles 
( )

( )1

ti
ratio ti

θ
θ =

θ +
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Table 4. Cont. 

No. Feature Equation 
F31 Difference between two consecutive angles ( ) ( )1t ti iΔθ = θ − θ+

F32 Sagittal angle (with respect to the gravity) 
1801θ tan

ay
s az π

  −  = −     
 

F33 Lateral angle (with respect to the gravity) 
1801θ tan

21

ax
l

ax
π

 
  −=   

  − 

 

F34 Horizontal angle from x-axis in xy-plane 
1θ tan

ax
h ay

 
−  =

 
 

 

F35 Vertical angle from x-axis 

2 2
1 1θ sin cos

a a ax y z
v a a

 +   − −= =         
 

 

F36 Jerk (rate of acceleration change) 
( ) ( )1

0.001

a t a ta x i x i
t

−Δ −=
Δ

 

F37 Trunk angle ( ) ( )
0.5 0.5

θ ω , θ ω
1.2 1.2

t s t s
t dt t dtpitch pitch roll roll

t s t s

= =
= = 

= − = −
 

F38 Trunk angular acceleration { } { }0.5 0.5
α ω , α ω

0.50.5

s sd d
pitch pitch roll roll sdt dts

= =
−−

 

F39 Resultant angular acceleration 2 2α α αr pitch roll= +  

F40 Resultant angular velocity 2 2ω ω ωr pitch roll= +  

F41 Resultant change in trunk angle 2 2θ θ θr pitch roll= +  

F42 Differential pressure 
(2 / )

2 ( / 2)

k i t k it
p p pi k k

k i k i t

  = + =
  Δ = − 
  = = −  

 

F43 Multiple regression equation 0.139 0.0195 0.01631 2Y X X= − + +

F44 Maximum acceleration derivative N/A

F45 Maximum peak-to-peak acceleration amplitude N/A

F46 Maximum peak-to-peak acceleration derivative N/A

F47 Timestamp of falling body to be at rest N/A

F48 Timestamp of body’s initial contact to ground N/A 

F49 
Time difference between when inclination angle 
exceed a critical angle and inclination velocity 

has local maximum above a threshold 
N/A 

F50 Variation of a  around 1 g N/A 

Notes: N = number of data samples, x = observation, i = index of data sample, g = 9.81 ms−2, ax, ay, az, are 

acceleration values along the x- (sideward), y-(forward), and z- (upward) axes, respectively, a = average 

acceleration vector, ta = time before fall, tb = time after fall, ttilt = time when body tilts, trest = initial time 

when body is at rest, sg


 = gravity vector estimated with respect to the body segment, rg
  = the reference 

gravitational vector, X1 = the absolute peak value in the movement direction, X2 = the absolute peak value in 

the horizontal direction. 
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Table 5. Existing fall detection experiments. 

Authors 

Sensors Location 

# Subjects 

#F
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l T
yp
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D

L
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Features Methods Performance 
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d
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B
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h

 

A
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e 

F
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Kau and Chen (2014) [55]           1 8 F2, F5 SVM 
Sen = 92%  

Spe = 99.75% 

Dumitrache and Pasca (2013) [75]           
 

5 8 F5, F50 TB, RB 
Sen = 90.91%–100%  

Spe = 61.51%–96.70%  
Acc = 71.77%–95.16% 

Baek et al. (2013) [84]            5 9 F5, F20 TB, RB Sen = 81.6% 

Koshmak et al. (2013) [52]           4 1 F18, F21 TB 
Sen = 100%  
Spe = 94% 

Fang et al. (2012) [106]         1 3 F5, F19 TB, RB 
Sen = 72.22%  
Spe = 73.78% 

Kangas et al. (2012) [69]           
 

6 8 F5, F15 TB, RB N/A 

Aziz and Robinovitch (2011) [105]         
 

9 - F1, F3 LDA Acc = 97%–98% 

Bagnasco et al.(2011) [79]         
 

4 9 F5 TB, RB 
Sen = 71%–88%  

Spe = 89%–100% 

Gjoreski et al. (2011) [49]        
 

4 4 
F1, F2, F5, F9, F17, 

F29 
TB, RB, DT, 

NB 
Acc = 94% 

Hsieh et al. (2011) [70]           
 

8 – F5, F6, F12 TB, RB Acc = 95.8% 

Jacob et al. (2011) [93]           4 3 F5 TB, RB Sen = 100% 

Lee et al. (2011) [53]           
 

4 8 F5 TB, RB 
Sen = 77%–96%  
Spe = 81%–82% 

Li and Stankovic (2011) [50]       5 10 F1, F2, F5, F27 
TB, RB, NB, 

k-mean 
N/A 

Lopes et al. (2011) [98]           3 7 N/A TB, RB N/A 
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Ojetola et al. (2011) [101]          4 4 F5 DT Acc = 98.91%–99.45% 

Tolkiehn et al. (2011) [76]           
 

13 12 F4, F7, F30, F31 TB, RB Acc = 81%–86.97% 

Wang et al. (2011) [66]       

 

    1 5 N/A HMM, GMM Acc = 94.8% 

Bianchi et al. (2010) [46]           8 8 F5, F10, F29, F42 TB, RB 
Sen = 97.5%  
Spe = 96.5%  
Acc = 96.9% 

Bourke et al. (2010) [67]           
 

8 4 F5, F13, F25 TB, RB 
Sen = 100%  
Spe = 100% 

Chen et al. (2010) [65]           8 8 F5, F6, F12 TB, RB N/A 

Dai et al. (2010) [48]         
 

3 4 F5, F19 TB, RB 
Sen = 97.33%  
Spe = 92.3% 

Enomoto et al. (2010) [83]  

 
          4 8 F43 TB, RB Sen = 100% 

Jantaraprim et al. (2010) [85]           
 

4 6 F5 TB, RB 
Sen = 100%  

Spe = 96.67%–100% 

Klenk et al. (2010) [92]           
 

1 - F3, F36 TB, RB N/A 

Lai et al. (2010) [80]         1 4 F5, F11, F26 TB, RB Acc = 99.55% 

Vermeiren et al. (2010) [102]          3 3 F5 TB, RB Sen = 97% 

Weiss et al. (2010) [91]           
 

1 1 
F2, F5, F10, F16, 

F44, F45, F46 
TB, RB 

Sen = 85.7%  
Spe = 88%–90.1% 
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Dinh and Struck (2009) [77]           4 - F5, F29 FIS, ANN Sen = 94% 

Kangas et al. (2009) [68]           
 

6 8 F5, F8, F15 TB, RB 
Sen = 97.5%  
Spe = 100% 

Li et al. (2009) [104]          7 12 F5, F24 TB, RB N/A 

Tamura et al. (2009) [71]           
 

1 4 N/A TB, RB Acc = 93% 

Tong et al. (2009) [86]           2 5 F5, F26 TB, RB 
Sen = 100%  
Spe = 100% 

Anania et al. (2008) [87]           4 5 F22, F49 TB, RB 
Sen = 98%  
Spe = 100% 

Bourke et al. (2008) [89]           

 
8 5 F5 TB, RB 

Sen > 90%  
Spe > 99% 

Bourke et al. (2008) [88]     

 

      

 
8 8 

F36, F37, F38, F39, 
F40 

TB, RB Sen = 100% 

Chan et al. (2008) [78]    

 

   

  

  4 7 F5 TB, RB N/A 

Bourke et al. (2008) [89]    

 

       

 
8 5 F5 TB, RB 

Sen > 90%  
Spe > 99% 

Bourke et al. (2008) [88]     

 

      

 
8 8 

F36, F37, F38, F39, 
F40 

TB, RB Sen = 100% 

Nyan et al. (2008) [103]       

 

   

 
4 7 F32, F33 TB, RB 

Sen = 95.2%  
Spe = 100% 

Wang et al. (2008) [97]   

 

        

 
8 7 

F5, F6, F12, F47, 
F48 

TB, RB Sen = 70.48% 

Bourke et al. (2007) [107]        

 

  

 
8 8 F5 TB, RB 

Sen = 100%  
Spe = 67%–100% 
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Doukas et al. (2007) [99]           

 

1 2 N/A SVM Acc up to 98.2% 

Jeon et al. (2007) [90]           4 8 F5, F10 TB, RB Acc = 96.52% 

Kangas et al. (2007) [82] 

 

     

  

   3 4 F5, F8, F15 TB, RB 
Sen up to 100%  
Spe up to 100% 

Srinivasan et al. (2007) [38]       

 

    

 
4 8 F5 TB, RB Sen = 94.79% 

Karantonis et al. (2006) [72]           
 

3 9 F5, F10, F23 TB, RB Acc = 95.6% 

Nyan et al. (2006) [35]         
 

3 6 N/A TB 
Sen = 100%  

Spe = 92.5%–97.5% 

Chen et al. (2005) [73]           2 2 F5, F28 TB, RB N/A 

Garrett Brown (2005) [74]           2 7 F5, F33, F34, F35 TB, RB 
Sen = 90%  
Spe = 95% 

Lindemann et al. (2005) [96]            
 

7 5 F5, F6 TB, RB Sen = 100% 

Degen et al. (2003) [32]           3 – F5, F13, F14 TB Sen = 65% 

Notes: ADL = activities of daily living, SVM = Support Vector Machine, TB = Threshold-based, RB = Rule-based, DT = Decision Tree, FIS = Fuzzy Inference System, ANN = Artificial Neural 

Network, kNN = k-Nearest Neighbor, HMM = Hidden Markov Model, GMM = Gaussian Mixture Model, LDA = Linear Discriminant Analysis, NB = Naive Bayes. , Young male;  

, Young female; , Elderly male; , Elderly female; , Young male/female; , Elderly male/female; , Male young/elderly;  

, Female young/elderly; , Unknown gender/age; , Accelerometer; , Gyroscope; , Pressure sensor; , Mobile phone. 
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Sum vector magnitude (F5) has been used in most studies for detecting abnormal  

signals. The highest peak during the sudden change of this value is used to indicate a  

fall [32,38,46,48–50,53,65,67–70,72–75,77–82,84–86,89–91,93,96,97,101,102,104,106,107]. In [85], 

F5 was used to indicate the free-fall state (i.e., vertical speed increases linearly with time due to 

gravity). Using only F5 alone, however, is not sufficient for accurate fall detection since jumping at 

once also generates a sudden change of this feature which can trigger a false alarm. To solve this 

problem, the activity that follows the peak is sometimes used. For example, if the sudden change is 

followed by standing, then it is not a fall. Velocity during fall (F12, F13, F14), vertical acceleration 

(F15), or differential pressure (F42) are sometimes used in addition to F5 to achieve higher detection 

accuracy [32,46,65,67,70,97]. In [83], a multiple regression equation of the absolute peak acceleration 

values in the movement and the horizontal directions (F43) was used to detect falls. 

F37–F41 are calculated using a gyroscope. Similar to F5 of an accelerometer, the resultant angular 

velocity (F40) can be used to identify possible falls using a gyroscope. For fall detection, resultant 

angular acceleration (F39) and resultant change in trunk angle (F41) were used in [88]. To derive F39 

and F41, trunk angle (F37) and trunk angular acceleration (F38) are first calculated. More accurate 

device orientation, particularly during dynamic motions, can be obtained by combining signals from 

different types of motion sensors. In [55], an electronic compass was used in conjunction with a  

tri-axial accelerometer to estimate the orientation of a smart phone. F44–F50 are accelerometer-based 

features used in existing studies with no equation provided. They are referred to in Table 5 and 

therefore are also listed for completeness. 

3.4. Classification and Evaluation 

Methods for fall classification can be broadly categorized into threshold-based, rule-based  

and machine learning approaches. Simple thresholding, however, is not suitable to detect  

different types of falls. Most automatic fall detection systems rely on the rule-based  

approach [38,46,47,50,65,67–74,76,78–81,83–94,96–98,102–104,106]. The main concept is to construct a 

set of rules for detecting ADLs or falls based on thresholds of one or more features. Commonly  

used features include mean, standard deviation, sum of vector magnitudes, and tilt angle. In [109], 

information regarding user’s activities before and after a fall was also used to enhance the  

detection accuracy. 

Several fall detection systems are based on or partly based on machine learning. Examples of 

algorithms used in fall detection experiments include Decision Tree (DT) [49,101], Naïve Bayes  

(NB) [49,50], Hidden Markov Model (HMM) [62,66], Gaussian Mixture Model (GMM) [66],  

k-Nearest Neighbor (kNN) [110], k-mean [50], Support Vector Machine (SVM) [41,49,61,99], Fuzzy 

Inference System (FIS) [77], and Artificial Neural Network (ANN) [77]. Gjoreski et al. [49] used 

machine learning algorithms, such as J48, Naïve Bayes, random forest, and SVMs, in their body 

posture recognition module. Li et al. [50] applied k-mean, Naïve Bayes, entropy discretization, and 

regression for the same purpose. In [101], a decision tree (C4.5) constructed from sum vector 

magnitude and raw data was used to distinguish between falls and ADLs. Majority filtering was 

applied over outputs within a non-overlap window and a fall can be identified when the majority of the 

sample windows reach a consensus. Zhang et al. [110] discriminated between falls and non-fall 
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activities using kNN with features extracted from their proposed Non-negative Matrix Factorization 

(NMF) algorithm. 

Analyzing relationships between falls and resulting injuries, as well as patterns and long-term 

trends of fall conditions, can potentially be useful for establishing efficient fall prevention strategies. 

Although different types of stimulated falls have been addressed in many studies, only few studies 

have focused on fall type classification. Tolkiehn et al. [76] presented a fall detection algorithm for 

classifying falls into three directions (forward, backward, and left/right). Hseih et al. [70] proposed an 

algorithm that can classify eight different fall types based on tri-axial acceleration. Fall directions 

(forward, backward, left, and right) were first determined, followed by identifying the impact parts. 

Hands with elbow or hip were considered as the impact parts for falling forward left and right, back of 

body or hip for falling backward, and hands with elbow or knees for falling forward. Aziz et al. [105] 

proposed a system for detecting the cause of a fall, namely, slips, trips, and other types of imbalance. 

To evaluate the practicality of the system, the classification model should be evaluated on datasets 

acquired from both young and elderly subjects. Elderly people were normally asked to perform  

only ADLs while young subjects were asked to perform both ADLs and simulated falls. In existing 

studies, the age of young subjects are between 19 and 50 years, and that of elderly subjects are 

between 55 and 83 years. Most fall experiments rely on only a dataset performed by young healthy 

subjects. However, several studies included ADLs protocols performed by elderly subjects to evaluate 

the false positive rates of the proposed algorithms [67,68,85,88,96,107]. The analysis of fall signals 

acquired from elderly subjects can be found in [69,92]. In [91], both young and elderly subjects were 

asked to walk on a treadmill equipped with a safety harness to protect actual falls. To induce a free fall 

phase, each subject walked on the treadmill for 2 min without and with obstacles randomly placed on 

the treadmill every few seconds. 

Some studies involved more than one datasets. Tamura et al. [71] collected three different datasets 

for the development of an airbag fall prevention algorithm. To investigate the appropriate time for 

inflating the airbag, a dataset was acquired from fourteen young subjects while performing stimulated 

fall protocols without wearing the airbag (Test A). To evaluate the false positive rate, another dataset 

was acquired from nine physiotherapists while performing only ADL protocols (Test B). To evaluate 

the performance of the device, four young subjects were asked to perform a simple backward fall while 

wearing the prototype device with the airbag (Test C). Bianchi et al. [46] conducted three different 

experiment protocols in different environments, i.e., indoor, outdoor, and both indoor and outdoor.  

The obtained datasets were used for algorithm development and for evaluating the false negative rate 

and the false positive rate. To our knowledge, there exists only one available online fall database 

acquired using a vision-based device [111] and there is still no publicly available database to support 

wearable-sensor-based fall detection research. 

In addition to the number of subjects, different types of falls and ADLs involved in the experiments, 

as well as their complexity, should also be considered in performance evaluation of an algorithm. Most 

studies evaluate their models using one or more of the three performance measures calculated from a 

confusion matrix, namely, sensitivity, specificity, and accuracy. Sensitivity reflects the ability of the 

system in detecting falls, specificity reflects the ability of the system in detecting ADLs, and accuracy 

is the overall ability of the system in detecting both falls and ADLs. Table 5 shows a summary of 

existing wearable-sensor-based fall detection experiments. The listed experiment attributes include 
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authors, sensor types and placements, subject details (number of subjects, age range and gender), 

number of falls and ADLs, features (with reference to Table 4), classification methods, and 

performance. Types of sensors and subjects are represented using graphical icons. The stars on sensor 

icons indicate that sensors at different positions were combinedly used at the same time. Their absence 

indicates that the subject wore the device (possibly with multiple sensors) at one position at a time 

while performing the experiment protocols. Some of these studies can also send a real-time alert when 

a fall is detected [38,41,46,47,49,50,65,69–77,79,83–87,89,90,96–99,101–104,106,112]. 

4. Fall Detection Products 

There exist several fall detection products currently available in the market. Most of them are 

wearable devices with ease-of-use designs. The most common device placement position is the waist, 

but some devices are designed to be placed on the wrist, or around the neck. Most products use an 

acceleration sensor and lithium battery, which has a maximum lifetime of up to 2 years. They usually 

come with an alarm button allowing a manual call for help when a fall is not automatically detected. 

Table 6 illustrates some examples of existing wearable fall detection products. 

5. Future Trends 

As guidelines for future fall monitoring research, this section presents the trends of fall detection 

devices, as well as addresses the difference between simulated and real world fall conditions.  

To reduce the causes of deaths and to improve the quality of life in elderly population, not only fall 

detection but also fall-risk assessment and fall prevention should be investigated. 

5.1. Devices 

The number of fall studies by using camera-based and wearable devices is still increasing [25]. 

Using a camera seems to be a reliable approach for fall detection, a camera-based system can provide a 

high percentage of sensitivity and specificity [29,35]. However, the major disadvantages of this 

approach are the complex setup, area constraints and the lack of privacy. Wearable sensors are 

therefore still more popular than cameras in fall monitoring. Furthermore, most wearable sensors are 

now embedded in smartphones. The advantages of using a smartphone are cost effectiveness, usability 

in both indoor and outdoor environments, and ability to track a user using the GPS module in the 

phone [53]. 

5.2. Real World Falls 

The datasets for fall detection in most existing studies were acquired from young healthy subjects 

both during simulated falls and ADLs. When performing simulated falls, the subjects are often 

instructed to fall directly onto a mattress. However, in real world conditions, fallers may try to break 

their falls with their hands before collapsing on the ground or may fall slowly [46]. The impact surface 

can also be hard. These conditions are different from simulated falls in laboratory settings.  

So the generalization of the methods developed needs to be carefully assessed. 
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Table 6. Wearable fall detection products.  

Name SENSO [113]  MySOS Mandown [114] SensorBand [115] 
Badge-iT Fall 

Detector [116] 

Fall detector MCT-241MD 

PERS [117] 
VitalBase [118] Climax Fall Sensor [119] 

Size (mm) 65 × 43 × 13  70 × 42 × 17 51 × 32 × 17 35 × 60 67 × 41 × 21 37 × 12 58.6 × 42 × 19 

Weight (g) N/A 43 N/A N/A N/A 35 N/A 

Sensor Type N/A 3D accelerometer 3D accelerometer N/A N/A N/A N/A 

Placement Waist Neck/Waist Waist Waist N/A Wrist Neck 

Battery Type Lithium Polymer Lithium-ion Lithium Lithium Lithium Lithium Lithium 

Battery Life Up to 2 years 25 h 1 year N/A N/A 2 years 2 years 

Range (m) N/A N/A N/A 450 N/A 200 130–160 

Features 

• Automatic fall detection 

• Send emergency text from 

user phone to emergency 

contact(s) 

• Fit with emergency button 

• Suitable for all levels of 

user mobility 

• Usable in and away from 

home 

• No need for costly call 

center support 

• Battery life: 2 weeks when 

fully charged or 2 years on 

transmission of 1 alarm a 

day 

• Automatic fall detection 

• Dual band: 900/1800 MHz 

with GPRS 

• GPS location information 

sent via GPRS with SMS 

backup for transmission of 

alarm messages, in poor 

communication 

conditions. 

• Two-way audio: 

microphone is sensitive 

up to 2 m 

• LED status indication: 

low battery, GPS, GSM 

coverage and connection 

• Wireless 

communication 

• Connect to the 

internet 

• Always online 

and connect to 

the database 

• Speech 

communication 

• Detect a change 

in angle, 

orientation and 

impact to 

differentiate a fall 

from normal 

ADLs 

• Detect a fall and user 

lying unconsciously 

• Fit with emergency 

button  

• When standing on a 

table, can be used as 

a “knock-over” 

alarm to summon 

assistance 

• Detect wandering 

using radio signal 

strength 

• Detect potential 

hypothermia (low 

temperature for 

prolonged time) 

• Automatic fall detection 

• Fit with emergency button 

• Full waterproof  

• Include neck cord with  

built-in safety release 

mechanism and belt-clip 

• Superior transmission range 

• Smart anti-collision algorithm 

• Support multiple simultaneous 

transmissions 

• PowerCode ID factory-selected 

from 16 million possible code 

combinations 

 Visible and transmitted low 

battery indication Available in 

several optional frequencies in 

compliance with international 

standards 

• Automatic fall 

detection 

• Emergency call 

• Patient call 

• Waterproof 

• An in-built 

cancellation button 

to cancel the call if 

necessary 

• Can be set to 

vibrate 

• Automatic fall detection 

• Waterproof 

• Low battery detection 

• Compatible with climax 

medical alarm panels 

• Pendant style 

• Operating temperature: 

−10 to 40 °C 

• Humidity: up to 90%  

non-condensing 
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Table 6. Cont. 

Name Tunstall iVi Pendant [120] Oval Fall Detector [121] AFrame the Watch [122] 
Philips Lifeline’s AutoAlert  

Pendant [123] 

Size (mm) 58 × 38 × 14 58.6 × 42 × 19 N/A 66 × 30 × 17 

Weight (g) 25 N/A N/A 32 

Sensor Type N/A N/A N/A N/A 

Placement Neck/Waist/Chest Neck Wrist Neck 

Battery Type Lithium Lithium N/A N/A 

Battery Life 12 months 2 years N/A 18 months 

Range (m) 50 130 N/A N/A 

Features 

• Adjustable sensitivity with three different levels to 

suit individual needs and circumstances 

• Ergonomic alert button enabling people with visual 

impairments or limited dexterity to raise a call for help 

• Crescendo audible alert and status LED provide 

user with reassurance the device has registered a 

fall 

• Not-worn alert which will notify the monitoring 

center if the fall detector has failed to move, 

indicating that it may not have been worn 

• Cancellation button enabling the wearer to cancel 

activations if required, reducing the number of 

false calls (this function can be disabled if 

required) 

• Water resistant to IP67 standard enabling the fall 

detector to be worn in the bathroom 

• Automatic low battery warnings 

• Long-life, replaceable battery in easy-open 

compartment to enable simple replacement 

• Automatic fall detection through  

multiple accelerometers and sensors 

• Programmable transmission  

delay time of 0–9 s 

• Can cancel help calls or false alarms  

with an 8-second press of the help button 

• Low battery detection and supervision 

• Able to answer incoming phone calls  

on the home phone line 

• Waterproof design 

• Can be worn around the neck as a 

pendant 

• Adjustable lanyard with snap closure 

• Operating temperature: −10 to 40 °C 

• Humidity: up to 90%  

non-condensing 

• Intelligent personalized alerting 

• Unique user identification 

• Rule engine personalized by individual 

• Alert & trend on any combination  

of factors 

• Health monitoring, trending and alerting 

• Ease of installation and support 

• Software as a service 

• Network independent 

• Built on open standards and APIs 

• Interoperability 

• Preserve investment in existing systems  

while extending life with new capabilities 

• Location awareness and support 

• Personalized wander management  

solutions built into the system with  

ability to integrate to door locks 

• Automatic fall detection and  

call for help 

• Waterproof 

• Easily accessible 

• Neck cords are designed to  

break away in the event of an 

emergency and are easily  

replaced if damaged or soiled 

• Can call for help within the 

range of the communicator 
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Table 6. Cont. 

Name 
Tunstall Fall  

Detector [124] 

Tynetec Fall  

Detector [125] 

Blue Alert Fall 

Detection Sensor [126] 

CSEM Wrist  

Fall Detection[127] 

Tynetec Wrist Worn Fall 

Detector [128] 
onAll Chest Strap [129] 

70 Degree Verso  

Fall Detector [130] 

Size (mm) 75 × 53 × 28 85 × 56 × 20 N/A N/A 57 × 34 × 16 N/A N/A 

Weight (g) 75 68 N/A N/A 23 N/A N/A 

Sensor Type N/A 2D accelerometer N/A 3D accelerometer 2D accelerometer/Pressure N/A N/A 

Placement Waist Waist/Neck Waist Wrist Neck Chest Neck/Waist 

Battery Type 6V Duracell PX28L Lithium N/A Lithium-Polymer N/A N/A N/A 

Battery Life 6 months 1 year N/A 15 days to one month 2–3 years 10 h 
3 years depending 

on usage 

Range (m) N/A 75 N/A N/A N/A N/A 100 

Feature 

• Triggered by change of 

angle and impact of a fall 

• Wear on front or side 

waist 

• Green light and two 

“beeps” indicate that the 

fall detector has been 

activated 

• Fit with emergency button 

• 5 user-selectable levels  

of sensitivity 

• 3 event logs; impacts,  

pre-alarms & alarms 

• Weekly rental 

• Detect fall, fall 

recovery, stumble, and 

trip 

• Fit with emergency 

button 

• Automatically call  

for help when falling 

• Fit with emergency 

button 

• LCD display 

• Re-chargeable battery 

• Automatic fall 

detection 

• Fit with emergency 

button 

• 5 sensitivity settings 

• Daily battery self-test & 

low battery reporting 

• Automatic fall 

detection 

• Heart rate monitoring 

• Activity monitoring 

• Fall prevention 

• Location alarms 

• Call button 

• Rechargeable battery 

• Detect fall when 

the detector is in 

a position of 70° 

or greater from 

vertical 
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Most existing fall detection systems can detect only falls, while other types of information such as 

direction, time-to-fall, lying fall period, location, and fall status are not yet comprehensively addressed. 

Such additional information should be collected and sent to hospitals or family members when falls 

occur. Time-to-fall is a useful piece of information when one wants to develop a fall prevention tool 

such as a wearable airbag [71]. Accurate localization can help an assistant to reach a faller in a timely 

manner. The lying fall period, the direction of fall, and the faller status can help to estimate the severity 

of a fall so that appropriate medical support can be dispatched without delay. 

5.3. Fall Risk Assessment and Fall Prevention 

Instead of detecting adverse events and reacting in a timely manner, an even better solution would 

be to take a proactive approach by understanding fall risk factors and developing fall prevention 

mechanisms. The first step of fall prevention is to understand the risk of falling. In 2000, Brauer et al. [131] 

reported the results of their investigation on the ability of various laboratory measures and clinical tests 

of postural balance in predicting falls in one hundred elderly female population within a period of  

6 months after the tests. Postural muscle timing, movement speed, and the center of pressure motion 

were recorded during one or more laboratory tasks (i.e., reaction-time step task, a limit of stability, and 

a quiet stance balance task). Four clinical tasks include the Berg Balance Scale [132], the Functional 

Reach Test [133], the Lateral Reach Test [134], and the Step-Up Test [135]. Based on logistic 

regression models, the study reported a fall prediction rate of 77%, with the sensitivity of only 51%. 

The results indicate that there is still plenty of room for improvement in this research area. 

Examples of popular measures for fall risk assessment include STRATIFY (St. Thomas’s risk 

assessment tool in falling elderly inpatient) [136], TUG (Time up & go) [137], Barthel index [138], 

and TGBA (Tinetti Gait and Balance Assessment) [139]. TUG score, for example, is the easiest and 

most commonly used measure. For movement evaluation, the elderly people are asked to perform a 

sequence of activities including stand up from a chair, walk with normal speed for 3 meters, turn 

around, walk back to the chair and sit down on the chair. Time to completion is recorded and if it takes 

longer than 14 s, the risk of falling is considered high. King et al. [140] illustrated the use of a 

miniaturized wireless e-AR (ear-worn activity recognition) in fall risk assessment and concluded that 

the sensor was able to detect several features from TUG assessments. Ghasemzadeh et al. [141] 

presented a physiological monitoring system based on tri-axial acceleration and EMG sensors. The 

acceleration and muscle activity signals were collected while subjects were standing on a half circle 

ball, and were processed through a statistical machine learning technique to assess postural balance. 

Jiang et al. [142] proposed a walking model for fall risk assessment based on an accelerometer placed 

on the subject’s waist. 

Recently, several studies have focused on preventing falls. Fukaya et al. [143] introduced the idea 

of launching a jacket-worn airbag which will be inflated to protect the head and buttocks based on tri-axial 

acceleration signals. It was designed to protect falls from height, falls from wheelchair overturn, and 

falls on the same level. However, the system was validated on a dummy. Tamura et al. [71] developed 

a jacket-worn airbag to protect the head, neck, hip, and thigh based on a tri-axial accelerometer and a 

gyroscope. Guangyi et al. [144] developed a belt-worn airbag using a tri-axial accelerometer and  

a gyroscope. 
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6. Conclusions and Future Directions 

This paper presents a comprehensive review of automatic fall monitoring. In general, automatic fall 

monitoring can be categorized as wearable-sensor-based, ambient-sensor-based or combined-sensor-based 

approaches. In several studies, cameras are employed as a type of ambient sensors. Although video 

cameras can provide sufficient information for patient monitoring, field-of-view constraints, lighting 

condition, camera positioning and lack of privacy are still major limitations. Wearable sensors have 

advantages over ambient sensors in terms of mobility, ease of installation, coverage areas of usage and 

less privacy constraint. They are thus a relatively practical and cost-effective solution to support 

independent living for elderly people. This study provides a timeline review of the alternative 

technologies and particularly focuses on wearable sensor-based fall monitoring. 

To establish a fair comparison across different research studies and reflect the state-of-the-art of the 

technology, this paper provides an in-depth review of important aspects of existing fall detection 

experiments, including sensor types and positions, data collection protocols, subject groups, feature 

extractors, classification methods, and performance measures. Apart from a detailed summary of 

existing research studies, we also present an overview of available commercial products and future 

research directions of automatic fall monitoring. Commercial products are described and compared 

based on size, weight, sensor type, battery, transmission range, and features. The use of mobile 

devices, including smart phones, as the hardware platform is becoming increasingly popular. They can 

be used not only for motion sensing, but also for storing profiles, communication and detecting users’ 

locations. In addition to fall alerts, a user’s location or co-location is also another important 

information that allows timely assistance and intervention. Although smart phones are already being 

carried by users on a daily basis and seem to be a promising solution for fall monitoring, there still 

exist many issues to be addressed, i.e., sensor fixation, varied sensor quality, and battery lifetime.  

At the moment, dedicated-designs of wearable fall sensors with constraint positioning are still 

relatively better in terms of battery lifetime and achievable accuracy. 

In terms of sensor placement, several studies have reported that the best accuracy can be achieved 

when sensors were placed near the center of mass. However, in commercial product designs, user 

acceptance and usability must also be considered, perhaps with a tradeoff of accuracy. Assessment of 

devices’ accuracy and practical values is indeed difficult. This is due to the fact that there still exists a 

very limited amount of natural falls datasets (particularly in elderly people) and the absence of publicly 

available real-life datasets for benchmarking. In many real scenarios, elderly people also tend to fall 

slowly, which may not be captured by existing systems. Beyond automatic fall detection, there has 

been a recent rapid surge of interests in fall risk assessment and fall prevention, aiming towards a 

proactive prevention approach of elderly care. These indicate several problems yet to be addressed by 

the research community. 
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