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Abstract: Global Navigation Satellite Systems (GNSS) are now recognized as cost-effective 
tools for ionospheric studies by providing the global coverage through worldwide networks 
of GNSS stations. While GNSS networks continue to expand to improve the observability 
of the ionosphere, the amount of poor quality GNSS observation data is also increasing and 
the use of poor-quality GNSS data degrades the accuracy of ionospheric measurements. 
This paper develops a comprehensive method to determine the quality of GNSS 
observations for the purpose of ionospheric studies. The algorithms are designed especially 
to compute key GNSS data quality parameters which affect the quality of ionospheric 
product. The quality of data collected from the Continuously Operating Reference Stations 
(CORS) network in the conterminous United States (CONUS) is analyzed. The resulting 
quality varies widely, depending on each station and the data quality of individual stations 
persists for an extended time period. When compared to conventional methods, the quality 
parameters obtained from the proposed method have a stronger correlation with the quality 
of ionospheric data. The results suggest that a set of data quality parameters when used in 
combination can effectively select stations with high-quality GNSS data and improve the 
performance of ionospheric data analysis. 

OPEN ACCESS 

mailto:alsckszz@kaist.ac.kr
mailto:jiyunlee@kaist.ac.kr


Sensors 2014, 14 14972 
 

 

Keywords: GNSS reference stations; GNSS observations; quality determination; data 
quality parameters 

 

1. Introduction 

Global Navigation Satellite Systems (GNSS) signals are measurably delayed as they pass  
through the Earth’s ionosphere. Because the ionosphere is a dispersive medium, dual frequency GNSS 
observations can be utilized to generate Total Electron Content (TEC) estimates and thus contribute to 
various ionospheric studies. These include: modeling the ionosphere [1,2]; mapping global and local 
ionospheric TEC [3,4]; and studying ionospheric deformation caused by natural hazards such as 
earthquakes, volcanic eruptions, and tsunamis [5–8]. Recently ionospheric anomalies which can 
threaten navigation integrity of GNSS augmentation systems have also been extensively studied [9]. 

To be used in these various arenas, it is necessary to compute consistent high precision ionospheric 
measurements such as ionospheric delay on GNSS signal, ionospheric spatial gradient, and TEC using 
dual-frequency code and carrier measurements collected from GNSS reference station networks. 
However, in GNSS data processing, poor-quality GNSS observations can deteriorate the quality of 
ionospheric measurements. A discontinuity (i.e., data jump) in GNSS observations can occur  
as a result of a cycle slip, that is, a sudden jump of a number of integer cycles in carrier-phase 
measurements. Cycle slips are caused by the loss of lock of receiver phase lock loops due to a 
receiver/antenna being shaded in an “urban canyon” or foliated environments, low Signal-to-Noise 
Ratio (SNR) of satellite signals, or failure from electromagnetic interference in the receiver itself. 
Multipath caused by the reflection of satellite signals from the ground, buildings, or other  
obstacles incurs rapidly changing errors in GNSS observations. Large multipath errors on the code 
measurements when used to level the carrier measurements introduce errors on the delay estimates. 
Short arcs caused by cycle slips, outliers, or invalid observations are typically subjected to large 
leveling errors and thus make poor delay estimates [10]. While these errors are detected, removed, and 
controlled in data pre-processing, they cause estimation errors on ionospheric measurements since the 
treatment cannot be perfect especially when the GNSS data quality is very poor. 

Recently, GNSS networks have become more widespread around the world and the number of 
stations has increased, which has led to an improvement in the observability of ionospheric behaviors. 
The Continuously Operating Reference Stations (CORS) network has over 2100 stations as of 2013 in 
the conterminous United States (CONUS) compared to about 400 stations prior to 2004. Japan has one 
of the most densely populated Global Positioning System (GPS) networks, with the GPS Earth 
Observation Network (GEONET) consisting of over 1200 stations. The increase in the total number of 
stations has led to a corresponding increase in the number of station with poor GNSS data quality as 
well. The use of poor quality data degrades the accuracy of ionospheric measurements. Therefore it is 
necessary to have a tool to characterize the quality of GNSS data collected from stations. If the stations 
with high quality data are effectively selected by using quality information of those stations, it would 
help obtain more reliable results from ionospheric data analysis. 
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The most commonly used software tool to solve many pre-processing problems with GNSS is 
Translation, Editing, and Quality Checking (TEQC) [11]. This freeware program developed by the 
University NAVSTAR Consortium (UNAVCO) facility in Boulder (CO, USA) provides data quality 
information about the receiver clock slips, receiver cycle slips, multipath, receiver SNR, and other 
useful parameters and tracking statistics. The Leica GNSS Quality Control (Leica GNSS QC) software 
developed by Leica Geosystems also performs automatic quality checking and reporting of logged 
Receiver INdependent EXchange (RINEX) data [12]. Leica GNSS QC not only examines the quality 
(tracking information, data gaps, cycle slips, SNR, and multipath) of the data, but also graphically 
displays the multipath on code measurements, SNR, and coordinate information. While these programs 
support various options and provide general quality parameters, the programs do not target on 
providing the quality parameters which affect the quality of ionospheric product the most. Small cycle 
slips which cannot be detected by a conventional criterion (e.g., a threshold of 2 meters in TEQC [11]) 
may degrade the accuracy of ionospheric measurements if such event occurs frequently. The 
information about short arcs or outliers, not included in the freeware tools, could also be important 
because these events typically cause large leveling errors in ionospheric measurements [10]. The 
quality parameters which can be used to select GNSS observation data for ionospheric studies thus 
need to be carefully designed and the sensitivity of ionospheric data process to each parameter should 
be examined. 

This paper presents a sophisticated data processing method to determine the quality of GNSS 
observations for the purpose of ionospheric studies. Section 2 discusses the effect of using poor quality 
GNSS data for ionospheric data analysis. Section 3 describes a series of algorithms which provides 
comprehensive and precise quality information about the cycle slips, short arcs, outliers, receiver 
noise, receiver SNR, multipath on L1 and L2 code measurements, and the daily number of 
observations. In Section 4, the data quality parameters of CORS stations within CONUS are analyzed. 
The correlation between the quality parameters and the quality of ionospheric data is also investigated. 
Section 5 concludes the paper with a discussion of the implications of this work. 

2. Poor GNSS Data Quality and Its Effect 

This section investigates the effect of GNSS data collected from stations with poor data quality on 
ionospheric measurements. Ionospheric delays and ionospheric spatial gradients are matters of concern 
for GNSS augmentation systems, such as Space-Based Augmentation Systems (SBAS) and  
Ground-Based Augmentation Systems (GBAS), because usually large spatial and temporal variations 
in ionospheric delays occurring during severe ionospheric storms could cause potential integrity threats 
to users [9]. Ground facilities of these systems monitor ionospheric anomalies defined by threat models 
and provide alarms to the users within time-to-alerts [13]. The ionospheric anomaly threat models  
are developed based on precise estimates of ionospheric delays and gradients computed using the  
dual-frequency GNSS reference network data of each region where systems are fielded [9]. 

GNSS observations are also used to compute the estimates of TEC and TEC perturbation in order to 
detect ionospheric disturbances caused by natural hazards including earthquakes, volcano eruptions, 
and tsunamis [14]. The natural hazards are known to generate electron density fluctuations in the 
ionosphere and TEC variations through atmospheric acoustic and gravity waves [6,8]. GNSS data are 
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well suited to monitor ionospheric activity associated with natural hazards both in the locations of the 
occurrence and outside of it with sufficient spatial and temporal resolution to infer key properties such 
as velocity, direction, and magnitude of ionospheric disturbances. Because these applications use data 
collected from GNSS reference stations, the quality of the data from each station can affect the results 
of these studies. 

As shown in Figure 1, some stations of the CORS network in CONUS are actually located in 
unfriendly environments (e.g., next to a solar panel, in a bush, and even in-between towers [15]). 
Because signal loss and attenuation are induced by obstacles, such as metal plates and branches, raw 
GPS measurements from these stations are corrupted and consequently may produce erroneous 
estimates of ionospheric measurements. 

Figure 1. Examples of Poorly Sited CORS stations [15]. 

 

Figure 2a shows the ionospheric delay estimates of GPS L1 signals in the slant domain (i.e., along 
the actual path between satellite and receiver) observed from two nearby stations OKEE and AVCA 
(separated by 18.01 km) while they tracked PRN 22 on a nominal day (24 May 2012). OKEE is a good 
example of a station with poor GPS data quality. From the many fragments of ionospheric delay 
estimates from OKEE (red), it is evident that its carrier-phase measurements are corrupted by 
numerous cycle slips resulting in outliers and short arcs of ionospheric observations. By dividing the 
differences in the ionospheric delays by the separation distance, the ionospheric spatial gradients 
between the two stations are estimated [16], as shown in Figure 2b. The ionospheric-delay leveling 
errors due to the short arcs from OKEE are observed at each end of the curve, and the many fragments 
due to the excessive cycle slips on OKEE are evident in the center of the curve. 

Figure 3a,b shows vertical TEC (VTEC) estimates and VTEC perturbations of PRN 22 observed at 
OKEE and AVCA. TEC estimates in the slant domain were converted to equivalent vertical TEC (i.e., 
in the zenith or 90‐degree upward direction above the observing receiver) via a geometric mapping 
function [16]. The perturbations of VTEC were estimated by subtracting the large-scale trend of VTEC 
variation from the original VTEC [14]. The hourly trend of VTEC was estimated using a moving 
average filter with a time window of two hours. It is obvious in Figure 3b that the cycle clips and short 
arcs on OKEE cause large VTEC perturbations which are not real, because this rapid variation of 
VTEC is not expected under quiet conditions (see Table 1). These examples illustrate how poor data 
quality degrades the accuracy of ionospheric measurements and can produce erroneous results. 
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Figure 2. Examples of ionospheric measurements corrupted by poor quality GNSS data: 
(a) dual-frequency slant ionospheric delay estimates for CORS stations OKEE (poor 
quality data) and AVCA (good quality data) and (b) ionospheric spatial gradient estimates 
between OKEE and AVCA viewing PRN 22. 
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Figure 3. VTEC and VTEC perturbations corrupted by poor quality GNSS data:  
(a) dual-frequency vertical TEC estimates and (b) VTEC perturbations for CORS stations 
OKEE (poor quality data) and AVCA (good quality data). 
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Table 1. Dates analyzed to determine detection thresholds. 

Day 
(UT dd/mm/yy) 

Kp Dst 

24/05/12 2.0 −15 
25/05/12 2.3 17 
26/05/12 2.3 −6 
27/05/12 1.3 14 
28/05/12 2.3 23 
29/05/12 2.3 23 
30/05/12 2.3 16 
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3. GNSS Data Quality Measurement Algorithms 

A methodology for determining the quality of GNSS data has been developed by utilizing the 
GNSS data pre-processing technique for ionospheric data analysis as a basis and augmenting it with 
the TEQC algorithm and adaptive filter algorithm [11,17–19]. The purpose of this method is to provide 
comprehensive and accurate quality information to users for the selection of high-quality GNSS data. 
The input of the method is the RINEX file collected from a station of our interest for two consecutive 
days and the output is the GNSS data quality parameters of the corresponding station. This method is 
composed of mainly three parts, as shown in Figure 4: Long-Term Ionospheric Anomaly Monitoring 
(LTIAM) pre-processing algorithm, TEQC algorithm, and adaptive filter algorithm.  

The number of IOnospheric Delay (IOD) cycle slips, the number of outliers, and the number of 
short arcs are counted as separate data quality parameters using the LTIAM pre-processing algorithm. 
The percentage of observations, the Root Mean Square (RMS) of multipath on L1 code and L2 code 
measurements, and the number of data jumps detected using multipath estimates are computed by 
implementing the TEQC algorithm. Lastly, the mean of receiver noise on code measurements is 
calculated by designing an adaptive filter algorithm. 

Figure 4. GNSS data quality measurement algorithms. 

 

3.1. LTIAM Pre-Processing Algorithm 

The LTIAM tool is an automated software package developed by the authors to build ionospheric 
anomaly threat models for GBAS and to evaluate the validity of the threat model over the life cycle of 
system by continually monitoring ionospheric behavior [17,18]. This tool automatically gathers GPS 
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observation data during the potential days of anomalous ionospheric events which are selected based 
on external data from public space weather sites. After computing ionospheric delays and gradients 
using GPS data, the tool automatically searches for any anomalous gradients that are large enough to 
be potentially hazardous to GBAS users. The selected anomaly candidates will be manually validated 
and reported if deemed to be real anomalies. 

High-quality ionospheric measurements are essential for the product of LTIAM. Thus, this tool 
includes a sophisticated pre-processing algorithm, which performs cycle slip detection, short arc 
removal, outlier removal, and code-carrier smoothing, to obtain precise estimates of ionospheric 
delays. In this paper, we utilize the existing LTIAM pre-processing algorithm to detect IOD cycle 
slips, outliers, and short arcs, and to count the numbers of these events as data quality parameters. The 
detection algorithms are described in Section 3.1.1, and detection thresholds are determined in  
Section 3.1.2. 

3.1.1. Detection of Cycle Slips, Outliers and Short Arcs 

Cycle slip, outlier, and short arc detection methods have already been developed as a part of the 
LTIAM pre-processing algorithm. These detections are performed for each continuous arc of slant 
ionospheric delays estimated using dual-frequency carrier-phase measurements. The general forms of 
the GPS code ( 1 2,L Lρ ρ ) and carrier-phase measurements ( 1 2,L Lφ φ ) for the L1 and L2 signal 
frequencies are expressed as: 

1 1 1
k k

L n n Lr I M ρρ ε= + + +  (1)  

2 2 2
k k

L n n Lr I M ρρ γ ε= + + +  (2)  

1 1 1 1
k k

L n n L Lr I N m φφ ε= − + + +  (3)  

2 2 2 2
k k

L n n L Lr I N m φφ γ ε= − + + +  (4)  
2
1

2
2

L

L

f
f

γ =  (5)  

The common term, k
nr , represents the sum of the true range between the n th receiver and k th 

satellite, receiver clock biases, satellite clock biases, and tropospheric error. LiN  is the integer 
ambiguity of the Li ( 1, 2i = ) frequency carrier-phase measurements. LiM  and Lim  are the multipath 

on code and carrier-phase measurements, respectively. The carrier-phase measurements have lower 
receiver noise errors than the code measurements (i.e., i iφ ρε ε<< ). The ionospheric error, I , is of 

equal magnitude but opposite sign on the carrier phase relative to the code phase. 
The slant ionospheric delay on the L1 signal at epoch it and the difference of carrier-derived 

ionospheric delays between adjacent epochs, Iφ∇ , are computed from the L1/L2 code ( 1 2,L Lρ ρ ) and 
carrier-phase ( 1 2,L Lφ φ ) measurements as shown in Equations (6–8): 

2 1 2 1( ) ( ) ( ) ( )( ) ( ) ( )
1 1

L i L i L i L i
i i i

t t M t M tI t I t tρ ρ
ρ ρ ε

γ γ
− −

= = + +
− −

 (6)  
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1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1 1 1

L i L i L i L i L i L i
i i i

t t N t N t m t m tI t I t tφ φ
φ φ ε

γ γ γ
− − −

= = + + +
− − −

 (7)  

1( ) ( )i iI I t I tφ φ φ −∇ = −  (8)  

The dual-frequency code-derived estimate, Iρ , is noisier than the carrier-derived estimate, Iφ , 

because the carrier-phase measurements have lower multipath and receiver noise errors than the code 
measurements (i.e., Li Lim M<< , i iφ ρε ε<<  ( 1, 2)i = ). 

Cycle slips detected by using Iφ∇ are usually defined as “IOD cycle slips” [11]. The LTIAM IOD 

cycle detection algorithm performs better than the conventional data quality checking algorithm (e.g., 
TEQC, see Section 4) by applying three detection criteria: data jump, data gap, and loss of lock 
indicator. First, the difference between two adjacent ionospheric delays, Iφ∇ , is examined to detect a 

data jump greater than the slip detection threshold of 0.5 m for a nominal day. The determination of 
the threshold is explained in the following subsection. Second, the absence of L1 or L2  
carrier-phase measurements is considered as cycle slips. Third, the Loss of Lock Indicator (LLI)  
of each observation from raw GPS data in RINEX format is also utilized as an indicator of potential 
cycle slips.  

After performing detection of cycle slips, continuous arcs are divided into several sub-arcs. The step 
of outlier detection is carried out for each sub-arc. Two approaches, the polynomial fit method and the 
adjacent point difference method, are executed in parallel to detect outliers [17,20]. First, a polynomial 
fit is performed on the carrier-derived ionospheric delay estimates, Iφ , and the residuals (i.e., the Iφ  
data minus the polynomial fit, fitP ), R , are computed for each epoch it  as shown in Equation (9). If 

the largest value of differential residuals, R∇ , between adjacent points exceeds an outlier detection 
threshold of 0.5 m, this point is classified as a potential outlier. The determination of the threshold is 
explained in the following subsection: 

( ) ( ) ( )i i fit iR t I t P tφ= −  (9)  

1( ) ( ) ( )i i iR t R t R t −∇ = −  (10)  

Second, the Outlier Factor (OF) between adjacent points of the point p at time pt  is computed as:  

( )p pq p q
q adjacent

OF t w I I
∈

= ⋅ −∑  (11)  

1/

1/
p q

pq
p r

r adjacent

t t
w

t t
∈

−
=

−∑
 (12)  

where pI  and qI  are Iφ  at time pt  and qt , respectively [20]. w  is the weight between two points, p 
and q at time pt  and qt . In this equation, the set “adjacent” includes all points within fifteen minutes 
centered at the point p at time pt . If the potential outlier identified from the polynomial fit method 

returns the largest OF, the point is recorded as an outlier and removed. To detect all outliers, this 
process is repeated until no more outliers remain. 

LTIAM also detects short arcs which are continuous arcs of less than ten data points or five minutes 
when an interval of data points is thirty seconds. The short arcs need to be discarded because leveling 
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errors for those arcs are typically large and cause ionospheric delay estimation errors [17]. In this step, 
we count the number of IOD cycle slips, the number of outliers, and the number of short arcs as data 
quality parameters. 

3.1.2. Determination of Detection Thresholds 

LTIAM was originally designed to process data from the period of anomalous ionospheric events. 
Thus, LTIAM pre-processing algorithms use relaxed detection thresholds in order to prevent 
ionospheric data from being misjudged as cycle slips or outliers and discarded under ionospheric storm 
conditions. A threshold of 2.5 m for cycle slip detection and a threshold of 0.8 m for outlier removal 
were used as defaults [17]. However, data quality checks are commonly conducted by using data from 
nominal days on which anomalous ionospheric events rarely happen. This section thus newly 
determines cycle slip and outlier detection thresholds respectively through statistical analyses. We first 
collect data from CORS stations in CONUS for seven consecutive days and obtain statistical 
distributions of differential ionospheric delays, Iφ∇ , and differential residuals, R∇  (where the 
residuals, R , are the carrier-derived ionospheric delays, , minus the polynomial fit of Iφ ). 

The geomagnetic conditions on these seven consecutive days are shown with two indices of global 
geomagnetic activity from space weather databases [21]: planetary K (Kp) and disturbance storm time 
(Dst). In this period, a total of 1654 CORS network stations were operating in CONUS. As Kp and Dst 
in Table 1 indicate, the geomagnetic storm condition was quiet. This allows CORS station data quality 
to be observed while minimizing any influence of abnormal ionospheric behavior. 

Figure 5. Distribution of differential ionosheric delays, Iφ∇ , derived from data  

collected for seven consecutive days: (a) probability density function and (b) cumulative 
distribution function. 
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Figure 5a,b shows the probability density function (PDF) on a logarithmic scale and cumulative 
distribution function (CDF) of Iφ∇  derived from data for seven consecutive days respectively.  
In Figure 5a, we see that the PDF of Iφ∇  steadily decreases as Iφ∇  increases when Iφ∇  is smaller than 
0.5 meters, and PDF stays almost the same on the order of 10−4 for Iφ∇  greater than 0.5 m. The CDF of 

Iφ∇  in Figure 5b shows that the probability that Iφ∇  goes beyond 0.5 meters is approximately  
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0.2 percent. This statistical result indicates that the rare occurrences of Iφ∇  greater than 0.5 meters are 
likely to be due to cycle slips. One example of the comparison between erroneous Iφ∇ and normal Iφ∇  

is shown in Figure 6. Figure 6a,c show the ionospheric delay estimates of all GPS satellites in the slant 
domain observed from stations 1SUN and OKEE on a nominal day (24 May 2012). The CDFs of Iφ∇  

derived from each station are shown in Figure 6b,d, respectively. The carrier-phase measurements of 
OKEE were corrupted by numerous cycle slips, resulting in inaccurate ionospheric delay estimates 
while good quality data of 1SUN produce precise ionospheric delay estimates. Approximately  
10 percent of total Iφ∇  of OKEE has a value greater than 0.5 m, while no Iφ∇ from 1SUN exceeds  

0.5 m. From these results, a threshold of 0.5 m was determined for cycle slip detection for nominal days. 

Figure 6. Example of ionospheric measurements corrupted by poor quality GNSS data:  
(a) dual-Frequency slant ionospheric delay estimates to all satellites for CORS station 
1SUN (good quality data); (b) cumulative distribution function of differential ionosheric 
delay, Iφ∇ , for 1SUN; (c) slant ionospheric delay estimates for CORS station OKEE  

(poor quality data); and (d) cumulative distribution function of differential ionosheric delay 
for OKEE. 
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Figure 7a,b shows the PDF on a logarithmic scale and CDF of the differential residuals, R∇ , 
(where the residuals are the ionospheric delay data minus the polynomial fit) derived from data for 
seven consecutive days respectively. The distribution of R∇  shows that the probability is very small  
(on the order of 10−4) for R∇  greater than 0.5 m. As shown in Figure 7b, the probability that R∇  exceeds 
0.5 m is approximately 0.02 percent. A threshold of 0.5 m is used for outlier detection in this study.  
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Figure 7. Distribution of differential residuals, R∇ , derived from data collected for seven 
consecutive days: (a) probability density function and (b) cumulative distribution function. 
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3.2. TEQC Algorithm 

The TEQC software is commonly used to check data quality of GPS data in the RINEX format [11]. 
We selected and implemented some parts of TEQC algorithms to develop a comprehensive quality 
determination method for supporting broader communities including users for ionospheric studies. The 
quality parameters include the percentage of observations, the RMS of multipath on L1 and L2 code 
measurements, and the number of data jumps detected using multipath estimates. The percentage of 
observations is the ratio of “possible observations” to “complete observations,” where “possible 
observations” indicate the total number of possible observation epochs in a given time window, and 
“complete observations” are the number of epochs that actually observed code and carrier-phase data. 

The LTIAM IOD cycle slip detection algorithm performs better than the IOD cycle slip detection  
of TEQC by applying three detection criteria. However, if data jumps occur in carrier-phase 
measurements due to receiver clock jumps (i.e., receiver clock slips) on both L1 and L2 signals 
simultaneously, these cannot be detected using IOD measurements. Thus, we augmented slip detection 
by incorporating the TEQC method, which detects data jumps using multipath estimates. The data 
jumps detected by using multipath (MP) estimates are defined as MP slip. The MP slip method uses 
linear combinations of L1/L2 code ( 1ρL , 2ρL ) and carrier-phase ( 1φL , 2φL ) measurements [11]. These 
linear combinations are defined as: 

1 1 2 1 1 1 2 1
2 2 2 21 1 1

1 1 1 1L L L L L LMP M B m mρ φ φ ε
γ γ γ γ

       
≡ − + + = + − + + +       − − − −       

 (13)  

2 1 2 2 2 1 2 2
2 2 2 22 1 1

1 1 1 1L L L L L LMP M B m mγ γ γ γρ φ φ ε
γ γ γ γ

       
≡ − + − = + − + − +       − − − −       

 (14)  

LiM  and Lim  are the multipath errors on code and carrier-phase measurements on the Li 
( 1, 2)i = signals, respectively. The bias terms, 1B  and 2B , are:  

1 1 2
2 21

1 1L LB N N
γ γ

   
≡ − + +   − −   

 (15)  
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2 1 2
2 2 1

1 1L LB N Nγ γ
γ γ

   
≡ − + −   − −   

 (16)  

LiN  is the integer ambiguity of the Li frequency signals, and γ  is the square of the frequency ratio  
as shown in Equation (5). When the difference between two consecutive points (at epoch it  and  
epoch 1it − ) in each continuous arc of MP1 or MP2 is greater than a threshold of 10 m as shown in 
Equation (17), it is identified as a data jump. If the data jump occurs at a different point in time 
compared to an IOD cycle slip, this data jump is referred to as an MP slip: 

11( ) 1( )i iMP t MP t threshold−− >  (17)  

After performing IOD cycle slip and MP slip detection, the arcs are divided by the detected slips. 
The biases, 1B  and 2B , of the sub-arcs of MP1 and MP2 are assumed to be constants unless an 
undetected slip is remaining. Therefore, these constants are removed from each arc, and the RMS 
values of these linear combinations are reported. Although the portion of carrier-phase multipath is 
included in this reported value, the amount is small compared to that of code multipath. Thus, the  
bias-removed MP1 and MP2 can be approximated to be the multipath errors on L1 code and L2 code 
measurements, respectively. 

3.3. Adaptive Filter Algorithm 

An adaptive filter algorithm is designed to estimate receiver noise on code measurements. After 
removing the bias components, 1B  and 2B , of MP1 and MP2 from Equations (13)–(16), _MPi new  
can be expressed as: 

1 1 11_ 1MP new MP B mp ε= − = +  (18)  

2 2 22 _ 2MP new MP B mp ε= − = +  (19)  

1 1 1 2
2 21

1 1L L Lmp M m m
γ γ

   
= − + +   − −   

 (20)  

2 2 1 2
2 2 1

1 1L L Lmp M m mγ γ
γ γ

   
= − + −   − −   

 (21)  

imp , the Li-frequency approximated code multipath estimate, is likely to be highly correlated to 

imp  from the previous day (i.e., one sidereal day earlier). However, iε , the receiver noise on Li code, 
is not correlated to iε  of the previous day. Therefore, _MPi new  from two consecutive days can be 
separated into the correlated component ( imp ) and the uncorrelated component ( iε ) using an adaptive 
filter [19]. The adaptive filter takes two inputs: a primary input and a reference input. In this study, 

_MPi new  for the day of interest is set as the primary input, and _MPi new  for the previous day is set 
as the reference input. Then, the output of a Finite-duration Impulse Response (FIR) filter is calculated 
using the reference input and weights. A least-mean-square (LMS) algorithm has been used to 
adaptively adjust the weights of the FIR filter to minimize the sum of squared estimation errors. 

The adaptive filter returns the part of the primary input that is strongly correlated with the reference 
input as its output. Thus, the imp  of the primary input (i.e., the multipath estimate on the code 
measurement) is calculated as the output of the adaptive filter. The estimation error of the filter 
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approximately represents the code receiver noise, iε , because it represents the value with imp  
removed from the primary input. As explained, in order to estimate the receiver noise, iε , correlation 
between the MPi  of two consecutive days must exist. However, there are cases where such correlation 
is not clearly visible depending on receiver/antenna type and environmental changes. In these cases, 
the receiver noise in the quality output is presented as “not available (N/A)”. 

4. Results 

The CORS data on the dates in Table 1 were collected and analyzed to evaluate the performance of 
the data quality measurement algorithms. As explained above, these seven consecutive days during 
which the geomagnetic storm condition was quiet are suitable for observing GNSS data quality 
because the chance of cycle slips and outliers being falsely detected due to any influence of abnormal 
ionospheric behavior is minimized. Using the results of this method, the comparative analysis on the 
performance of stations in the CORS network was conducted in Sections 4.1 and 4.2. In Section 4.3, 
we also examine the correlation between the data quality parameters obtained in this study and TEC 
perturbation which well represents the quality of ionospheric data under ionospherically quiet 
conditions. These results from correlation analysis are compared to that of the TEQC software.  
Section 4.4 discusses the selection of high quality data which can be conducted by utilizing data 
quality parameters through case studies.  

4.1. Data Quality Parameter Output per Station 

The statistics of quality parameters obtained from the tests are used to compare the performance of 
each station. Table 2 shows the results from the GNSS data quality measurement algorithms for station 
NVLA on 27 May 2012. The receiver model and the type of antenna can be found in the header part of 
the RINEX file collected from the station. While the RINEX file records the SNR for L1 and L2 
frequencies, the unit of SNR is dependent on each receiver and not all stations provide SNR. Since the 
GPS observations at low elevation angles (i.e., weaker received signal strengths) are affected by larger 
multipath errors and prone to loss of lock, an elevation cutoff angle of 10 degrees (as a default) is used. 
The number of IOD cycle slips, the number of outliers, and the number of short arcs, the percentage of 
observations, the number of MP slips, the RMS of multipath errors on L1 and L2 code measurements, 
and the mean of receiver noise on L1 and L2 code measurements are computed using the proposed 
data quality determination method. 

The quality measurements corresponding to those in Table 2 are obtained from each station every 
day during the seven days listed in Table 1. Table 3 shows the rank of stations for five quality 
parameters (each parameter of stations is averaged over all seven days) among a total of thirteen 
parameters. The worst station is on the top for each quality parameter, and the same station is 
highlighted with the same color. Table 3 shows that the worst stations are likely to be identified by 
multiple data quality parameters. Recall that, among the highlighted stations in this table, station 
OKEE was introduced as an example of station with poor GPS data quality in Section 2. 

http://endic.naver.com/popManager.nhn?m=search&query=correspond
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Table 2. Information of data quality parameters for Station NVLA on 27 May 2012. 

Output Parameters Example Description 
Date 27 May 2012 Day Month Year 
Station ID NVLA  
Receiver type LEICA GRX1200PRO  
Antenna type LEIAT504  

Possible observations (>10°) 26,553 
Total number of possible observation epochs in a given  
time window 

Complete observations (>10°) 25,223 
Number of epochs that actually had L1/L2 code and  
carrier-phase data from at least one SV. 

Percentage of observations 95 (Complete observations/possible observations) × 100 
Mean S1 (>10°) 46.39 Mean signal to noise ratio (SNR) for L1 
Mean S2 (>10°) 42.27 Mean signal to noise ratio (SNR) for L2 
IOD cycle slips (>10°) 61 Total number of ionospheric delay (IOD) cycle slips occurred 
MP slips (>10°) 0 Total number of multipath (MP) slips occurred 
Outliers (>10°) 0 Total number of outliers observed 
Short arcs (>10°) 40 Total number of short arcs observed 
RMS MP1 (>10°) 0.3759 (m) RMS of multipath on L1 code measurements 
RMS MP2 (>10°) 0.3938 (m) RMS of multipath on L2 code measurements 
Receiver noise1 (>10°) 0.0808 (m) Mean of receiver noise on L1 code measurements 
Receiver noise2 (>10°) 0.1046 (m) Mean of receiver noise on L2 code measurements 

Table 3. Rank of CORS stations in CONUS (Worst station is on top for each quality parameter). 

 # of IOD Cycle Slips # of Short Arcs Pct. of Obs. # of Outliers RMS of MP1 
Rank Stn. # Stn. # Stn. % Stn. # Stn. meter 

1 bru5 5552.00 bru5 5545.14 p702 18.00 mion 246.14 wach 1.3460 
2 ls02 1565.50 ls02 1559.16 p699 38.33 ls02 135.00 defi 1.1764 
3 sag5 1544.00 covx 1484.85 ncwj 42.85 okee 109.29 ormd 1.0433 
4 covx 1531.71 sag5 1466.42 twhl 50.71 cpac 68.29 zoa2 0.9758 
5 mion 1100.86 mion 1064.71 okee 59.71 njwc 67.14 zfw1 0.9606 
6 mlf5 1063.86 mlf5 1051.43 barn 61.00 njcm 58.86 zla1 0.9397 
7 okee 1024.14 okee 1009.43 wvbr 61.00 brtw 38.71 zma1 0.9198 
8 kns6 862.42 kns6 862.14 loz1 64.85 hruf 37.57 zau1 0.9197 
9 loz1 832.42 kew6 819.57 ohfa 67.00 pltk 37.29 zob1 0.9143 

10 kew6 819.71 loz1 793.71 sag6 67.00 p671 35.86 loz1 0.9100 
11 red6 767.57 red6 760.14 hgis 68.85 jxvl 30.57 zse1 0.9086 
12 drv6 715.14 drv6 705.85 kysc 68.85 ccgn 30.43 nas0 0.8977 
13 lou6 673.71 lou6 646.71 arlr 70.00 mihl 27.71 zlc1 0.8975 
14 prry 642.28 prry 619.28 arm3 70.00 lpsb 26.29 zmp1 0.8974 
15 frtg 637.14 det6 617.86 dqcy 71.14 txbk 25.29 gol2 0.8972 
16 plo5 625.57 plo5 616.00 hamm 71.14 nypb 24.71 zoa1 0.8841 
17 det6 621.85 frtg 610.57 oakh 71.29 pbch 24.71 zdv1 0.8703 
18 kew5 579.29 kew5 574.57 thhr 71.43 bnfy 24.14 zab1 0.8624 
19 cosa 572.14 acu5 537.00 chzz 71.50 nyqn 24.14 zab2 0.8455 
20 acu5 541.43 kns5 483.00 lsua 71.57 njgt 21.29 ls02 0.8386 
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4.2. Distributions of Data Quality Parameters 

The results of analyzing the quality parameters of the CORS stations in CONUS show us how 
widely station performance can vary. Figure 8a shows the total number of IOD cycle slips counted 
over all satellites during 24 h at each station. These numbers are counted for the seven consecutive 
days. The station ID is plotted (in no particular order) along the x-axis, and the number of IOD cycle 
slips is plotted along the y-axis. The blue circle shows the mean value of all seven days on each station 
and the red dot represents the minimum value among seven days on each station, respectively. These 
two values over seven days are close together for most stations, indicating that poor data quality of a 
station persists for an extended period. From this test, 1.2 percent of stations had more than 500 IOD 
cycle slips per day, and more than 15 percent of the stations had more than 50 IOD cycle slips. Note 
that the mean value over all seven days and all stations is 39.94. 

Figure 8b shows the total number of short arcs counted over all satellites during 24 h at each station. 
If cycle slips frequently occur, the number of short arcs increases because ionospheric delay data are 
divided into sub-arcs by the cycle slips. Thus, a high correlation exists between the number of IOD 
cycle slips and the number of short arcs. More than 10 percent of the stations had more than  
50 short arcs per day while the mean value over all seven days and all stations is 34.48. The number of 
outliers also widely varies depending on station performance as shown in Figure 8c. This quality 
parameter has the mean value of 1.21 over all days and all stations, and as many as 2.4 percent of 
stations had more than 10 outliers per day. 

Figure 8d presents the total number of MP slips counted at each station per day. While the 
occurrence of IOD cycle slips mainly depends on environmental conditions around receivers, MP slips 
occurring due to receiver clock jumps rely upon the receiver itself. Thus, the distribution of the number 
of MP slips is dissimilar to that of IOD cycle slips. The mean value over all seven days and all stations 
is 15.02 MP slips per day, while one percent of stations had more than 500 MP slips per day, and more 
than 3.6 percent of the stations had more than 50 MP slips. The RMS values of multipath errors on  
L1 code and L2 code measurements of each station are shown in Figure 8e,f, respectively. Since 
multipath errors are caused by the reflection of satellite signals from the environment around receivers 
such as the ground, buildings, or other obstacles, the distributions of RMS multipath on L1 and L2 
code measurements are very much alike. The mean values of RMS of multipath errors on L1 and L2 
code measurements over all days and all stations are 0.3411 and 0.3876 m, respectively.  

In most quality parameters, better data quality results in smaller values. However, higher values of 
percentage of observations indicate better quality of data. Thus, the mean values (blue circle) and the 
maximum values (green dots) of the percentage of observations of each station are compared to 
confirm that the poor data quality of a station persists for an extended period. In the percentage of 
observations, the maximum value (green dots) of a station across seven days and the mean value (blue 
circle) over seven days are also close together for most stations as shown in Figure 8g. The mean value 
of the percentage of observations over all days and all stations is 97.39 percent. As can be seen in  
Figure 8a–g, the range of good and poor performance varies noticeably for each quality parameter. It 
can be observed that most stations maintain similar performance for the duration of this data set. This 
information suggests that we can select high quality GNSS data in a station basis and the quality 
parameters of each station should be useful for the selection. 
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Figure 8. Data quality parameters obtained at each station per day: (a) number of IOD 
cycle slips; (b) number of short arcs; (c) number of outliers; (d) number of MP slips;  
(e) RMS of MP1; (f) RMS of MP2; and (g) percentage of observations. 
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Figure 9a through 9g show the PDF of each quality parameter on each station per day in logarithmic 
scale. These test statistics are obtained from data collected for the seven days in Table 1. As an 
example, the PDF of the number of IOD cycle slips on each station per day is shown in Figure 9a. The 
dashed vertical lines in Figure 9a–f refer to the value of 9µ σ+  (the mean value plus 9 times the 
sample standard deviation) for each parameter. In Figure 9a–f, since data (blue) exist continuously 
from 0 to this line and the continuity of data ceases beyond this line, the data that go beyond 9µ σ+  
are considered to be extreme outliers (i.e., stations with poor data quality). The dashed vertical line in 
Figure 9g represents the value of 9µ σ− . The percentage of observations which falls lower than this 
line indicates extremely poor data quality. 
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Figure 9. Probability density function of data quality parameter for each station per day 
(data collected for seven days): (a) number of IOD cycle slips; (b) number of short arcs;  
(c) number of outliers; (d) number of MP slips; (e) RMS of MP1; (f) RMS of MP2; and  
(g) percentage of observations. 

0 2000 4000 6000 8000 10000
-4

-3

-2

-1

0

Number of IOD Cycle Slips

lo
g 10

PD
F

 

 
 µ + 9σ

0 2000 4000 6000 8000 10000
-4

-3

-2

-1

0

Number of Short Arcs

lo
g 10

PD
F

 

 

0 100 200 300 400
-4

-3

-2

-1

0

1

Number of Outliers

lo
g 10

PD
F

 

 

0 500 1000 1500
-4

-3

-2

-1

0

1

Number of MP Slips

lo
g 10

PD
F

 

 

0 0.5 1 1.5 2

-2

-1

0

1

RMS of MP1 (m)

lo
g 10

PD
F

 

 

0 0.5 1 1.5 2

-2

-1

0

1

RMS of MP2 (m)

lo
g 10

PD
F

 

 

0 20 40 60 80 100
-4

-3

-2

-1

0

Percentage of Observation (%)

lo
g 10

PD
F

 

 
 µ - 9σ

(a) (b)

(c) (d)

(f)(e)

(g)  

4.3. Correlation between Data Quality Parameters and TEC Perturbations 

To examine the possibility of selecting high quality GNSS data (i.e., high quality stations) based on 
data quality parameters for ionospheric studies, the correlation between TEC perturbation and each 
quality parameter was investigated. The TEC perturbation measurements are generated by processing 
dual‐frequency GPS measurements collected from the CORS network using the LTIAM software.  
In Figure 10, normalized standard deviations of TEC perturbation calculated during the seven days 
listed in Table 1 are plotted along the x-axis. The standard deviations of TEC perturbation obtained 
from data over all satellites during 24 h at each station are averaged over the seven days. The averaged 
standard deviations of TEC perturbation at each station are normalized by removing their mean over 
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all stations and dividing them by their standard deviations. Large TEC perturbation is not expected to 
be seen in mid latitude regions on the dates (listed in Table 1) during which geomagnetic activities 
were quiet. Thus the large TEC perturbations observed from some stations in Figure 10 are likely due 
to poor quality GPS data corrupted by cycle slips, outliers, multipath, and so on. 

Figure 10. Correlation of TEC perturbation with data quality parameters for CORS 
stations (all parameters are normalized): (a) number of IOD cycle slips obtained from 
TEQC; (b) number of IOD cycle slips; (c) number of short arcs; (d) number of outliers;  
(e) number of MP slips; (f) RMS of MP1; (g) percentage of observations; and  
(h) combination of three quality parameters. 
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The correlation between TEC perturbation and the number of IOD cycle slips counted using the 
TEQC software tool is shown in Figure 10a. As done for the proposed method in this paper, TEQC 
also used differential ionospheric delay, Iφ∇ , for cycle slip detection. To make a direct comparison of 

its performance to that of the proposed method (from which the results are shown in Figure 10b), we 
set a threshold of 0.5 m in TEQC which is the same value determined in Section 3.1.2. The number of 
cycle slips is counted using TEQC over all satellites during 24 h at each station. These numbers are 
averaged over the seven days and then normalized over all stations to have zero mean and unit 
variance. In this case, the Pearson’s correlation coefficient between the number of cycle slips and the 
TEC perturbation, r , is 0.4019. 

The six quality parameters (the number of IOD cycle slips, the number of short arcs, the number of 
outliers, the number of MP slips, the RMS of MP1, and the percentage of observation) obtained from 
the proposed method in this paper are calculated, averaged over seven days, normalized over all 
stations, and plotted along the y-axis in Figure 10b–g. As shown in Figure 10b, the TEC perturbation is 
more highly correlated with the number of IOD cycle slips ( r = 0.4970) than with the number of cycle 
slips ( r = 0.4019) derived from TEQC. This result demonstrates that the cycle slip detection of the 
proposed method performs better and its output more accurately represents GPS data quality. The 
correlation coefficients were also considerably high in the cases of the number of short arcs  
(r = 0.4785) and the number of outliers (r = 0.4891), indicating that these would affect the quality of 
ionospheric data. The correlations of TEC perturbation with MP1 and the percentage of observation 
are not strong, and that with the number of MP slips which are not visible on TEC estimates is weak. 
Assuming that the normalized quality parameters are independent and the sum of the normalized 
quality parameters has a normal distribution, we combine multiple quality parameters into a new 
quality parameter which has a stronger correlation with TEC perturbation. As shown in Figure 10h, the 
correlation increased ( r = 0.6486) after adding the three quality parameters which have the first to 
third highest correlation: the number of IOD cycle slip, the number of outliers, and percentage of 
observation. In this combination set, the number of short arcs was not included to avoid adding 
duplicated information because its distribution is almost equal to that of the number of IOD cycle slips. 
More effective station selection would be possible using the parameter with higher correlation (which 
will be discussed in the following subsection). 

4.4. Case Study: Station Selection  

This subsection shows the possibility of utilizing the data quality parameters driven by the proposed 
method to select stations with high quality GNSS data. The performances of two cases which use the 
TEQC-driven cycle slip parameter and the combined quality parameter respectively were compared. 
Figure 10a,h which present results from correlation analyses for the two parameters were redrawn in 
Figure 11a,b. Based on the standard deviation of TEC perturbation, sixteen stations (1 percent of the 
total stations) that produce ionospheric data with the poorest quality were identified and denoted with 
black asterisks in Figure 11a–d. To exclude these worst case stations using the number of cycle slips 
obtained from TEQC, the threshold of the normalized number of cycle slips is lowered to 0.0074 
(demarcated with the dashed horizontal line in Figure 11a). However, if we select stations that fall 
below the threshold, 286 stations denoted with red crosses (17 percent of the total stations) in Figure 11a 
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are sacrificed although these stations have good quality data. On the other hand, in the case of using 
the newly defined parameter by combining three quality parameters which have the highest correlation 
coefficients, only 164 (10 percent of the total stations) stations marked with red crosses in Figure 11b 
are additionally removed because of exceeding a threshold of 0.6469 (demarcated with the dashed 
horizontal line in Figure 11b). The stations marked with blue diamonds are selected as shown in  
Figure 11c,d (the zoomed-in plots of Figure 11a,b). Note that a value of one was added to all of the 
data prior to plotting, because negative data cannot be represented in a logarithmic scale. It is evident 
that the use of parameter which has stronger correlation with the quality of ionospheric data improves 
the performance of station selection. The set of data quality parameters when used in combination 
allowed the effective selection of high quality GNSS data and better performance compared to the 
TEQC parameter, although this is not necessarily the best solution. Research on the optimal means of 
utilizing data quality parameters generated by the proposed method for selecting high quality stations 
is in progress [22] and beyond the scope of this paper.  

Figure 11. Station selection using: (a) the number of IOD cycle slips generated using 
TEQC; (b) combination of three quality parameters determined using the proposed method; 
(c) zoomed in (a); and (d) zoomed in (b) in a logarithmic scale. 
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5. Conclusions 

The use of corrupted GNSS data degrades the quality of ionospheric measurements. Thus, it is 
necessary to check the quality of observation data and use high quality GNSS data only for ionospheric 
data analysis. This paper presents a methodology to determine the quality of GNSS observations 
collected from a reference station for the purpose of ionospheric studies. This method provides a 
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comprehensive set of quality control parameters calculated using the sophisticated pre-processing 
algorithms of the LTIAM which are augmented with the TEQC algorithm and adaptive filter 
algorithm. These quality parameters include the number of cycle slips, the number of short arcs, the 
number of outliers, the number of MP slips, the percentage of observations, the RMS of multipath on 
L1 and L2 code measurements, and the mean of receiver noise. The results from analyzing the GNSS 
data quality of the CORS network showed that the range of good and poor qualities varies noticeably 
for each quality parameter and the performance of individual stations persists for an extended time 
period. This indicates that high quality data can be selected in a station basis by utilizing data quality 
parameters. The correlation analysis between data quality parameters and TEC perturbations which 
well represent the quality of ionospheric data demonstrated that the quality parameters obtained from 
proposed method have stronger correlation than that of TEQC and thus enable a better performance 
when used for station selection. Furthermore, a set of quality parameters was used in combination, its 
correlation with TEC perturbations increased and the performance of selecting high quality stations 
was improved. 

As the number of GNSS stations and also GNSS applications where their observations can be 
employed steadily increase, it becomes more important to characterize the quality of GNSS 
observations. The proposed method should be applicable for the GNSS users of various applications to 
check the quality of GNSS observations and accordingly select high-quality data. This will especially 
help to improve the performance of applications for which precise GNSS data is essential, such as Real 
Time Kinematic (RTK), precise orbit determination of satellites, and the estimation of the Earth 
Rotation Parameters (ERP). The use of the statistical information on quality parameters obtained from 
this method allows selecting stations desired for specific applications. Research on the best means of 
utilizing these statistical results and effectively selecting stations with high quality data is an ongoing 
research topic that will benefit a wide range of GNSS applications. 
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