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Abstract: Robust and fast traffic sign recognition is very important but difficult for safe 

driving assistance systems. This study addresses fast and robust traffic sign recognition to 

enhance driving safety. The proposed method includes three stages. First, a typical Hough 

transformation is adopted to implement coarse-grained location of the candidate regions of 

traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine 

and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust 

traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of 

ANN (Artificial Neutral Network) based feature dimension reduction and classification are 

designed to reduce the traffic sign recognition time. Compared with the current work, the 

experimental results in the public datasets show that this work achieves robustness in traffic 

sign recognition with comparable recognition accuracy and faster processing speed, 

including training speed and recognition speed. 
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1. Introduction 

With the development of the intelligent car [1–3], safe driving assistance systems are becoming more 

and more important. In the safe driving assistance system, traffic sign recognition is a key technology, 

and has been widely used [4,5]. The accuracy and short processing time are extremely important for 

traffic sign recognition. However, in practical driving conditions, the diverse situations of traffic signs 

including the rotation, viewpoint, scale and illumination are complex and undesirable. As shown in 

Figure 1, some traffic signs in variable conditions are illustrated. Achieving robust traffic sign 

recognition with short processing times is a very challenging endeavor. Traffic sign recognition includes 

traffic sign detection and traffic sign classification. In order to achieve fast and robust traffic sign 

detection, designing a computing efficient and highly discriminative feature is essential. Meanwhile, in 

order to achieve fast and robust traffic sign classification, establishing a classification process that can 

reduce the amount of features and sustain classification accuracy is also very important. 

 

Figure 1. Different kinds of traffic signs from GTSRB data set. 

Recently, many works have focused on traffic sign detection and recognition [6]. Some works achieve 

traffic sign detection and recognition by designing lots of pre-processing methods [7–10]. These works 

can achieve fast processing speed, but lack the generalization capability or robustness to recognize traffic 

signs in different and complex conditions. Other works adopt the classifiers to implement a training 

process for the classifiers to enhance the recognition of traffic signs based on large amounts of training 

samples [11–15]. Especially, the deep learning method is adopted to distinguish features from the  

pixels [15]. Though these classifications based methods achieve high classification accuracy, the 

learning and classification time is large, and hence should be further optimized for real safety  

assistance driving systems. 

Considering the processing time and classification accuracy as a whole, the specifically designed 

features for traffic sign detection, together with computing efficient classification, have been  

researched [16,17]. When designing the specific features, the conditions existing in different driving 

scenes including the rotation, illumination and scale should be taken into account to achieve robust 

detection. Meanwhile, the computing time of these features should be reduced. However, these works 

lack such kinds of design considerations. The typical ASIFT (Affine Scale Invariant Feature Transform) 

feature, SIFT (Scale Invariant Feature Transform) feature and SURF (Speed Up Robust Feature) feature 

exhibit highly discriminative performance [18–20], and have much potential to achieve robust traffic 

sign detection. Furthermore, among the ASIFT, SIFT and SURF, ASIFT exhibits the highest discriminative 

performance. However, these algorithms—ASIFT, SIFT and SURF—are all time consuming. 

In this work, in order to achieve robust and fast traffic sign detection, a rotation invariant binary 

pattern based feature in the affine space and Gaussian apace is proposed. This specific feature leverages 

the techniques from ASFIT to achieve robustness in scale, rotation and illumination, meanwhile 
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improving the computation efficiency. Further, in order to reduce the classification time, the methods of 

ANN (Artificial Neural Network) based feature dimension reduction and classification are adopted, 

which turn the complex clustering and matching processing into a small amount of parameter 

computation. Experimental results show that this work attains robust traffic sign recognition in 

comparison to the state-of-the-art methods, and achieves a faster processing time, including training time 

and classification time. 

The rest of the paper is organized as follows. Section 2 introduces the current research on traffic sign 

detection and recognition. Section 3 introduces the proposed rotation invariant binary pattern based 

feature and the entire approach for traffic sign recognition. The evaluation of results is presented in 

Section 4. The last section concludes the paper and outlines future directions. 

2. Related Work  

Current works on the traffic sign detection and recognition can be divided into three categories. First, 

pre-processing methods are researched to locate and recognize the traffic signs. Second,  

pre-processing methods combining with classification are adopted to achieve robust traffic signs 

recognition. Third, specific design features combing with the classifiers are used to achieve the robust 

and computing efficient recognition. These three categories are introduced below.  

First, many methods achieve the robust traffic sign detection and recognition by designing robust  

pre-processing methods [7–10]. Siogkas [7] proposes a complete automatic system for traffic sign 

detection and recognition by processing the video frames in L*a*b color space. Therein, L denotes the 

luminance, and a and b denote the color. Coronado [8] develops an intelligent system to achieve 

automatic traffic sign recognition in terms of dealing with the difficulties that arise from changes in 

lighting conditions and various obstacles. Hu [9] achieves the traffic sign detection based on the visual 

attention model. Larsson [10] adopts the Fourier descriptor to achieve traffic sign recognition. These 

methods require lots of pre-processing of the traffic images, and their generalization capability and 

robustness are limited.  

Second, based on the methods of machine learning, many classifiers including deep learning have 

been used to achieve robust recognition [11–15]. Kuo [11] adopts the two stage classification strategy 

to achieve traffic sign detection and recognition. Ciresan [12] and Sermanet [13] adopt the convolution 

neural network to learn the discriminative features from the pixels. These works achieve high 

classification accuracy, but the time complexity of training and classification is extremely high. Lu [14] 

proposes a sparse representation based graph embedded method to learn of a subspace by means of the 

structures of traffic signs, and then adopts the sparse representation classifier to implement classification. 

Jin [15] proposes a hinge loss stochastic gradient method to train the convolution neural network based 

deep learning, which achieves the high recognition accuracy. However, these methods’ learning features 

use the pixels or structures of the traffic signs based on large amounts of traffic samples bringing high 

computation complexity, while the training and the classification times are very high, which cannot 

sufficiently meet the requirements of intelligent driving systems.  

Third, the specifically designed features achieve more advantages in reducing the computation 

complexity. Greenhalgh [16] and Zaklouta [17] consider the computing time cost and propose the 

method for real time traffic sign recognition. Greenhalgh [16] uses the maximally stable extremal  
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regions (MSER) [21], and then implements the SVM (Support Vector Machine) based classification. 

Zaklouta [17] uses different sized HOG (Histograms of Oriented Gradients) features, and adopts random 

forest based classification to achieve high detection accuracy. Tang [22] proposes an efficient method 

of traffic sign recognition using complementary features to reduce the computation complexity of traffic 

sign detection, and then use the SVM to implement the traffic sign classification. The complementary 

features used in Tang [22] include HOG [23] and LBP (Local Binary Pattern) [24]. However, HOG and 

LBP features used in these methods cannot simultaneously tackle the situations of rotation, viewpoint, 

scale and illumination well. The typical ASIFT feature, as the most discriminative feature in the current 

feature works, can tackle rotation, viewpoint, scale and illumination very well [20], and hence has the 

most potential for traffic sign detection.  

According to the ASIFT work [20], the ASIFT algorithm simulates the original image by rotation and 

tilt transformation, and then implements the SIFT algorithm on these simulated images. The SIFT  

(Scale Invariant Transform) feature generation mainly includes Gaussian pyramid, extrema localization 

and feature generation. Because of the Gaussian pyramid and local rotation invariant processing by 

accumulating the orientations and magnitude, the SIFT algorithm exhibits strong advantages on the 

rotation and scale invariant. The ASIFT algorithm can perform equally to SIFT when implemented on 

the different affine simulations of the same image. Hence, it achieves high robustness in the affine space. 

However, the SIFT feature is based on the local intensity of the pixels; though the normalization for the 

feature vector achieves the illumination invariant, the performance is decreased when used in complex 

situations with large changes in illumination. Besides, since more images need to be processed by the 

SIFT algorithm and the SIFT algorithm itself is characterized by high computation complexity, the 

computation complexity for the ASIFT is high, which inhibits ASIFT from being directly implemented 

in traffic sign detection. 

In this work, in order to achieve high robustness in traffic sign detection, the techniques of affine 

simulation, main orientation computation and extrema localization in the ASIFT are reused, and a new 

feature that is computing efficient is proposed based on ASIFT for robust traffic sign detection. 

Meanwhile, the efficient ANN based classification is designed for traffic sign recognition to further 

enhances the robustness.  

3. Proposed Method 

This work uses the typical Hough transformation to locate the candidate regions of the traffic signs; 

and then implements two optimizations in the feature detection and classification, respectively. In this 

section, the first optimization called RIBP (Rotation invariant binary pattern) based feature algorithm is 

explained in Subsection 3.1. Then, the second optimization called ANN (Artificial Neural Network) 

based feature dimension reduction and classification is introduced in Subsections 3.2 and 3.3, 

respectively. The processing flow for the traffic sign recognition is illustrated in Subsection 3.4. 

3.1. Rotation Invariant Binary Patter Based Feature 

Since the histogram of binary patterns is illumination responsive and exhibits high  

discrimination [25,26], this work proposes scale and rotation invariant circular binary pattern based 

histograms to generate the feature vector. The main idea includes two aspects. First, we build the minimal 
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rotation invariant binary pattern (RIBP) image based on the original image block to enhance the 

illumination robustness; second, we construct the rotation invariant binary pattern based circular 

histogram to enhance the rotation invariant. All the analysis in this section is based on two design 

considerations. First, after the affine simulation and Gaussian pyramid, two pictures are placed 

approximately in the same scale and position; second, local filtering filters the extreme noises and ensures 

the stable change of the illumination. 
Define the image intensity as ( , )I x y  in the location ( , )x y , where [0, 1]x w∈ −  and [0, 1]y h∈ − .  

w  and h denote the image width and image height of image, respectively. The illumination change in 

affine space is modeled in Equation (1). 

`

1

( , ) ( ( , ))
K

i i
i x y

i

I x y w I x d y dα β
=

= + + +
 

(1)

where iw , α  and β  denote the weighting factor, scaling factor and shifting factor for the intensity, 

respectively; i
xd , i

yd  denote the location shift in x orientation and y  orientation; k  denotes the number 

of the pixels in the original image to attend the transformation for the pixel ' ( , )I x y  in the affine 

transformed image. 

In this work, the Gaussian pyramid technique and affine simulation technique are adopted to ensure 

the affine and scale invariant. After affine simulation, the image pair that is approximately similar is 

achieved. Hence, the original expression in Equation (1) is rewritten in Equation (2). 

`( , ) ( , )x yI x y I x d y dα β≈ + + +
 (2)

Since the binary pattern mode can achieve robustness in illumination [25,26], given the pixels  
( , )I x y  and `( 1, 1)I x y+ + , assume ` `( , ) ( 1, 1)I x y I x y> + + , we can achieve the expression in  

Equation (3) according to Equation (2): 

( , ) ( 1 , 1 )x y x yI x d y d I x d y dα β α β+ + + > + + + + +
 (3)

Equation (3) can be simplified as Equation (4): 

( , ) ( 1 , 1 )x y x yI x d y d I x d y d+ + > + + + +  (4)

Then, construct the binary pattern mode to denote the relationship of intensity value, for which  

the relationship shown in Equation (5) is achieved by means of binary pattern mode transformation 
( 1, 2)para paraψ  mentioned in [25,26].  

` ` `( ( , ), ( 1, 1)) ( ( , ), ( 1 , 1 ))x y x yI x y I x y I x d y d I x d y dψ ψ+ + = + + + + + +  (5)

In Equation (5), ( 1, 2)para paraψ  denotes 1 when 1 2para para> , and denotes 0 when 

1 2para para≤ . 1para  and 2para denote the parameters in the function ψ . According to this 

transformation, the illumination disturbance of the pixels can be well handled.  

In Equation (2), the relationship is of approximate equivalence. In order to reduce the approximating 

error, we first use the method of intensity accumulation which is shown in Equation (6). 

  



Sensors 2015, 15 2166 

 

 

`

1 , 1 1 , 1

( , ) ( , )x y
i j i j

I x i y j I x i d y j dα β
− ≤ ≤ − ≤ ≤

+ + ≈ + + + + + 
 

(6)

Then, construct the binary pattern image based on the original image block to enhance the 

illumination robustness according to Equation (7).  
` `

1 , 1 1 , 1
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(7) 

Then, according to Equation (8), we rotate the binary pattern around the central pixel to the minimal 

value to achieve a stable descriptor for the center pixel, and meanwhile the rotation invariant is improved 

for the center pixel. 

1 2 8 8( ( ), ( ),...... ( )) ( ( ),...... ( ),...)shift
z minψ ψ ψ ψ ψ⎯⎯⎯→      (8) 

The whole process for the Equations (6)–(8) is shown in the top part of Figure 2, and based on this 

transformation, the final RIBP (Rotation invariant binary pattern) based image is generated. Since this 

process mainly contains the operations of addition and comparison to achieve a binary result, the 

computing speed can be improved. 

 

Figure 2. Illustration of the rotation invariant binary pattern based feature computing to 

achieve fast and robust traffic sign detection. 

Further, as shown in the bottom part of Figure 2, the rotation invariant BP based circular histogram 
is illustrated. Define ( 1, 2)R R R  as the regions between 1R  and 2R  in the circular regions, where 1R  

denotes the outer radius and 2R  denotes the inner radius. Define θ  as the angle occupied by each ring 

section. Define Bin  as the number of the statistical classifications in the histogram. In this work, the 

local main orientation computation and extreme localization are computed based on the techniques in 

the SIFT algorithm. When obtaining the main orientation and extreme location, this method constructs 

the ring section according to the main orientation and the binary pattern value to generate the histogram 
in region of ( 1, 2)R R R . The center of the initial ring section is located in the main orientation, and several 

ring sections construct the joint circular histograms. The number of ring sections is [(2* ) / ]RN PI θ= . 

θ
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Based on the analysis mentioned above, we can compute the feature vector: 0 1 1{ , ,... }RNFea F F F −= , 

where 1 2{ , ..... }j binF c c c= , and jF  is the statistics of the rotation invariant binary patterns, and 

1 2, ..... binc c c  denote the statistics of RIBP in different histogram region. Given the main orientations 1O  

and 2O , the feature vectors for the correspondences in the two images are computed as shown in 

Equations (9) and (10). Note that these two main orientations are computed for the same correspondence 

in the original image and the affine transformed image, respectively. 

1 1([ /2 ] 0)% ([ /2 ] 1)%1 { ,... }O RN PI RN O RN PI RN RNFea F F× × + × × + −=
 (9)

2 2([ /2 ] 0)% ([ /2 ] 1)%2 { ,... }O RN PI RN O RN PI RN RNFea F F× × + × × + −=
 (10)

Though the main orientations are different for the feature pair, the rotation invariant histograms for 

the RIBP in the circle region achieves highly invariant rotation. The relationship of these two features is 
| 1 2 |Fea Fea τ− ≤ , where τ  is a small threshold value for comparison. This optimization goal is to 

minimize τ  to achieve the highest robustness. The optimization is shown in Equation (11). 

( )

. . | 1 2 |

( 1, 2, , ) max

Min

s t Fea Fea

R R Bin T

τ
τ

φ θ
− ≤

<  

(11)

| 1 2 |Fea Fea τ− ≤  shows the constraint for robust detection. The parameters: 1R , 2R , Bin  and θ  

affect the discrimination performance and computing time, ( 1, 2, , )R R Binφ θ  denotes the computing 

time when choosing the parameter: 1R , 2R , Bin  and θ . maxT  denotes the allowed maximal computing 

time. In a real safe driving assistance system, maxT  should guarantee the real time processing. 

( 1, 2, , ) maxR R Bin Tφ θ <  shows the constraint for the time of feature computing. 

In this work, the experiments based on the public traffic sign dataset from [27] are implemented to 

search for the optimal parameters. The performance metric of matching rate (right matched points/total 

matched points) to verify the discrimination performance of this proposed feature is adopted. High 

matching rate denotes high discrimination performance, and also means the τ  in Equation (11) tends to 

be minimal. The matching rate and processing time are averagely computed and these results are shown 
in Figures 3 and 4, respectively. In these experiments, six sets of ( 1, 2)R R  are tested; the θ  (represented 

by Theta in the graph) ranges from 35 degrees–90 degrees with an interval of 15 degrees; the Bin  value 
ranges 6–10 with interval of 1. The blue line ( 1 7, 2 2)R R= =  exhibits more advantages with high 

matching performance and low processing time. From Figure 4, we can see, with the blue line, the feature 

computing time is less than 5 ms when / 3PIθ =  and 8Bin = . In real safety driving assistance systems, 
if the feature computing time is less than 5 ms (which means 5maxT ms= ), it gives a high margin to the 

whole system for real time processing. Therefore, in this work, we set the parameters as 1 7, 2 2R R= = , 

/ 3PIθ =  and 8Bin = . 
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Figure 3. Matching rate. 

 

Figure 4. Processing time. 

3.2. Artificial Neural Network Based Feature Dimension Reduction  

In this work, after the traffic sign detection using the proposed feature method, the feature vector with 

64 fixed-point data is generated from the candidate regions. The number of the features detected from 

the candidate regions is uncertain, and it is determined by the image content in the candidate regions. 

Hence, the K-means clustering method that clusters these feature vectors into specific dimensions 

contribute to the reduction of time in traffic sign classification. However, the clustering process needs 
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extra computation time. Different from the traditional way of directly clustering the features using the  

K-means method, this work uses the artificial neural network (ANN) based method to train the K-means 

to reduce the computation time of clustering. As shown in Table 1, these ANN based K-means methods 

are trained in the public traffic sign dataset from [27] and different topologies of the ANN affect the 

clustering accuracy. The ANN method includes three layers: input layer, hidden layer and output layer; 

and the ANN topology: a->b->c denotes the number of nodes in each layer. Setting the clustering  

of K-means as the baseline, the best topology for the ANN based K-means (topology:  

16->16->1) achieves 600 times’ improvement in the computation speed with only small 0.41% clustering 

accuracy loss. Note that, in these experiments, the features are unified as six clustering centers as they 

exhibit the high performance in classification accuracy and computation time. Furthermore, for these 

cluster centers, each center is represented by a 64 fixed-pointed vector. 

Table 1. Performance comparison for feature clustering. 

Method Topologies
Clustering 
Accuracy 

Computation 
Time 

K-means / 
100% 

(baseline) 
0.6 s 

ANN based K-means 16->16->1 99.59% 0.001 s 
ANN based K-means 16->8->2 98.64% 0.0015 s 
ANN based K-means 16->4->4 96.53% 0.001 s 

3.3. Artificial Neural Network Based Classification for Traffic Sign Recognition 

Based on these clustered feature vectors mentioned in Section 3.2, this work trains different ANNs 

for different types of traffic signs. This ANN based classification transforms the traditional classification 

method that uses feature vectors to implement the classification into this method with small parameter 

computation in the ANN; thus, the classification speed is greatly improved. We train the ANN topologies 

for the 43 classes in the public traffic sign dataset from [27] to achieve the best ANN topology and 

weight parameters. In the ANN training process, the overfitting problem has been considered. The 

strategies including the weighting decreasing in ANN training, iteration stopping criterion setting, and 

cross validations are adopted to avoid the overfitting problem. Besides, for fair comparisons with the 

reference works, we use the software development tool VC++ 2010 to code the algorithms, and implement 

them on the same hardware platform (Intel (R) Core(TM), Duo CPU, E7200@2.53GHz, 4 GB memory, 

and 32 bit operating system). The corresponding comparisons are shown in Tables 2 and 3. 

Table 2. Performance comparison with 320 × 240 image size. 

Method Topologies 
Classification 

Accuracy 
Computation 
Speed (fps) 

ANN 16->16->1 98.62% 500  
ANN 16->8->2 97.44% 435 
ANN 16->4->4 95.32% 500 
SVM Kernel based 98.64% 25 

Random Forest Decision tree based 97.54% 125 
Full matching Point to point  99.89% 0.1 



Sensors 2015, 15 2170 

 

 

Table 3. Performance comparison when changing the image size. 

Method Performance Metric  
Image Size 

320 × 240 640 × 480 1280 × 720 1920 × 1080

ANN 
CA 98.62% 98.60% 98.59% 97.55% 

CS(fps) 500 150 58 16 

SVM 
CA 98.64% 98.63% 98.60% 98.56% 

CS(fps) 25 7.3 2.6 0.52 

Random 
Forest 

CA 97.54% 97.52% 97.44% 97.41% 
CS(fps) 125 33 9.1 2.3 

Full matching 
CA 99.89% 99.86% 99.83% 99.81% 

CS(fps) 0.1 0.045 0.013 0.004 

As shown in Table 2, for different ANN topologies, different classification accuracies are achieved. 

Compared with the traditional classification methods including the SVM, random forest and full 

matching, the best topology for the ANN (16->16->1) in this work improves 20 times, 4 times and 4500 

times on the processing speeds, respectively; meanwhile the classification accuracy of this work is high. 

In Table 2, different kernels (linear, Gaussian, sigmoid, etc.) for the SVM and different numbers of 

decision trees (from 1 to 9) in the random forest are tested, and the average results are computed. 

Additionally, the SVM and random forest based classifications have been used in work by Zaklouta [17] 

and Tang [22], respectively. 

Further, we implement experiments changing the image size to evaluate the recognition accuracy and 

computing speed. The corresponding results are shown in Table 3, where the ANN topology  

(16->16->1) is selected since it exhibits higher performance among the three ANN topologies shown in 

Table 2.  

As shown in Table 3, with the increase of the image size, the enhanced computing speed in 

comparison to other works becomes more significant. This work implements fast local feature detection 

and then uses the ANN based feature dimension reduction and classification. Our work demonstrates 

that computing speed can be very high when implementing the ANN based classification. Performance 

of the SVM based method based on global searching to implement the classification will be affected by 

image size. Though the full matching method achieves the highest classification accuracy, its computing 

speed is quite slow as the full matching brings high computing costs. Note that, in Table 3, the symbol 

CA denotes the classification accuracy, and the symbol CS denotes the computing speed. For Tables 2 

and 3, the computing speed denotes the classification time, where the detection speed is excluded since 

we just evaluate the performance of different classifiers for our proposed features.  

3.4. The Whole Method Illustration 

Based on the proposed feature and ANN based optimizations mentioned above, the whole method for 

the traffic sign recognition is shown in Figure 5. In Figure 5, the typical method of Hough transform 

(used in the OPENCV library) is adopted to locate the candidate regions for the traffic signs so that the 

candidate traffic sign regions will be focused to implement the feature detection. Testing on the public 

traffic sign dataset from [27] shows that locating the candidate regions in advance reduces the useless 

computations by 70% compared to that implementing feature detection overall images. The location of 
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the candidate traffic sign regions is coarse-grained, and there are false candidate regions, which have the 

same shapes as the traffic signs. Hence, based on these candidate regions, this work implements  

fine-grained detection using the proposed features in this work.  

 

Figure 5. The whole computation flow of traffic sign recognition. The image embedded in 

the graph is from the GTSRB data set. 

As shown in Figure 5, the affine space and Gaussian pyramid technique are constructed to achieve 

scale robustness. The extreme localization technique is inherited from the SIFT algorithm [18]; it 

provides the main orientation and extrema coordinates. For the images in the Gaussian pyramid, this 

work generates the image block based binary pattern, and rotates the binary pattern sequence to the 

minimal position to generate the RIBP image. Then, the circular filtering for the circle region around the 

extreme point is implemented. Based on the extrema coordinates and main orientation, the rotation and 

scale invariant circular binary pattern based histogram is computed. Through the conjoined histogram, 

this proposed method quantizes them into the fixed-pointed data and generates the feature vectors. The 

final feature is a 64-dimension vector; each dimension is represented by the fixed-point data. These  

fix-point data based feature vectors contribute to the computation speed improvement. The generated 

feature vectors on one candidate region will be clustered using the ANN based K-means method, and 

then the ANN classifiers, which load the pre-trained ANN parameters of different types of traffic signs, 

will classify clustered data. The ANN based K-means feature dimension reduction and classification 

greatly improves the processing speed. 

4. Performance Evaluation 

In order to verify the discrimination performance and computation efficiency of the proposed feature 

for traffic sign detection, the experiments on the public available data set of traffic signs are 
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implemented, and the current highly discriminative and computing efficient features are adopted for 

comparison. The performance in terms of the feature computation time and correctly matched points are 

analyzed. Further, based on this proposed feature, the experiments based on the publicly available  

data set to evaluate the proposed method of traffic sign recognition are also implemented. The  

state-of-the-art works for traffic sign recognition are adopted for comparison. The performance is 

analyzed in terms of the recognition accuracy and processing time. Besides, we further perform the 

testing in real conditions for our work. In this section, all the experiments are implemented on a PC (Intel 

(R) Core(TM), Duo CPU, E7200@2.53 GHz, 4 GB memory, and 32 bit operating system) platform and 

an embedded platform (TI DM6467: DSP (1 GHz) +ARM (500 MHz), 256 M 32 bit DDR2 memory).  

4.1. Evaluation Methodology 

The public available dataset called German Traffic Sign Recognition Benchmark (GTSRB) [27] and 

Sweden traffic signs (STS) [11] are adopted for the performance evaluation. In the GTSRB dataset, there 

are 51,839 German traffic signs in 43 classes. These classes of traffic signs have been divided into six 

subsets [22]. These subsets include speed limit sign subset, unique sign subset, danger sign subset, 

mandatory sign subset, derestriction sign subset and other prohibitory sign subset. The size of these signs 

varies from 15 × 15 to 250 × 250. The images contain one traffic sign each, and each image contains a 

border of 10% around the actual traffic sign (at least 5 pixels) to allow for edge-based approaches. This 

dataset has the original size and locations of the regions of interests. Some graph results are shown in 

the Figure 6, where the two cases of traffic signs using our method to achieve the recognition are 

presented. The first case includes Figure 6a–c; the second case includes Figure 6e–g. Each case denotes 

the pre-processing and final recognition. The STS data set includes 20,000 images with 20% labeled and 

3488 traffic signs. The label for each sign contains the sign type (pedestrian crossing, designated lane 

right, no standing or parking, priority road, give way, 50 kph, and 30 kph). The size of these signs ranges 

from 3 × 5 to 263 × 248, and the image size is 1280 × 960.  

Further, the real traffic conditions are also considered for verification. In real traffic sign conditions, 

25 video clips are recorded from the streets of Beijing by an on-board surveillance camera X6000. In 

these image datasets we collected, there are 200 Chinese traffic signs including the types of warring 

signs, direction signs, and forbidden signs. Meantime, the traffic signs’ conditions in the night, daytime, 

raining and sunny day are considered in the training images and testing images to improve the 

classification performance. The evaluation results are shown in Section 4.5.  

Besides, in this work, when implementing the ANN training process on these datasets, the strategies 

including weighting decreasing, iteration stopping criterion setting, and cross validations are used to 

avoid the ANN overfitting. For example, in the dataset of real traffic conditions, we use 5000 frame 

images with 1920 × 720 frame sizes to train the ANN classifier, and 2000 frame image to implement  

the testing. 

In order to verify the discrimination performance and computing efficiency of the proposed feature, 

we select ASIFT as the baseline algorithm for the comparison since the ASIFT algorithm exhibits better 

discrimination performances than SIFT and SURF algorithms according to the affine SIFT work [20]. 

Besides, since the SURF is a highly computing efficient feature detector for SIFT and the core feature 

detector in the ASIFT is the SIFT algorithm, this work replaces the SIFT detector with the SURF detector 
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for the ASIFT to construct the affine SURF (ASURF) algorithm to implement the performance comparisons 

for the feature processing time and correctly matched points. The results are computed based on averages. 

The comparisons with the ASIFT and ASURF for the correctly matched points and processing times 

including feature computation time and feature matching time are shown in Tables 4 and 5.  

 
(a) (b) (c) 

 
(e) (f) (g) 

Figure 6. Parts of recognition results on GTSRB data set: (a) original image;  

(b) preprocessing to locate the candidate regions; (c) traffic sign recognition; (e) original 

image; (f) preprocessing to locate the candidate regions; (g) traffic sign recognition. 

Table 4. Processing times. 

Image Subset ASIFT ASURF This Work 
Speed up 

over ASIFT 
Speed up over 

ASURF 

Speed limit signs 810 ms 420 ms 31 ms 25.1× 12.5× 
Unique signs 1300 ms 610 ms 54 ms 23.1× 10.3× 
Danger Signs 1010 ms 530 ms 44 ms 22.0× 11.0× 

Mandatory signs 580 ms 230 ms 12 ms 47.3× 18.2× 
Derestriction signs 940 ms 490 ms 37 ms 24.4× 12.2× 

Other prohibitory signs 856 ms 460 ms 38 ms 21.5× 11.1× 

Table 5. Correctly matched points comparison. 

Image Subset  ASIFT ASURF This Work 

Speed limit signs 23 15 19 
Unique signs 39 21 36 
Danger Signs 31 24 29 

Mandatory signs 31 24 29 
Derestriction signs 89 70 84 

Other prohibitory signs 32 26 31 
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Besides, by means of combing the proposed ANN based techniques with the other features, the 

comparisons with the other features including the SIFT [18] and SURF [19], HOG [23], LBP [24], are 

implemented to further verify the whole method for traffic sign recognition. Note that the candidate 

regions for traffic signs and ANN classification are the same for these features, and the ANN topology 

is 16->16->1. The comparison results of the GTSRB data set and STS data set are shown in  

Tables 6 and 7, respectively.  

Table 6. Comparison with other works for the GTSRB data set. 

Feature  
Classification 

Dimension
Recognition 

Accuracy 
Training 

Time 
Recognition 

Speed 

HOG+ANN 36 96.77% 1740 s 50 fps 
LBP+ANN 59 96.59% 1260 s 100 fps 
SIFT+ANN 128 97.74% 1980 s 1 fps 
SURF+ANN 64 97.46% 1680 s 2 fps 

Proposed feature +ANN 64 98.62% 600 s 200 fps 

Table 7. Comparison with other works for the STS data set. 

Feature 
Classification 

Dimension
Recognition 

Accuracy 
Training 

Time 
Recognition 

Time 

HOG+ANN 36 95.41% 2349 s 12 fps 
LBP+ANN 59 95.62% 1944 s 21 fps 
SIFT+ANN 128 97.10% 2911 s 0.2 fps 
SURF+ANN 64 97.52% 2014 s 0.5 fps 

Proposed feature 
+ANN 

64 98.33% 923 s 52 fps 

In order to verify the processing efficiency and recognition accuracy, state-of-the-art works including 

those by Larsson [10], Jin [15], Zaklouta [17] and Tang [22] are adopted. Larsson [10] uses the Fourier 

descriptor without classification to achieve traffic sign recognition. Jin [15] learns the features from the pixels 

of the traffic signs, whereby the time cost for the learning process is large. Zaklouta [17] and Tang [22] adopt 

a specifically designed feature for traffic sign recognition. Jin [15], Zaklouta [17] and Tang [22] implement 

their experiments for the GTSRB dataset to verify the performance; hence, as shown in Table 8, we 

implement our work for the GTSRB to achieve a fair comparison. Besides, Larsson [10] implemented 

the experiment for the STS data set. Hence, as shown in Table 9, we also make the comparison based on 

the STS data set. Considering all these works in terms of the classification accuracy and recognition time, 

Tang [22] performs better. Hence, we make a comparison with Tang [22] in real conditions, where the 

work from Tang [22] is re-implemented using the same hardware and software platform. The 

corresponding results are shown in Figure 7 and Table 10. 
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Table 8. Comparison with other works for the GTSRB data set. 

Method Hardware 
Recognition 

Accuracy 
Training 

Time 
Recognition 

Time 

Jin [15] 
GPU C2075&6-CORE  

i7-3960X@3.3 Ghz 
99.65% >7 h >1 s 

Zaklouta [17] / 96.14% / <0.02 s 
Tang [22] E8400@3.0 Ghz 98.65% 3600 s 0.04 s 
This work E7200@2.53 Ghz 98.62% 1800 s 0.005 s 

Table 9. Comparison with other works for the STS data set. 

Sign Type 
Larsson [10] This work 

Recall #FP Recall #FP 

Pedestrian crossing 98.0% 0 99.0% 0 
Designated lane right 95.8% 0 96.1% 0 

No standing or parking 100.0% 0 100.0% 0 
50 kph 91.7% 2 93.2% 2 
30 kph 95.8% 1 97.4% 1 

Priority road 95.7% 0 96.78% 0 
Give way 94.7% 0 95.9% 0 

 

Figure 7. Testing in real conditions to obtain performance averages, and make a comparison 

with the work by Tang [22]. 

Table 10. Comparison in real conditions.  

Method 
Recognition 
Hardware 

Training 
Time 

Recognition 
Speed 

Tang [22] TI DM6467 5400 s 10 fps 
This work TI DM6467 2100 s 43 fps 
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4.2. Feature Computing Performance Evaluation 

In the proposed feature algorithm, the binary pattern based computations are represented by  

fixed-point data rather than the float-point data that was used in the other algorithms; hence, this 

proposed algorithm greatly reduces the computation amount. The normalization for the feature vector to 

improve the illumination robustness is removed in this work, which improves processing efficiency. The 

rotation invariant is based on the ring section based circular histograms, and reduces a lot of the 

computation of the pixel-level rotation in the SIFT and SURF. Besides, the length of the feature vector 

of the proposed feature is 64 dimensions, and each dimension is represented by a 7-bit data length; it 

reduces more than half of the representations in comparison to the ASIFT feature that is a  

128-dimension vector, and achieves less bit representations than the SURF, though the SURF has the 

same vector dimensions as this work. In Table 4, we show the comparisons for processing times 

including the feature computation time and feature matching time for ASIFT, ASURF and this work. 

Note that, for verifying the feature computing performance in Table 4, the full matching method is used 

for feature matching, which is time consuming and makes the total processing time lengthy. In this work, 

the ANN based classification method is finally used to reduce the matching time. 

As shown in Table 4, this work achieves, on average, 27.2 times’ and 12.6 times’ improvements in 

processing speed compared to the ASIFT and ASURF, respectively. Meanwhile, the corresponding 

results of correctly matched points in Table 5 show that this work experienced a small performance loss 

(averagely 6.9% less) compared to the ASIFT while exhibiting better performance (averagely 27% higher) 

than the ASURF. Note that more correctly matched points denote higher performance as more 

discriminative features are detected. Hence, as shown in Tables 4 and 5, this proposed feature greatly 

improves the processing time compared to the ASIFT and ASURF, while achieving comparable 

discrimination performance to the ASIFT and higher discrimination performance than the ASURF. 

4.3. Performance Comparison with Typical Features Used in Traffic Sign Recognition 

By combining ANN techniques with different features that have been used in the traffic sign detection 

in the previous works, this work further verifies the discrimination performance of the proposed feature 

when used in the entire process of traffic sign recognition. As shown in Table 6, for testing with the 

GTSRB dataset, this feature achieves the highest recognition accuracy, which reaches 98.62%. 

Meanwhile, this work reduces the training time by 1.9 times, 1.1 times, 2.3 times and 1.8 times, and 

improves the recognition speed by 3 times, 1 time, 199 times and 99 times, compared to the methods of 

HOG+ANN, LBP+ANN, SIFT+ANN and SURF+ANN, respectively.  

As shown in Table 7, for testing with the STS data set, this feature achieves the highest recognition 

accuracy, which reaches 98.33%. Meanwhile, this work reduces the training time by 1.5 times,  

1.1 times, 2.1 times and 1.1 times, and improves the recognition speed by 3.3 times, 1.5 times,  

259 times and 103 times, compared to the methods of HOG+ANN, LBP+ANN, SIFT+ANN and 

SURF+ANN, respectively. Note that, in these experiments, the dimensions for the HOG and LBP are 

computed based on the image blocks. For the HOG feature, the image is divided into 7 × 7 blocks; each 

block has four cells and each cell use nine bins. Hence, the dimension is 36. For the LBP,  

the 59 dimension based features from the 6 × 6 blocks are extracted. 
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4.4. Performance Comparison with Other Traffic Sign Recognition Methods 

According to the results for the GTSRB data set shown in Table 8, this work achieves 98.62% 

recognition accuracy, which is a comparable performance (1.03% and 0.03% less) to work by Jin [15] 

and Tang [22], and higher performance than the work by Zaklouta [17]. Considering the training time 

and recognition time (including the traffic sign detection and classification), this work improves  

2 times and 8 times on the training speed and recognition speed, respectively, comparing with the work 

in Tang [22] even though our hardware platform is not as good as the hardware platform in Tang [22]. In 

Jin [15], the experiments are conducted on two Tesla C2075 GPUs, and a 6-core Intel(R) Core i7-3960X 

3.3-GHz computer. Compared with Jin [15], this work greatly reduces the training time and recognition 

time, which is very important in safe driving assistance systems. 

4.5. Performance Evaluated in Real Traffic Conditions  

Considering real traffic conditions, where a 2000 frame image containing 200 Chinese traffic signs 

is used for testing, we present the average performance comparison in the Figure 7. As shown in  

Figure 7, the ROC curve denotes the false positive rate versus classification accuracy, and the work of  

Tang [22] is adopted as it exhibits higher performance than the other works mentioned above. We train 

the classification the hardware platform (Intel (R) Core(TM), Duo CPU, E7200@2.53GHz, 4 GB 

memory, and 32 bit operating system), and perform the recognition experiments on the embedded 

hardware platform (TI DM6467: DSP (1 GHz) +ARM (500 MHz), 256 M 32 bit DDR2 memory) to 

achieve a fair performance comparison. The comparisons of the computing time are shown in Table 10.  

As shown in Figure 7, with the increase of the false positive rate, the classification accuracy becomes 

high. Though this work experienced a small performance loss (0.2% less) compared with the work by 

Tang [22]—as this work implements computing speed optimization which cause a loss of data 

precision—both works achieve high classification accuracy(>95%).  

Besides, as shown in Table 10, this work achieves the recognition speed of 43 frames per second, 

which improves the recognition speed by 3.3 times compared with the work by Tang [22]. Meanwhile, 

the training time is reduced by 61%. In this work, in the real testing of traffic signs, the proposed method 

in this work correctly detects 195 traffic signs, which shows our work achieves high robustness in traffic 

sign recognition. 

5. Conclusions 

This paper proposes two optimizations for robust and fast traffic sign recognition. First, a rotation 

invariant binary pattern based feature in the affine space and Gaussian space is designed to achieve fast 

and robust traffic sign detection. It is an improvement of the ASIFT. The ASIFT algorithm exhibits the 

highest discriminative performance among the state-of-the-art features, but it is not practical because of 

its high computation complexity. Second, the techniques of artificial neutral network based feature 

dimension reduction and classification are proposed to reduce the recognition time. These techniques 

transform the large amounts of feature computations into a small amount of parameter computations. 

Testing the publicly available data set in real conditions shows that this work achieves fast processing 

speed and robust traffic sign recognition. However, when computing the rotation invariant binary pattern 
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based feature, this work reduces the number of affine spaces for the traffic signs to reduce the 

computation cost, which creates limitations for some applications, with large viewpoint changes and a 

small recognition accuracy loss. Further work will enhance the rotation invariant binary based feature in 

the affine space so that higher robustness in the viewpoint can be achieved with a small  

computation cost. 
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