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Abstract: The success of a Wireless Sensor Network (WSN) deployment strongly depends 

on the quality of service (QoS) it provides regarding issues such as data accuracy, data 

aggregation delays and network lifetime maximisation. This is especially challenging in 

data fusion mechanisms, where a small fraction of low quality data in the fusion input may 

negatively impact the overall fusion result. In this paper, we present a fuzzy-based data 

fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy 

consumption of the sensor network. The proposed approach is able to distinguish and 

aggregate only true values of the collected data as such, thus reducing the burden of 

processing the entire data at the base station (BS). It is also able to eliminate redundant 

data and consequently reduce energy consumption thus increasing the network lifetime. 

We studied the effectiveness of the proposed data fusion approach experimentally and 

compared it with two baseline approaches in terms of data collection, number of 

transferred data packets and energy consumption. The results of the experiments show that 

the proposed approach achieves better results than the baseline approaches. 
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1. Introduction 

Wireless sensor networks (WSNs) have been used in various domains such as military applications 

(e.g., military surveillance) and civil applications (e.g., industrial control and wildlife monitoring). 

Generally, a large number of sensor nodes, capable of collecting data, processing and communicating 

among themselves as well as with a base station (BS) are deployed in the sensing field to collect data 

according to a specific application. The sensor measurements are referred to as a sensor reading or 

sensor value. The corresponding correct value of an event in the environment is referred to as the true 

value. If a sensor reading and the true value disagree, the sensor reading is said to be incorrect. 

A fundamental issue in WSNs is how various applications such as event detection, target tracking, 

and decision making can use the sensor measurements with increased confidence and as minimum 

energy consumption as possible in the presence of imprecise sensor readings. The incorrect sensor 

readings can be attributed to a number of factors. For example, strong variations of pressure, 

temperature, radiation, and electromagnetic noise in the monitored area might interfere with the sensor 

node readings and subsequently could lead to imprecise sensor readings. Furthermore, a sensor node 

itself might in some cases collect incorrect data due to failure, spatial and temporal coverage problems. 

Moreover, the neighboring sensors within the sensing field often generate duplicate and highly 

correlated data, which might also decrease the QoS. In order to overcome these problems, a data fusion 

mechanism can be used to remove the incorrect and duplicated data from the sensor measurements.  

Data fusion mechanisms process the data from multiple sensors and thereby create meaningful new 

information that cannot be obtained from any single sensor. The main purpose of data fusion 

mechanisms in WSNs is to provide a greater QoS for the purpose of arriving at reliable and accurate 

decisions about the events of interest. The QoS here can mean reliable delivery of accurate, complete, 

and dependable information. In fact, fusing data ensures that not only the data quality of the WSN is 

enhanced, but also energy consumption can be lowered as it removes redundant information as well. 

There are many data fusion mechanisms with the purpose of reducing the energy consumption for 

WSNs [1–3]. These mechanisms use different techniques such as probability theory [4], fuzzy set  

theory [5], a combination of fuzzy sets and neural network [6] and Dempster-Shafer evidence theory 

(DSET) [7]. Most of these approaches are able to eliminate duplicate data in the fusion process. 

However, these approaches do not consider specific limitations of the sensor devices. For example, 

they assume that the sensor nodes are always functioning properly and generating accurate data. These 

are unrealistic assumptions as the environment may change. For instance, the temperature can influence the 

accuracy of the sensor node functionalities. Moreover, the existing approaches transfer both necessary and 

unnecessary sensed data to the processing center, which results in excessive energy consumption. 

In this paper, a fuzzy-based data fusion approach for WSNs that increases the QoS whilst 

maximizing the network lifetime by minimizing the energy consumption is presented. By virtue of 

distinguishing and aggregating only the true values of the sensed data, the proposed approach is able to 

reduce the transmission as well as the processing of the entire sensed data. It is also able to eliminate 

redundant data and consequently reduce energy consumption thus increasing the network lifetime. In 

summary, we make the following contributions:  

(a) We propose a data fusion approach to improve the performance of a WSN with respect to the 

level of QoS generated about the events of interest.  
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(b) We minimize energy consumption by transferring only the calculated result of the events 

instead of the entire fused data.  

(c) We show that the proposed approach is robust in terms of the events of interest with respect to 

the sensor node failures as it combines all received data from the sensor nodes.   

(d) We studied the effectiveness of the proposed data fusion approach experimentally and 

compared it with two baseline approaches in terms of data collection, number of transferred 

data packets and energy consumption. The results of the experiment show that the proposed 

approach achieves better results than the baseline approaches. 

The rest of this paper is organized as follows: Section 2 presents an in-depth analysis of the existing 

approaches. Section 3 describes the system model and problem overview. In Section 4 the proposed 

data fusion approach is explained in details. In Section 5 the performance of the proposed approach is 

analyzed. Finally, the conclusions are presented in Section 6. 

2. Related Works 

In this section, a review of some common protocols that have been proposed to aggregate data is 

presented. An overview of type-2 fuzzy logic is also discussed. Wireless sensor network applications 

such as surveillance and reconnaissance generate a large amount of redundant data. There have been 

many approaches to filter redundant sensing data using data aggregation techniques. These approaches 

can be classified as cluster-based, tree-based, grid-based and structure-free approaches. A hybrid 

clustering-based data aggregation mechanism that concurrently combines static and dynamic clustering 

methods is discussed in [8]. The algorithm chooses a suitable clustering technique based on the status 

of the network. However, the authors assume that the entire collected data from each sensor node is the 

true value. That assumption obviously reduces the ratio of packet transmission in the WSN. Another 

cluster-based data aggregation scheme is discussed in [9]. As the approach is a geographic  

location-based multicast protocol, data is aggregated based on their geographic locations in their 

clusters. However, the energy consumption efficiency is not fully addressed as a GPS system is used in 

each sensor node. Moreover, the sensor nodes simply transfer the data to the base station as the true value.  

Tree-based methods arrange the entire sensor nodes into a tree [10]. Xin and Fei-Qi [11] discuss a 

tree-based protocol where the parent node receives data packets from leaf nodes to aggregate them 

with the data that is coming from the surrounding node. Then, the parent nodes pass on the new series 

of data packets to their parent nodes until it reaches the BS. GBDAS [12] is a grid-based data 

aggregation scheme that partitions the sensor field into a 2-D logical grid of cells. In each cell, the 

node with the most residual energy (cell head) takes the responsibility for aggregating its own data 

collected by the other sensor nodes of the cell. The cell heads form a chain and aggregated data moves 

from head to head along the chain until it reaches the BS. Since all sensor nodes need to aggregate the 

collected data, the delay especially in the end nodes cannot be ignored. Furthermore, it cannot be a 

desirable solution for large networks or even for the very far distance sinks.  

The dynamic errors or uncertainties related to insufficient or noisy data in many real world 

applications, can negatively affect the performance of the implemented signal processing systems. 

There are many techniques that includes statistical and Covariance Intersection (CI)-based methods are 

used in enhancing the QoS in WSNs. However, they are cannot cope with the uncertainty of the data 
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produced by WSNs. Moreover, the inflexibility of the methods prevents processing the data 

realistically [13]. In fact, using these methods requires a very complex and substantial computational 

effort to have optimal performance [14]. A Kalman Filter-based approach to correct the values 

measured by the sensors is discussed in [15]. Some of these methods are explicitly model-based, 

whereas others require tuning and training. In the general case, where a priori information is often not 

available, these approaches are typically deficient and can often lead to undesirable results. 

Fuzzy logic-based approaches that utilise a fuzzy logic controller embedded in the sensor nodes 

have been used for cluster-head election [16], for reducing the deadline miss ratio associated with the  

real-time data transmission from the source node to the actuator maintained at a pre-determined 

desired level [17] and online routing algorithms to address the maximum lifetime routing problem in 

wireless sensor networks [18]. The distinguishing aspect of our work is the novel use of fuzzy 

membership functions and rules in the design of cost functions for the routing objectives considered in 

this work. In [15], a variable weight-based fuzzy data fusion algorithm is proposed. The main purpose 

is to enhance the accuracy of the data fusion process in WSNs. In this approach, each CH is assigned a 

different and unfixed fusion weight. The weights are changed using a fuzzy logic system, based on 

some factors such as delay, data amount and trustworthiness of the CHs. Lower fusion weighted CHs 

have lower influence. However, the authors did not take the message overhead and energy 

consumption into account. Shell et al. [13] presented a fuzzy logic system that is able to isolate 

instances of failure within the defined data set with fewer perceived instances of false positives and a 

higher degree of accuracy than classical methods alone. However, the authors did not consider the 

energy consumption properly.  

In this paper, we use an interval type-II fuzzy logic system (T2FLS) as opposed to a type-1 fuzzy 

logic system (T1FLSs). The fuzzy membership functions in T2FLSs use membership degrees that are 

themselves fuzzy sets, whereas T1FLSs use fixed fuzzy memberships that cannot directly address 

variable conditions. Therefore, uncertain measured parameters would be neglected by a T1FLS and the 

performance will obviously be negatively influenced. This makes type-2 fuzzy sets very useful when 

there is difficulty in deciding the appropriate membership function with ambiguity. A recent study that 

compared the effects of the measurement noise in type-1 and type-2 FLSs concluded that the use of 

T2FLSs in real world applications that exhibit measurement noise and modelling uncertainties can be a 

better option than T1FLSs [17,19]. Furthermore, T2FLS technology has been regarded as a way to 

increase the fuzziness of a relation which implies an increased ability to handle inexact information in 

a logically correct manner [18].  

Although there are works such as Z-slices [20], α-planes [21,22] or α-cuts [23] that use T2FLS or 

generalized T2FLS, interval T2FLS is preferred for use due to the computational complexity of the 

former [24]. The computations associated with IT2 fuzzy sets are very manageable, which makes 

interval T2FLS quite practical [25]. The basic concept of interval T2FLS is to consider a footprint of 

uncertainty, which can be described by two parameters bounding T1 fuzzy membership functions [18]. 

The interval T2FLS 	A	෪ can be calculated as follows:  	A	෪ = ඵ 1(x, u) J୶ ∁ ሾ0,1ሿ (1)
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where x and u are the primary and the secondary variable and J୶	 is the primary membership function 

of x. In case of IT2 fuzzy sets, all secondary grade of fuzzy set A෩ are equal to 1. The domain of the 

primary membership J୶	 defines a footprint of uncertainty of fuzzy set		A෩, which can be described by its 
upper and lower membership functions. Hence, a footprint of uncertainty (A෩) = U୶∈ଡ଼	(		μ୅෩	(x), 		μത୅෩	(x)). 
3. System Model and Problem Overview  

In this section, we present a brief description of our WSN system model and also present the 

problem overview. We consider a WSN with a large number of sensors distributed randomly in a 

certain deployment area. The sensors are organized into clusters based on their spatial proximity and 

each cluster has a CH [26]. There are three types of sensor nodes that collect temperature, humidity 

and smoke density data and then send it to its CH. The CHs are responsible for fusing and transferring 

the data to the BS. Then, each node, based on their current situation, uses FLC to assign a weight for 

their data. Next, the data are sent to the CH, which is connected to a BS wirelessly. 

Uncertainty inherent in sensor measurements is one of the most fundamental issues to be addressed 

in a WSN environment. As sensor nodes are typically deployed densely, there exists significant 

redundancy in the data collected from sensor nodes. The duplicate data may lead to serious packet 

collisions, bandwidth waste and energy consumption. Similarly, sensor nodes can report erroneous 

readings for a number of reasons such as a possible manufacturing defects or environmental 

conditions. As a result, they can negatively affect making accurate decisions as well as the efficiency 

of energy consumption in the WSN. To solve the problem, it is necessary to address the unnecessary 

data in addition to redundant data transferred from sensor nodes.  

These uncertainties necessitate the development of sensor data fusion strategies that can combine 

information in a coherent and synergistic manner to yield a robust, accurate, and consistent description 

of the quantities of interest in the environment. A general block diagram of a data fusion mechanism is 

given in Figure 1. The sensor nodes ݏଵ, ,ଵܦ ଷ collect dataݏ	and	ଶݏ  ଷ from the environment. Inܦ	and	ଶܦ

many situations that depend on the current conditions of the sensor nodes, ܦଵ,  ଷ might not beܦ	and	ଶܦ

exactly the true value. There are many useless data packets generated and transferred from each sensor 

node in each round of data collection. In many situations, a sensor node is not able to recognize the 

useless data while it generates data packets for further processing.  

Rather than each sensor node sending the data to BS, they send the data to a fusion node. The fusion 

node creates a single internal representation of the environment from its inputs. The single 

representation is then forwarded to the BS. This means that the BS in general does not have access to 

the individual sensor measurements. 

The main cause that negatively influences performance of a data aggregation mechanism is 

misbehaving sensor nodes. Different environmental factors such as a sudden change of temperature or 

humidity can influence a sensor node’s behavior. These environmental factors decrease or increase the 

output signal of the sensors, which creates an ultralow frequency noise in the transferred signals. In 

addition, non-operating environmental limits such as a high or low temperature of air surrounding the 

sensor nodes usually influence the sensor’s performance. The operating temperature range is the length 

of ambient temperatures given by their upper and lower extremes, within which the sensor nodes 

maintain their expected accuracy. In different WSN applications, it is impossible to confirm that the 
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collected data are true values of the events without taking samples or analyzing the data history. 

Sensors usually carry noise in their measurements, thus we cannot be 100% sure that the measured 

value is correct. It does not matter how an event (e.g., temperature) is measured by a sensor or how 

close the measurement is to the true value, we can never be sure that it is accurate. Equation (2) 

captures the error induced by a sensor node [27]: 

ɸ = ᇱݐ ̶ (2) ݐ

where t is any individual measurement and	ݐᇱ is the true value.  

Let ܴ be the percentage of the correct data received by BS. Equation (3) shows the percentage of 

the accurate data packets received by a BS: ܴ = ܮ௣ݒ  100 (3)

where L is the total number of events defined by the application and ݒ௣	is the number of messages that 

contain only the true value of the received data. 

 

Figure 1. Fusion mechanism. 

Let Zୡ be the network lifetime, ܴܦ be data redundancy that is satisfied by a user-defined value 

 similar to the percentage of collected true value of data (ܴ௠௜௡). The problem addressed in this (௠௔௫ܦܴ)

paper is formulated as follows:  

Maximise Zୡ (4)

s.t.   ܴ		 ≥ ܴ௠௜௡  and  ܴܦ ≥ ௠௔௫ (5)ܦܴ

The objective is to maximize the network lifetime Equation (4) ensuring that the percentage of the 

true value of data and data redundancy are satisfied by a user-defined value (Equation (5)). Since it is 

impossible to confirm that the collected data are true values of the events without taking samples or 

analyzing data history [26], we suggest assigning a weight for each collected data. The weights are 

determined based on current storage conditions of the source nodes. If the senor nodes are not in the 
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expected condition as revealed in their data sheets, the determined weights are changed. The better 

condition a sensor node is the higher weight is assigned to its collected data. In fact, the weights show 

the percentage of correctness of the data. Based on the calculated weights, the correct value of data can 

be distinguished and separated from others. As a result, a higher QoS can be received by the BS. 

4. Proposed Data Fusion Approach   

Algorithm 1 explains the proposed data fusion process. This algorithm is collecting data from the 

three different sensors until it detects the events. The inputs of the algorithm are node temperature, 

humidity ratio and signal to noise ratio. The output of is the fused collected sensory data.  

Algorithm 1 Data Fusion Algorithm 
1. INPUT: (T: Node temperature, H: Humidity ratio,  N: Signal to noise ratio) 
2. OUTPUT: Fused Data 
3. BEGIN 
4. WHILE (Event NOT Detected ) 
5. FOR all the cluster members in one kind 
      FLC (T, H, N) ←	ܖ۱۴         .6
7.         IF ۱۴ܖ ≥  ࢾ	
8.              Data and ۱۴ܖ will be sent CH 
9.         ELSE 
10.              Collected data will not be considered 
11.         END IF  
12. END FOR 
  Received data by CHs from one kind of node will be fused ←	ܖ۴۲ .13
14. Consequent ← FLC (۴۲૚	, ۴۲૛, … ,  ( ࢔۴۲
15. IF the consequent was not changed 
16.      Disregards the received data 
17. ELSE IF 
18.      Send the Consequent to BS   
19.      IF the event detected by BS 
20.      Report the event 
21.      END IF 
22. END IF 
23. END WHILE 
 
END Algorithm 

Figure 2 shows the proposed data fusion and transferring process. As in previous works [15,27–29], 

the sensors will be embedded with a fuzzy logic controller (FLC). The purpose of FLC is to find a 

confidence level of the collected data considering the current condition of the sensor nodes. Each 

sensor node collects data and calculate a confidence factor (CF) using FLC for each collected data 

packet. To calculate CF, the FLC is developed based on the Sugeno method [30].  

The FLC considers the non-operating temperature (T) and humidity (H) range to create the 

membership functions. A random membership function is also used for noise to signal ratio (N) of the 

sensors. FLC produces a confidence factor (ܨܥଵ,	ܨܥଶ, …,ܨܥ௡) for each sensor data (ܦଵ, ܦଶ,…,	ܦ௡). 

There are three inputs for the FLC: Temperature, Humidity Rate and Signal to Noise Ratio. For each 



Sensors 2015, 15 2971 

 

 

input synthetic data is used. For each data we use a Gaussian distribution with its mean and covariance 

matrix representing the expected value and its uncertainty (10% of the value). Then, the values are 

normalized to fit in the [0,1] as the inputs of the fuzzy system. Then, we extracted linguistic variables 

from the normalized data. The linguistic variables used to represent them are divided into three levels: 

Low, Medium and High. The consequent or the output of the FLC is divided into five levels: Very 

Low (VLow), Low, Medium, High and Very High (VHigh). 20% of the data is used to determine the 

membership functions and also the rules. 

 

Figure 2. Proposed flow chart.  

Based on the fuzzy variables shown in Figure 3, fuzzy rules are defined as shown in Table 1. Since 

each input variable has three fuzzy states, e.g., Low, Medium and High, thus, the total number of 

possible fuzzy inference rules for the developed system, is 3 × 3 × 3 = 27. 

(a) (b) 

(c) (d) 

Figure 3. Membership functions of FLC. (a) Temperature; (b) Humidity Rate; (c) Signal 

to Noise Ratio; (d) Confidence Factor.   
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Table 1. Inference rules. 

Rule NO 
Input Variable Output 

Temperature Humidity Rate Signal to Noise Cofidence Factor 

1 High High High VHigh 
2 High High Medium VHigh 
3 High High Low High 
4 High Medium High High 
5 High Medium Medium High 
6 High Medium Low Medium 
7 High Low High Medium 
8 High Low Medium Medium 
9 High Kow Low Low 

10 Med High High Medium 
11 Med High Medium Low 
12 Med High Low Low 
13 Med Medium High Medium 
14 Med Medium Medium Medium 
15 Med Medium Low Low 
16 Med Low High Medium 
17 Med Low Medium Low 
18 Med Low Low VLow 
19 Low High High High 
20 Low High Medium Medium 
21 Low High Low Low 
22 Low Medium High Medium 
23 Low Medium Medium Low 
24 Low Medium Low VLow 
25 Low Low High Low 
26 Low Low Medium VLow 
27 Low Low Low VLow 

The FLC determines whether the temperature and humidity rates of the sensor nodes and also the 

signal to noise ratio are in the acceptable range. To accomplish that, the FLC compares its input 

measurements with the desired range for each sensor. The desired range for each sensor can be found 

on its specified datasheet. The output of FLC for each sensor can be 100% only if the environmental 

factors are in the desirable range. 

In case of being out of the range, FLC produces a confidence factor (0% ≤  ˂ 100%) for the	௡ܨܥ

collected data. Each node compares the calculated CFs against a cut-off value. In the proposed system, 

the value is provided by users to decide if the fuzzy output should be considered. If the created factor 

of each data is less than the considered value, the data will be disregarded. Otherwise, it will be sent to 

CHs in a data message. This prevents the corruption of the correct value of data by the other data that 

does not present the true values. For fusion purpose, the message also consists of a Node-ID of each 

source node. 
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CHs aggregate the data received from the cluster members. The data fusion process is started by 

CHs at the end of each round of data collection. Equation (6) is used to aggregate the entire data 

received from cluster members in the same kind with different locations:  ܦܨ = ଵܨܥ) × (ଵܦ + ଶܨܥ) × (ଶܦ + ଷܨܥ) × (ଷܦ + ⋯+ ௡ܨܥ) × ଵܨܥ	(௡ܦ + ଶܨܥ + ଷܨܥ +⋯+ ௡ܨܥ  (6)

where ܦ௡	is the received data from the same kind of cluster members (e.g., light detector), ܨܥ௡	is the 

calculated confidence factor of the collected data by each sensor node and FD is a combination of the 

data received from them. In fact, FD is a combination of the data with a higher certainty as it combines 

the received data based on their confidence factors. As a result of considering different sources of one 

kind of sensor node in different locations, FD provides a better view of the environment. The FD is 

also robust as data from multiple sensors with their own confidence factors mitigate the problem of 

sensor failure. That is because in case of any disorder of a sensor in a cluster, the environment still can 

be monitored as the entire received data is combined and then examined by the system. The FD is 

calculated for any kind of deployed sensor nodes individually. Therefore, that would be a set of FDs. 

Next, FDs are stored in a matrix with one row and m columns ( ிܸ஽). Equation (7) presents ிܸ஽	matrix: 

ிܸ஽= {ܦܨଵ , …,ଶܦܨ , ௠} (7)ܦܨ

As an example, we consider three temperatures, four light and three smoke density sensors. They 

are deployed on a cluster-based method. Over a period of time, the temperature sensors sense the 

environment to be at 20 °C, 15 °C and 10 °C with the confidence factors of 0.75, 0.65 and 0.41 

respectively. As a result, the fused temperature data (்ܦܨ) would be 15.93. The fused light detector (ܦܨ௅)	and fused smoke density data (ܦܨௌ) are 49.8 and 33.2, respectively. Based on this ிܸ஽ matrix 

of the monitoring system is ிܸ஽ = {15.93, 49.8, 32.2} 

Then, the vector ிܸ஽	will be fed and processed by the FLC with different inputs in the CHs. The 

output of the system is the consequent (fuzzy response) of events occurring in the monitored areas. 

FLC analyses the ிܸ஽	 vector based on a provided fuzzy rules after data fusion process was 

accomplished. If the consequent of the events in the clustered nodes was not changed, the CHs do not 

forward the data packet to the BS. Otherwise, the CHs send the output of the system to the BS. 

However, the change in the system output does not guarantee a correct detection and it is only 

considered as a possible event in the monitored area. Therefore, to make sure that the detection is 

accurate enough, the BS needs to regularly monitor and process the received outputs that are generated 

over the time. In fact, all the received probabilities are constantly processed by the BS. If a constant 

change is noticed, the event will be reported to the alerting subsystem by BS. Otherwise, the algorithm 

continues collecting data.  

5. Performance Analysis 

In this section, we present the performance analysis of the proposed approach and compare it with 

two other approaches. In the experiment, we focus on the expected amount of colleting correct data 

with respect to QoS.   
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5.1. Experiment Setup 

We model the MTS420/400 sensor board and an IRIS with ATmega1281 processor and a mib520 

programming base as BS. The sensor board consists of humidity, temperature and light sensor as well 

as a communication component. Table 2 presents the information about MTS420/400. In order to 

simulate noise effects in real sensors, a random high-frequency noise signal is added to the sensor 

signal. MATLAB was used to analyse the performance of the network.  

Table 2. Parameters of MTS420/400. 

Parameters MTS420/400 

Temperature Range 
Humidity Range 

Signal to Noise Ratio 

−40 to +123.8 °C 
0 to 100% RH 

0 to 1 

We calculate the energy consumption in each round of data collection using the method proposed  

in [31]. We use Equation (8) to evaluate the traffic flow of each protocol:  ݂݂ܶܿ݅ܽݎ	ݓ݋݈݂ݎ݁ݒ݋ = ݀݁ݎݎ݂݁ݏ݊ܽݎݐ ܽݐܽ݀ ݀݁ݐܽݎ݁݊݁݃ݏݐ݁݇ܿܽ݌ ܽݐܽ݀ ݏݐ݁݇ܿܽ݌  (8)

The proposed approach is compared against forest fire detection (FIM) [32] and a variable weight-based 

fuzzy data fusion algorithm for WSNs (VWFFA) [15] algorithms. The main reason for choosing the 

FIM is because it is a distributed algorithm that uses MTS420/400C sensor boards for the proposed 

algorithm. The algorithm is based on a state machine with five states. The transition from one state to 

another is generated when a relevant change is detected, indicating the probable existence of an event. 

If the ratio is less than a defined value, the machine moves to another state. The authors proved that 

algorithm based on a defined cut-off value method can be implemented more easily and with better 

performance than an algorithm based on Dempster-Shafer theory [32]. VWFFA is also chosen because 

it is a distributed fuzzy-based data fusion algorithm that enhances the QoS in WSNs. It is a  

weight-based fuzzy data fusion algorithm for WSNs that improves the accuracy and reliability of the 

global data fusion. In this algorithm, the weight of each CH in the global fusion is not fixed. The time 

delay, amount of data and trustworthiness of each CH affect the final fusion weight. That means a CH 

with too small a data value or too low trustworthiness cannot be given a big fusion weight. As a result, 

CHs with deficiencies have a small influence in global fusion. For validation purposes, we used the 

root means square error (RMSE). Table 3 compares RMES of the proposed approach via FIM and 

VWFFA. To calculate RMSE, the most optimum result (100%) is considered as the predicted result  

in each call. 

Table 3. RMSE. 

Approaches RMSE

Proposed approach 
FIM 

VWFFA 

3.67 
5.13 
5.9 
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5.2. Result and Discussion 

Figure 4 presents a percentage of correct data collected by BS by the proposed approach as well as 

FIM and VWFFA. As can be seen from the figure, the proposed approach provides a higher percentage 

of correct data compared with the other approaches.  

 

Figure 4. Data collection. 

That is because the proposed approach eliminates the incorrect data to prevent corrupting the true 

value data in the fusion process. The result also shows that FIM has better performance than VWFFA. 

This is due to the consideration of uncertainty in the detection process. VWFFA provides the worse 

performance. In VWFFA the quality of collected data is considered based on their assigned weights. 

However, the weights are considered on all the data that includes true values and incorrect values of 

the data collected. Since the entire received data are aggregated by CHs, the true values might be 

influenced by the incorrect data in the fusion process 

Figure 5 shows the average number of the data packets that are transferred. The proposed approach 

has a lower average number of the data packets that are transferred than that the FIM and VWFFA. 

The proposed approach has better performance than the other approaches because the entire collected 

data do not need to be transferred as only the true valued data are transferred. Moreover, CHs are not 

required to transfer the fused data as they are able to find the consequent result of the occurring events. 

The CHs send the calculated consequent only if it shows an abnormality based on the history of the 

data, so the data that is sent to the BS is going to be only the possibility of the detected fire. In contrast 

to the proposed approach, FIM has the highest number of data packets that need to be transferred in the 

network. The reason behind that is the entire incorrect and correct collected data and also redundant 

data need to be transferred. VWFFA has a lower transferred data number in the network than FIM. The 

reason behind that is the developed network is cluster-based and the data are fused based on the 

assigned weights on clusters. In VWFFA, the assigned weights reduces the influence of the incorrect 

data on the true values in the fusion process. 
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Figure 5. Transferred data packets. 

Energy consumption is also a critical feature of a WSN. The study by Hill et al. [32] proves that 

each bit transmitted in a WSN consumes about as much energy as executing 800–1000 instructions. 

That means any reduction of the data transmitted in the WSN can significantly decrease the energy 

consumption. Figure 6 illustrates the energy consumption in the networks. From the figure, it can be 

seen that the proposed scheme minimizes the energy consumption in WSN. That is due to the lower 

transfer data packets in the network (Figure 5). Moreover, data packets similar to VWFFA are sent to 

their CHs consequently, lower energy is required as compared to FIM. 

 

Figure 6. Energy consumption. 

6. Conclusions 

Handling sensing data errors and uncertainties in WSN while maximizing network lifetime are 

important issues in the design of applications and protocols for wireless sensor networks. In this paper, 

we have presented a fuzzy-based method for data fusion. Through experiments, we show that the 

proposed approach is able to distinguish and aggregate only true values of the collected data and is 

able to eliminate redundant data and consequently reduce energy consumption thus increasing the 

network lifetime. Performance analysis of the proposed approach shows that the algorithm is effective 
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in the quality of the data fusion. The proposed algorithm is compared against two baseline approaches 

experimentally in terms of data collection, number of transferred data packets and energy 

consumption. The results of the experiment show that the proposed approach achieves better results 

than the baseline approaches. In the future we will study the channels and related issues that might 

occur in transferring data from the CHs to the BS. We will also consider over the air programming to 

dynamically update the deployed nodes in the area of interest. 
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