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Abstract: Multispectral imaging is an emerging non-destructive technology. In this work 

its potential for varietal discrimination and identification of tomato cultivars of Nepal was 

investigated. Two sample sets were used for the study, one with two parents and their 

crosses and other with eleven cultivars to study parents and offspring relationship and 

varietal identification respectively. Normalized canonical discriminant analysis (nCDA) 

and principal component analysis (PCA) were used to analyze and compare the results for 

parents and offspring study. Both the results showed clear discrimination of parents and 

offspring. nCDA was also used for pairwise discrimination of the eleven cultivars, which 

correctly discriminated upto 100% and only few pairs below 85%. Partial least square 

discriminant analysis (PLS-DA) was further used to classify all the cultivars. The model 

displayed an overall classification accuracy of 82%, which was further improved to 96% 

and 86% with stepwise PLS-DA models on high (seven) and poor (four) sensitivity 

cultivars, respectively. The stepwise PLS-DA models had satisfactory classification errors 

for cross-validation and prediction 7% and 7%, respectively. The results obtained provide 

an opportunity of using multispectral imaging technology as a primary tool in a scientific 

community for identification/discrimination of plant varieties in regard to genetic purity 

and plant variety protection/registration. 

Keywords: tomato; seed; varietal discrimination; varietal identification; multispectral 

imaging; non-destructive 

 

OPEN ACCESS 



Sensors 2015, 15 4497 

 

 

1. Introduction 

Tomato (Solanumlycopersicum L.) is one of the leading horticultural crops in the world and number 

one vegetable in terms of economic value generated [1]. Intense increase in demand due to its diverse 

human consumption (salad, ketchup, paste, powder, etc.) and health benefits (vitamin C, lycopene and 

β-carotene) has led to intensive breeding efforts. This has resulted in development and release of a 

large number of diverse tomato cultivars commercially available in the market. The identification and 

discrimination of these cultivars is vital at all stages of the seed production chain. The importance lies 

with equal magnitude for all stakeholders involved in crop production, i.e., breeders, seed producers, 

processors, seed traders, variety registration and certification agencies and other end-users in terms of 

requirement and benefits obtained from it [2]. The growing seed business at international and national 

level has created an interest in descriptive characterization of the plant varieties in the context of 

intellectual property protection, a compliance to agreement within the framework of the World Trade 

Organization (WTO) [3]. Nepal being a member of WTO has an obligation to fulfill the requirements 

in the WTO Trade-related Aspects of Intellectual Property Rights (TRIPS) agreement, and has drafted 

a bill called “Plant Variety Protection and Farmer’s Rights” (under consideration) sui generis of 

TRIPS and has emphasized plant breeders rights. 

Morphological characters are distinct and stable and often used for identification of the varieties. 

However, intensive modern breeding technology has created a narrow genetic diversity resulting in 

lack of minimum phenotypic variation among the germplasm making morphological markers 

insufficient and extremely difficult to use for identification. Several methods such as biochemical 

(protein) markers [4,5] and molecular markers [6–10] have been investigated and developed for robust 

identification and characterization of tomato germplasm. However, these methods are costly, 

destructive and time consuming, and to overcome these shortcomings and to meet the modern crop 

production demands, technologies which are quick and reliable in identifying the tomato varieties for 

technical and economic aspects are desirable and beneficial [11].  

Multispectral imaging is a developing non-destructive technology, which combines the benefits of 

conventional imaging and spectroscopy technique by attaining both spatial and spectral information 

from the object simultaneously. Analyses from multispectral imaging are well suited for on-line 

process monitoring and quality control as they are non-destructive, simple and rapid does not require 

sample pre-treatments. This technology also presents an opportunity to measure different components 

at the same time for quality assurance [12,13]. Multispectral imaging has been used to predict unripe 

tomatoes with an accuracy of 85% [14], bioactive compounds in intact tomato fruit [12] and has also 

been used for identification of cherry-tomato with a prediction accuracy of 80% [15]. Further, it has 

also been reported to discriminate between transgenic and non-transgenic rice [13]. Similar  

non-destructive technology like hyperspectral imaging had been used in discrimination of maize 

varieties [16] and wheat classes [17]. However, to our knowledge, there are no published data on 

multispectral imaging or any other similar technologies for variety identification of tomato using the 

individual seeds.  

Thus, multispectral imaging technique is proposed and investigated for tomato variety identification. 

The paper aims to assess the potentiality of multispectral image analysis for classifying and identifying 

tomato cultivars from Nepal. The study also examines the relationship/hybridity of parent and offspring.  
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2. Experimental Section  

2.1. Tomato Seed Samples 

Eleven tomato cultivars/accessions were collected from different seed agencies in Nepal (Table 1). 

Pertaining to their differences in cultivation practices and environmental condition and time of 

production, these tomatoes were grown in 10-litre pots with standard recommended fertilizers 

application at semi-field conditions in 2014 at Flakkebjerg (Slagelse, Denmark) to reduce any variation 

resulting from seasonal or growing conditions. Tomatoes were harvested at red ripe stage and seeds 

were extracted by natural fermentation process (pulp with seeds were collected and allowed to stay 

overnight and later washed to extract seeds) for each cultivar. The extracted seeds were allowed to dry 

for two days at room temperature and further dried for three days with fan. These seeds were stored at 

six degree Celsius (6 °C) until further study. The study was performed with two sample sets. The first 

set comprised two cultivars- HRD 1 and HRD 17 and their two crosses (HRD 1 × HRD 17 and  

HRD 17 × HRD 1) for studying parent and offspring relationship and the second sample set comprised of 

all eleven cultivars (Table 1) to assess the potentiality of multispectral imaging for varietal discrimination.  

Table 1. Details of tomato sets (cultivar/accession, number of seeds, seed source and 

remarks) used in this study. 

Cultivar/Accession 
Number of Seed Used 

Seed Source Remarks 
Calibration Prediction Total 

Sample set One 

HRD 1 55 - 55 NARC, Nepal Breeding Material 

HRD 17 50 - 50 NARC, Nepal Breeding Material 

HRD 1 × HRD 17  50 - 50 Crossed at Semi-field HRD 1 as female parent 

HRD 17 × HRD 1  50 - 50 Crossed at Semi-field HRD 17 as female parent 

Sample set Two 

BL 410 176 50 226 SEAN Seed, Nepal Released Cultivar 

Care Nepal 225 66 291 Seed retailer, Nepal Farmer’s variety 

Chiuri 133 76 209 Seed retailer, Nepal Farmer’s variety 

CL (also known as NCL) 134 95 229 SEAN Seed, Nepal Released Cultivar 

Doti Local 171 65 236 SEAN Seed, Nepal Farmer’s variety 

HRD 1 134 54 188 NARC, Nepal Breeding Material 

HRD 17 192 91 283 NARC, Nepal Breeding Material 

Lapsigede 172 71 243 SEAN seed, Nepal Released Cultivar 

Monprecus 160 58 218 VDD, Nepal Released Cultivar 

Pusa Ruby 137 59 196 NARC, Nepal Released Cultivar 

T 9 169 37 206 SEAN Seed, Nepal Breeding Material 

2.2. Image Acquisition and Analysis 

2.2.1. Image Acquisition and Pre-Processing 

Images from each seed sample were captured using a VideometerLab instrument (Videometer A/S 

Hørsholm, Denmark, Figure 1). This instrument acquires multispectral images in 19 wavelengths (375, 

405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 780, 850, 870, 890, 940 and 970 nm). The 
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instrument consists of a sphere, which is coated with matte titanium paint, and it ensures that light is 

scattered evenly around the object. The 19 light emitting diodes (LED) are placed along the rim of the 

sphere and a camera is top-mounted. Before images were captured the instrument was calibrated in 

respect to color, geometry and self-illumination to ensure a set of direct comparable images. 

 

Figure 1. VideometerLab instrument structural set up for capturing multispectral images.  

The images include information of both the seeds, which is the region of interest, and the 

background (blue-plate), which is not relevant for the analysis. So, to ensure that this irrelevant 

information does not interfere with the analysis, a pre-determined mask that removes blue background 

was employed.  

2.2.2. Data Analysis 

After capturing the images data extraction and transformation of pixel data were done in the 

VideometerLab software (version 2.13.83). Different algorithms were used for the data analysis and 

are summarized in Table 2 and are explained below.  

Normalized canonical discriminant analyses (nCDA) were used for discrimination between the 

cultivars. The nCDA is a supervised model based on multispectral imaging (MSI) transformation of 

the images, in order to minimize the distance to observations within classes and to maximize the 

distance to observations between classes [18]. Several nCDA transformations were used for the 

analyses, one of which comprised all cultivars and several other pairwise nCDA MSI transformations.  

All seed images were collected into a blob database where each blob was a representation of one 

seed. Different features from blob toolbox were extracted and calculated for discrimination of tomato 

cultivars. The features included shape features; area, length, width, roundness and color features; 

intensity (mean pixel intensity of the image), hue, saturation, CIELab L *, CIELab a *, CIELab b * and 

RegionMSImean of the blob toolbox which were taken as variables for varietal discrimination. 

RegionMSImean calculates a trimmed mean of nCDA-transformed pixel values within the blob. 

Different RegionMSImean were calculated, one with nCDA MSI transformation of all cultivars or 

parents and offspring in case of hybridity/relationship study was regarded as “MSI universal” and 

others with their specific pairwise MSI transformations. Different threshold values were selected for 

classifying a different pair of cultivars, depending on the selection of MSI transformation used for 

achieving the best separation between each respective pair of cultivars. These threshold values were 
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later tested on unknown set of seeds for prediction. The RegionMSImean values along with seed 

shape, color and texture pixel values generated from the blob database were collected into an Excel 

sheet for further data analysis in the MATLAB software version 8.1.0.604 (R2013a) (The Math 

Works, Inc., Natick, MA, USA) along with the PLS toolbox 7.9 (Eigenvector Research, Inc., 

Wenatchee, WA, USA).  

Table 2. Overview of data analysis. 

Algorithm Used Sample Set Variables Used Remarks 

nCDA 

discrimination 

One  

RegionMSImean calculated on nCDA MSI 

transformation of all (parents and offspring) and 

pairwise transformation of parents, intensity 

(mean pixel intensity of the image) and 

offspring along with shape feature viz., area, 

length, roundness and width. 

Hybridity/relationship of parents 

and offspring. 

Two 

RegionMSImean calculated on nCDA MSI 

transformation of all cultivars and pairwise MSI 

transformations between two cultivars intensity 

(mean pixel intensity of the image). 

Pairwise comparison between all 

cultivars. 

PCA One  

RegionMSImean values calculated on nCDA 

MSI transformation including all (parents and 

hybrids), intensity (mean pixel intensity of the 

image) and other features on shape and color 

values extracted from blob database. 

Hybridity/relationship of parents 

and offspring. 

PLS-DA Two 

RegionMSImean values calculated on nCDA 

MSI transformation one including all cultivars 

and several other pairwise MSI transformations 

along with shape feature viz., area, roundness, 

length and width and color features like  

CIELab L *, CIELab a *, CIELab b *, intensity 

(mean pixel intensity of the image), saturation, 

and hue values extracted from blob database. 

Classification/identification of 

tomato cultivars.  

PLS-DA model containing all 

eleven varieties (Model A) was 

developed and further two stepwise 

models (Model B and Model C) 

were developed to improve the 

accuracy of all cultivars.  

Principal component analysis (PCA) [19] was used to explore and compare results of the 

RegionMSImean discrimination and dataset generated from blob database. The data consisted of the 

pixel values extracted from blob toolbox for four RegionMSImean values (of parents and offspring, 

parents only, offspring only, cross HRD 17 with (HRD 17 × HRD 1) and MSI universal), intensity, 

hue, saturation, CIELab L *, CIELab a *, CIELab b * along with shape features (area, width, 

roundness and length). Data were auto-scaled before analysis. The optimum numbers of principal 

components (PC) were chosen at the point where the root mean square of cross validation (RMSECV) 

was lowest. It was used to analyze and explore the data variability on sample set of parent and 

offspring discrimination, only.  

PLS discriminant analysis (PLS-DA) [20] was used as a supervised multivariate technique for 

discrimination of the cultivars from the dataset obtained from the blob database which consisted 

extracted pixel values of blob features of shape and color. There were total of 49 variables out of 
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which 38 were RegionMSImean of 38 different pairwise nCDA MSI transformation of tomato 

cultivars, one RegionMSImean of nCDA MSI transformation of all cultivars (MSI universal) and the 

rest were other color and shape features as similar to PCA. For analysis data were first arranged in a  

2-D matrix (X) where the rows represent the values obtained from different blob features (color, shape 

and texture features). One column vector (Y) containing the dependent variable (cultivar category) was 

assigned to the matrix. The data were auto-scaled before analysis and were cross-validated with 

random subsets of 15 splits and 20 iterations. The optimum number of latent variables (LVs) was 

determined by classification error for cross validation and RMSECV to avoid over-fitting of the data. 

The classification accuracy of the PLS-DA was determined by the number of correctly classified seed 

samples per cultivar divided by the total number of samples in the class (sensitivity, %). The overall 

correct classification (accuracy, %) of the model was also calculated as the number of correct 

classifications in all classes divided by the total number of seed samples analyzed [21]. The developed 

PLS-DA model was used to predict the unknown set of samples from data which were obtained from 

the blob database.  

3. Results and Discussion 

3.1. Hybridity Study on Tomato 

Two different approaches normalized canonical discriminant analysis (nCDA) discrimination and 

PCA on datasets extracted from the blob database were used to analyze and explore the possibility of 

using multispectral imaging as a tool for discrimination of parents and their offspring. nCDA was used 

in these two approaches as the data generated were function of nCDA MSI transformation on seed 

images. Apart from the nCDA transformations, PCA data also included other blob features pixel 

values of shape and color. 

RegionMSImean was able to discriminate parents and their crosses. nCDA transformation of the 

two parents and of HRD 17 and its offspring (HRD 17 × HRD 1) gave the best separation (Figure 2a). 

Shape features like area, length, etc. of seeds were also analyzed but displayed inferior separation, 

except for the cross HRD 1 × HRD 17, which showed good separation with others (Figure 3).  

 

 

(a) 

Figure 2. Cont. 
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(b) 

Figure 2. Discrimination of parent and their crosses by (a) nCDA; (b) PCA on blob dataset. 

 

 

Figure 3. nCDA discrimination on seed shape feature (area vs. roundness). 

A clear separation between parents and the crosses were also found on PCA, which contained the 

same information of RegionMSImean values along with shape and color pixel values of seeds 

extracted from the blob database (Figure 2b). The PCA model explained 99.6% of variation in the 

dataset and Principal Component 1 (68.6% of variation explained) contained the major information for 

separation between the parents and offspring whereas Principal Component 3 (10.9% of variation 

explained) separated HRD 17 and its offspring (HRD 17 × HRD 1). 

The loading plot (Figure 4) shows the same information responsible for separation as obtained from 

nCDA discrimination, i.e., nCDA transformation on two parents and other transformation comprising 

HRD 17 and its offspring (HRD 17 × HRD 1). 
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Figure 4. Loading plot obtained from PCA showing factors important for discrimination. 

HRD 1 × HRD 17 indicated a positive heterosis in terms of increased seed size while the other cross 

did not show any apparent heterosis. The increase in seed size has been correlated with increased seed 

storage reserves which could be further linked with seed vigor and robust plant establishment. Studies 

in spinach suggest that the larger seeds produce vigorous plants [22,23] and often improve seed yield 

in the subsequent generation [24]. The maternal effect on the seed traits can be observed on the 

offspring by their affinity towards their respective female parent. The effect is more prominent with 

HRD 17 and its offspring as it could not be distinctly separated from each other. The seeds are borne 

on the fruits of female parent and so they have the more possibility of acquiring maternal traits during 

seed development as compared to male parent [25].  

The results obtained by the nCDA discrimination and PCA on datasets extracted from the blob 

database are comparable with each other on separation, though separation is more distinct on PCA as 

compared to the other. The other features on seed shape and color which were also included in the 

analysis seem to have a positive effect on discrimination. So, it is advisable to use others features along 

with nCDA MSI transformation for better results. The results also suggest that data generated from the 

blob toolbox, which included nCDA transformation and simple features on shape and texture, can be 

used for other mathematical calculations and interpretations of data.  

3.2. Varietal Discrimination  

3.2.1. VideometerLab Software Analysis (nCDA) 

All eleven cultivars have variation among them as depicted by the mean pixel intensity of each 

cultivar (Figure 5). Pairwise comparisons were done with all cultivars to assess the diversity among 

cultivars and discriminatory ability of multispectral imaging using VideometerLab software. The 

several features (color/shape) were tested against each other to find the best separation between 

cultivars. Shape features like area, length, width, etc., which represent the pixel area/size of the seed 
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images, did not give a good separation for any cultivars, suggesting that the physical parameter of 

tomato seed shapes are more or less similar to each other, and therefore an insufficient trait for varietal 

identification. Gunn and Gaffney [26] also reported that the external seed characters (seed size and 

shape) are not always enough for reliable seed identification. Blob feature RegionMSImean when 

compared with intensity (mean pixel intensity of the image) gave best separation. MSI universal 

(RegionMSImean comprising nCDA transformation of all cultivars) was able to discriminate between 

some pairs of cultivars, mostly those involving Care Nepal and CL. For the rest of the pairs, MSI local 

(RegionMSImean comprising nCDA transformation between two respective cultivars) gave the  

best separation (Figure 6). Threshold values were determined as zero for pairs involving MSI  

local (involving two selected varieties) and a value for MSI universal (includes all varieties  

for a transformation) for best separation between the pairs and were later used for validation on  

unknown set.  

Pairwise comparisons clearly indicated the presence of diversity among the cultivars as most of the 

pairs were separable with more than 95% sensitivity (accuracy between selected two cultivars)  

(Table 3a). Some pairs had sensitivity of 100% whereas very few pairs of cultivars had sensitivity less 

than 85%. The validations on the unknown set results are very much comparable with calibration set 

(Table 3b) in terms of robustness of the model to correctly discriminate between the pairs.  

 

Figure 5. Mean spectrum of eleven cultivars. 
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Care Nepal vs. CL BL 410 vs. HRD 17 BL 410 vs. Doti Local Chiuri vs. HRD 17 

    

Chiuri vs. HRD 1 CL vs. HRD 1 CL vs. Monprecus HRD 1 vs. HRD 17 

    

Monprecus vs. T 9 Monprecus vs. Pusa Ruby HRD 17 vs. T 9 HRD 17 vs. Monprecus 

Figure 6. nCDA pairwise discrimination of randomly selected cultivars. 
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Table 3. Pairwise sensitivity of nCDA discrimination of Tomato cultivars (sensitivity- number of correctly classified seed samples in cultivar 

divided by the total number of samples in the class). 

A. Calibration Results 

 

BL 410 Care Nepal Chiuri CL Doti Local HRD 1 HRD 17 Lapsigede Monprecus Pusa Ruby 

Care Nepal 96% 
         

Chiuri 90% 94% 
        

CL 99% 100% 98% 
       

Doti Local 100% 100% 99% 96% 
      

HRD 1 94% 98% 84% 99% 100% 
     

HRD 17 100% 100% 97% 98% 100% 99% 
    

Lapsigede 94% 97% 89% 99% 100% 92% 98% 
   

Monprecus 98% 99% 84% 99% 96% 89% 99% 95% 
  

Pusa Ruby 89% 96% 81% 99% 93% 88% 99% 83% 88% 
 

T 9 97% 96% 94% 99% 93% 96% 100% 94% 96% 92% 

B. Prediction Results 

 

BL 410 Care Nepal Chiuri CL Doti Local HRD 1 HRD 17 Lapsigede Monprecus Pusa Ruby 

Care Nepal 97% 
         

Chiuri 78% 94% 
        

CL 100% 99% 97% 
       

Doti Local 98% 99% 98% 98% 
      

HRD 1 91% 98% 72% 98% 100% 
     

HRD 17 99% 99% 97% 96% 100% 100% 
    

Lapsigede 93% 99% 81% 99% 99% 92% 98% 
   

Monprecus 99% 99% 77% 96% 93% 86% 99% 95% 
  

Pusa Ruby 88% 99% 85% 95% 100% 93% 99% 86% 91% 
 

T 9 99% 98% 91% 95% 88% 96% 100% 93% 94% 89% 

 



Sensors 2015, 15 4507 

 

 

The tomato cultivars Chiuri and Pusa Ruby seem to have the similar seed traits (color/shape) to all 

other cultivars as their discrimination to other selected cultivars had least sensitivity as compared to the 

other pairs of cultivars which do not involve these two cultivars. The analysis on tomato parents and 

offspring confirms that the data generated could be explored in various analyses for extrapolation of 

the data. The generated datasets were used for classifying and validating an unknown set of eleven 

tomato cultivars using PLS-DA.  

3.2.2. PLS-Discriminant Analysis (PLS-DA) 

A distinct separation between all eleven cultivars could not be observed on the score plot (Figure 7) 

of PLS-DA (Model A), though some cultivar’s clusters were discretely identifiable in the score plot 

whereas few other cultivars were grouped into one cluster. The developed PLS-DA model (Model A) 

had an overall accuracy of 82%, 81% and 79% for calibration, cross-validation and prediction set  

(Table 4) respectively. It was able to separate HRD 17, CL, Care Nepal, T 9 and Doti Local with more 

than 90% accuracy, as expected from the score plot. However, some of the cultivars could not be 

separated, e.g., Chiuri from Pusa Ruby and Lapsigede from Monprecus. nCDA discrimination studies 

also showed that Chiuri and Pusa Ruby were poorly discriminated. Subsequently, stepwise PLS-DA 

models were developed. Model B was developed based on HRD 17, CL, Care Nepal, Doti Local and 

T9. Model C consisted of data from the cultivars that could not be separated (Chiuri, Lapsigede, 

Monprecus and Pusa Ruby). These stepwise classifications increased the overall accuracy of the model 

from 90% and 66% to 93% and 86% for Model B and C respectively (Table 4). The sensitivity for 

cultivar classification increased for the poorly classified cultivars from 54%, 58%, 74%, and 74% to 

83%, 77%, 92%, and 91% for Chiuri, Pusa Ruby, Lapsigede and Monprecus respectively. The 

stepwise classifications also increased the sensitivity for BL 410 and HRD 1 from 82% and 77% to 

91% and 85% respectively. The averaged classification errors for cultivars decreased when stepwise 

models were developed reducing from 9% to 7% and were stable in cross-validation and prediction 

sets (Table 5), though averaged root mean square for calibration/cross validation/prediction increased 

from 22%/22%/22% to 24%/25%/25% (Table 5) respectively. The decrease in classification error 

could be well perceived with increase in sensitivity for all cultivars. PLS-DA models contained the 

variables which were best identified RegionMSImean values for discrimination between either two 

cultivars along with pixel values of shape and color features which did not contribute much to 

separation and this is observable in terms of RMSEC/CV/Pred. These features were purposefully 

included in the dataset, though they were not found to have distinct role in discrimination. However, 

their cumulative effect could play a positive part in increased sensitivity for classification in models.  

Similar studies on varietal identification on tomato have also been successfully demonstrated using 

another non-destructive technology. VIS-NIR spectroscopy was used to classify tomato plants using  

top-canopy leaves to classify two tomato varieties [27] and tomato fruits to discriminate/classify 

transgenic and non-transgenic plants [11,28]. However, this is the first report on use of single seeds for 

varietal identification on tomatoes.  
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Figure 7. Score plot showing the clustering of eleven tomato cultivars. 
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Table 4. PLSDA classification of eleven tomato cultivars—Model A) includes all the cultivars, stepwise PLS-DA classification—Model B) 

includes cultivars with higher sensitivity and Model C) includes cultivars with poor sensitivity from Model A. Previous Overall accuracy 

(OA) was calculated using the number of correct classifications in selected classes divided by the total number of seed samples of selected 

classes of Model A. 

Model A Model B Model C 

Cultivar Calibration CV Prediction Cultivar Calibration CV Prediction Cultivar Calibration CV Prediction 

BL 410 82% 82% 90% BL 410 91% 90% 98% Chiuri 83% 81% 78% 

CL 94% 94% 95% CL 96% 96% 97% Lapsigede 92% 91% 89% 

Care Nepal 92% 92% 97% Care Nepal 92% 92% 97% Monprecus 91% 89% 91% 

Chiuri 54% 53% 39% Doti Local 92% 91% 91% Pusa Ruby 77% 75% 80% 

Doti Local 91% 91% 95% HRD 1 85% 85% 87% Overall Accuracy 86% 85% 84% 

HRD 1 77% 76% 80% HRD 17 99% 99% 100% Previous (OA) 66% 65% 54% 

HRD 17 98% 98% 98% T 9 93% 92% 97% 

    Lapsigede 74% 72% 70% Overall Accuracy (OA) 93% 92% 96% 

    Monprecus 74% 73% 57% Previous (OA) 90% 90% 94% 

    Pusa Ruby 58% 58% 49% 

        T 9 91% 91% 97% 

        Overall Accuracy 82% 81% 79% 

        

Table 5. Average classification error of PLSDA models. 

PLS-DA Models Class Err (Cal) Class Err (CV) Class Err (Pred) RMSEC RMSECV RMSEP 

Model A 0.09 0.09 0.10 0.22 0.22 0.22 

Stepwise PLSDA (Model B and Model C) 0.07 0.07 0.07 0.24 0.25 0.25 
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As morphological markers are incompetent in assessing differences of genetic identities and 

relationships among varieties having modifications on quality traits (seed or useful economic 

attributes) and as application of molecular markers requires high cost, time and is sophisticated [29], 

multispectral imaging provides a wider opportunity to integrate at commercial and scientific level. Its 

proven capacity to separate the individual with high genetic similarity like transgenic crops [13] gives 

further significance on its endorsement at any level.  

4. Conclusions 

The study shows the potentiality of using multispectral imaging for studying the parents and 

offspring relationship and rapid varietal identification of different tomato cultivars. Further, the 

multispectral imaging gives an advantage of acquiring spectral information (VIS-NIR), which could 

further be correlated to a specific functional group for biochemical interpretation. It gives an 

opportunity for mainstreaming online sorting of seeds of different varieties of tomatoes with higher 

precision whenever conflicts arise on the genetic purity of the seed lot. The multispectral imaging 

could also be used as a pre-screening technique for identifying and classifying breeding materials 

along with a diversity study of germplasm as it provides opportunity to include physical traits (seed 

shape, visual inspection, i.e., RGB) and chemical information (NIR region). Further studies will 

explore its applicability on varietal discrimination using the spectral information (VIS-NIR) obtained 

from multispectral imaging and relationship with functional biochemical on tomato and other crops.  
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