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Abstract: Empirical Mode Decomposition (EMD), due to its adaptive decomposition 

property for the non-linear and non-stationary signals, has been widely used in vibration 

analyses for rotating machinery. However, EMD suffers from mode mixing, which is 

difficult to extract features independently. Although the improved EMD, well known as the 

ensemble EMD (EEMD), has been proposed, mode mixing is alleviated only to a certain 

degree. Moreover, EEMD needs to determine the amplitude of added noise. In this paper, 

we propose Phase Space Ensemble Empirical Mode Decomposition (PSEEMD) integrating 

Phase Space Reconstruction (PSR) and Manifold Learning (ML) for modifying EEMD. 

We also provide the principle and detailed procedure of PSEEMD, and the analyses on a 

simulation signal and an actual vibration signal derived from a rubbing rotor are 

performed. The results show that PSEEMD is more efficient and convenient than EEMD in 

extracting the mixing features from the investigated signal and in optimizing the amplitude 

of the necessary added noise. Additionally PSEEMD can extract the weak features 

interfered with a certain amount of noise. 
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1. Introduction 

Signal processing techniques, which discover the essential rules contained in a mechanical dynamic 

system, are widely used to realize the vibration analysis, the fault identification, and the status 

estimation of systems [1–7]. A series of methods based on inner product transformation [8,9] exhibit 

effective usage of a priori knowledge for the non-linear and non-stationary phenomenon encountered 

typically in practice. The inner product transformation can be adopted to obtain features of the 

mechanical system by measuring the correlation between vibration signal and a pre-defined kernel 

function. However, a description of continuous and instantaneous variation of a dynamic system with 

non-linear and non-stationary properties may be generally absent due to the lack of adaptivity. On the 

other hand, the low intelligence and flexibility attributed to the non-adaptivity may lead to the 

requirement of a large amount of a priori knowledge or new kernels for a suitable match of the  

inner product.  

Empirical Mode Decomposition (EMD) [10], proposed by Huang, enables adaptive feature 

extraction from signals and is applied in the vibration analyses for rotating machinery [11–15]. EMD is 

able to decompose a complex signal into a series of Intrinsic Mode Functions (IMFs) whose 

frequencies arrange from high to low amplitude and IMFs are characterized by completeness and low 

redundancy. This method measures the oscillation of signals with the instantaneous frequency and thus 

establishes a new time-frequency framework with IMFs. Basis function expressed by IMF is 

determined with the local and global information from the signal itself, thus avoiding the pre-defined 

kernels derived from the inner product transformation. Nevertheless, mode mixing, which is defined as 

either a single IMF consisting of components with wide disparate scales or a component with a similar 

even identical scale residing in different IMFs, will be generated from anomalous incidents, such as the 

noise interference and intermittent composition [16–19]. Consequently, Wu introduced white noise to 

assist EMD named ensemble empirical mode decomposition (EEMD) [18], which relieves mode 

mixing efficiently. This new method has been employed in vibration analysis of rotating machinery 

frequently for the more advance independent mode extraction than EMD [19–21]. However, in EEMD, 

the elimination degree of mode mixing has to be determined by the amplitude of added noise. 

Although some qualitative and quantitative strategies for mode mixing have been proposed [17,18,21], 

little research has been done on the independent extraction of components. In this paper, we develop 

Phase Space Ensemble Empirical Mode Decomposition (PSEEMD) to improve EEMD used in the 

vibration analyses for rotating machinery. By our PSEEMD, the independent feature extraction can be 

realized, which meets the requirement of practical applications. 

It is obvious that the extraction results from non-linear and non-stationary signals, combined with 

noise, approach linear and stationary information. Consequently, the nature of a dynamic system may 

be reconstructed with these brief signal components approaching linear and stationary information 

through an appropriate expression, Phase Space Reconstruction (PSR) [22,23]. Then, it is possible to 

realize the independent feature extraction by investigating the topological property of a manifold 

presenting in a phase space. 

Studies on PSR were conducted as early as 1980 [22,23]. Since then, PSR has been developed 

gradually with the coordinate delay method for expressing a data manifold in a phase space [24]. In 

this framework, the embedding dimension and the time delay are two critical parameters, which can be 
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optimized by several conventional methods [25–31]. In this paper, we note that PSR realized by 

Hankel matrix could represent the topological structure of IMFs competently. Moreover, the mixing 

features can be extracted independently and the optimization of added noise can be performed with the 

linear manifold learning (ML) method [32]. Our research indicates that the use of the ML method will 

be beneficial to the weak feature extraction. On the basis of our findings, we propose a new adaptive 

EEMD model named PSEEMD. In this model, IMFs selected are extended to attractors first and then 

independent features are extracted from the attractors, and modified IMFs will be reconstructed with 

the new features afterwards, thus leading to the parameter optimization and higher capability of weak 

feature extraction in the vibration analyses for rotating machinery. 

The rest of this paper is organized as follows. In Section 2 we briefly describe the EEMD and the 

related concept. The original contribution of the paper is presented in Section 3, where we give a 

detailed description of PSEEMD and a noiseless simulation signal with multi-component is utilized to 

validate the feasibility of PSEEMD. In Section 4 we briefly illustrate the general information of a rotor 

test bench and detailed installation of rubbing. Then, PSEEMD is supplied with how to deal with mode 

mixing through a rubbing signal with strong noise interference. Conclusions and possible extensions 

appear in Section 5. 

2. Basic Conception 

2.1. Ensemble Empirical Mode Decomposition (EEMD) 

As a pioneer of the adaptive data analysis method, EMD was proposed by Huang [10]. This  

well-known method has been widely used for the feature extraction of non-linear and non-stationary 

signals in many fields, especially for vibration analysis of rotating machinery [33–35]. EMD, however, 

is subjected to mode mixing, which is defined as either a single IMF consisting of components with 

wide disparate scales, or a component with a similar even identical scale residing in different IMFs. On 

the basis of EMD, Wu and Huang developed EEMD to improve the independent extraction capability 

of signal components. As a noise-assisted data analysis method, EEMD defines the true IMF 

component as the mean of an ensemble of trials, and each trial contains the result of the signal plus a 

white noise of the finite amplitude decomposed by EMD [18]. The realization of EEMD is dominantly 

based on the idea that different white noise with the same statistical characteristics can be reduced or 

even cancelled out in the ensemble mean of enough trials. Consequently, the added white noise would 

populate the whole time-frequency space uniformly, taking advantage of the dyadic filter bank 

behavior of the EMD. The principle of EEMD can be seen in previous literature [18,21,36,37]. It is 

critical to guarantee that there are only persistent components when more trials are introduced into  

the ensemble.  

In order to satisfy the needs of comparison in the subsequent improvement, the whole flow of the 

EEMD algorithm and the description [18,21] are shown in Figure 1. 
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Figure 1. Flow of ensemble empirical mode decomposition (EEMD). 

Steps: 

(1) Initialize the ensemble number M, the statistical property of added white noise, and m = 1. 

(2) Perform trails M times in a cycle. 

(2-1) Add the mth white noise with the given statistical property to the signal, 

( ) ( ) ( )m mx t x t n t= +  (1) 

where nm(t) represents the mth added white noise, and xm(t) represents the noise-added 

signal of the mth trial. 

(2-2) Decompose the noise-added signal xm(t) into IMFs ci,m (i = 1,2,…,I) and a residual series rm 

by EMD: 

( ) ,
1

, 1, 2,...,
I

m i m m
i

x t c r i I
=

= + =
 

(2) 

where ci,m denotes the ith IMF of the mth trial, I is the number of IMFs, and rm represents 

the only residual volume. 

(2-3) If m < M, the flow performs back to (2-1), accompanying m = m + 1. Then, perform 

circulation from (2-1) to (2-3) until m = M. 

(3) Calculate the ensemble mean ci of the M trials for each IMF and the residual r using the  

following equation. 
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(4) Output all of the true IMFs which should satisfy the formula: 
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(4) 

According to the flow chart and the description above, we can understand that mode mixing can be 

restrained by adding white noise to the investigated signal to change the distribution of extremes. In 

this process, the critical portion of the amplitude of added noise determines the restraining level. This 

parameter mainly follows the statistical regularity as follows [18]: 

n
M

εε =  or ln ln 0
2n M
εε + =  (5) 

where εn is the deviation between the original signal and the reconstruction result, ε represents the 

amplitude of added noise that we need to find out, and M is the ensemble number. 

It can be seen from the formula that the precision of signal decomposition is proportional to the 

amplitude of added noise and inversely proportional to the ensemble number. Under ideal condition, 

the smallest ε and the largest M can ensure the smallest εn. However, in fact, the smallest ε will lead to 

too small change of extreme distribution and the largest M will cause the higher complexity of the 

algorithm. To solve the above problem in practice, ε can be designed as 0.2 times of the standard 

deviation of the investigated signal generally according to noise added experiments. On the other hand, 

Wu, et al., also presented some empirical rules for complement: if the high frequency components are 

dominant in the investigated signal, ε can be slightly smaller while the low frequency components are 

dominant, ε can be slightly greater. Several researchers have conducted the investigation into the 

relationship between the high or low frequency components and ε [17,21]. 

Although much work has been done on the amplitude of added noise and some novel strategies 

have been adopted for developing the new ideas on the solution of parameter optimization, little 

information is available on the effect of mode mixing in parameter optimization. Here we propose an 

algorithm on the basis of PSR and ML. 

2.2. PSR Based on Hankel Matrix 

The theory of PSR [22,23] indicates that an attractor can be reconstructed by univariate time series. 

This model can state the dynamic properties of a complex system efficiently and offer a feasible way 

to understand and analyze a system. The embedding dimension and the time delay are two critical 

parameters that can be optimized by several conventional methods. In order to display the ideas in this 

paper, a simple expression of the Hankel matrix is adopted for lowering model complexity and 

performing signal reconstruction linearly by a high resolution [38] and the zero phase-shift. 

Phase Space Reconstruction with the Hankel matrix has the form.  

1 2

2 3 1

1 1

l

l

m m m l

X X X

X X X

X X X

+

+ + −

 
 
 =
 
 
 




  


X  (6) 

where 2l ≥ , 2m ≥ , 1m l N+ − =  and N denotes the length of the univariate time series. 

The vectors correspond to the points of the phase space with m dimensions. These points can be 

connected in order to obtain an attractor which can be expressed as an m × l matrix in Equation (6). 
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Singular Value Decomposition (SVD) is a conventional method to analyze the Hankel matrix. Note 

that SVD, however, is equivalent to a portion of Principle Component Analysis (PCA) [39]. To reduce 

the computational complexity and enhance the effectiveness, PCA can be employed for reducing the 

dimensions of the Hankel matrix and extracting the main features. 

2.3. Manifold Learning Based on Principle Component Analysis (PCA) 

Seung et al., indicated that the high order correlation generally exists among features of complicated 

modes in ML [32]. As a result, the low order statistical property of a data set presents obviously  

non-linear. This character can be expressed by a set of implicit variables whose dimensions are far 

below the sample dimensions. ML enables the linear statistical pattern recognition to be transformed to 

the non-linear one. PCA is one of the most conventional feature extraction methods in statistical 

pattern recognition [40,41] and also included in ML. This method transforms a group of variables X in 

n dimensional vector space into a new group of Y that the variance achieves maximum by an 

orthogonal matrix A to be found out. The maximum variance can be represented as an optimization 

problem of minimizing the mean square error (MSE) as follows. 

2

1

min
m

i
i

E α
=

 
−  

 
X Y  (7) 

where E[·] represents the mathematical expectation, α is the projection direction included in A. 

Therefore, taking one of the new variables Yi as an example, its variance can be written as 
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(8) 

where C is the covariance matrix of X. 

Thus, the extreme problem under the condition of αTα = 1 can be converted to an unconstrained 

extreme problem as 

( ) T T
i i i i if vα α α α α= −C  (9) 

where v is the Lagrangian multiplier. 

Calculating the differential of Equation (9) and setting the result to be zero, the MSE can be 

deduced as a solution to the characteristic Equation (10). 

0vα α− =C  (10) 

The main features can be selected to be the original signal and then the goal of feature extraction 

can be achieved accordingly.  

Note that PCA is able to verify the feasibility of extracting the orthogonal features of the 

investigated signals. However, other embedding and manifold learning methods would be adopted 
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instead of PCA if the investigated signal with certain non-linear and non-stationary property were 

difficult to analyze. 

3. Independent Extraction for Mixing Features Based on PSEEMD 

3.1. Preliminary Extraction of Signal Mode Based on EEMD 

On the basis of the noise decoupling, EEMD is expected to decompose the signal into a set of IMFs 

with frequencies arranged from high frequency to low one. In vibration analyses of rotating machinery, 

IMFs with too high frequency would be the stochastic noise usually, and IMFs with too low frequency 

would be the trends, the false components, and the residual components. IMFs that represent the 

vibration property of rotating machinery can be obtained by eliminating the useless components. 

The vibration signals of rotating machinery are mainly concentrated in the low frequency region. 

We remark that, according to the instruction of parameter criteria in Section 2.1 and our experiment 

data, the amplitude of added noise ε will be a proper value that is greater than 0.2 times of the standard 

deviation of the investigated signals, and the ensemble number M will be less than 100. 

3.2. IMFs Reconstructed in Multi-Phase-Space 

Different PSR methods are suitable for the different purposes. For the linear and stationary IMFs, 

we adopt the Hankel matrix mentioned in Section 2.2 to reconstruct the phase space in order to reduce  

the model complexity and reconstruct the signals linearly by a high resolution and the zero  

phase-shift. Obviously, a series of phase space named multi-phase-space (MPS) constructed by the 

multi-Hankel-matrix will be established with the selected IMFs, and the single components will offer a 

good chance to be extracted from these spaces which are approximately linear and stationary by post 

processing described in the next section. 

3.3. Modified IMFs Established by Element Storage 

Through the extended expression of IMFs in the multi-phase-space, manifold learning methods may 

be used to extract features of the investigated signal further. Non-linear manifold learning methods 

proposed recently seem to be fussy and inappropriate for feature extraction in multi-phase space with 

approximately linear and stationary characteristics. Consequently, the multi-manifold-learning (MML) 

with PCA, instead of complex and conventional SVD, is adopted here, tentatively, for the single 

elements extraction in multi-phase-space. A new set of “element storage” would be constructed with 

these single elements. By inspecting the relationship of these elements between spaces properly and 

combining the same kind of elements, the modified intrinsic mode function (MIMF) would be 

reconstructed. Thus the independent extraction of signal components would be realized accordingly. 

The overview of PSEEMD and its details are given in Section 3.4. 
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3.4. Overview of PSEEMD 

Implementation procedure of PSEEMD is described as follows and the detailed computation flow is 

shown in Figure 2. 

Step 1: Implement EEMD with the investigated signal and obtain the preliminary IMFs. 

Step 2: Select required IMFs and construct MPS by the multi-Hankel-matrix. 

Step 3: Extract elements from MPS by MML of Multi-PCA and develop the element storage. 

Step 4: Inspect the element storage and combine the same kind of elements. 

Step 5: Reconstruct MIMFs. 

Notes: 

No.1: The amplitude of added noise in EEMD is set to be 0.2 times of the investigated signal 

standard deviation or an optimized value. The following verification with PSEEMD in Section 3.5 

indicates that almost no difference exists between these two arrangements. 

No.2: Required IMFs should be selected according to some prior knowledge or indicators of the 

investigated signal. 

No.3: The element storage may be enormous and some prior knowledge may be also used to 

inspect and combine the same kind of elements. 

 

Figure 2. Flow of Phase Space Ensemble Empirical Mode Decomposition (PSEEMD). 

3.5. Simulation Verification 

A simulation signal is adopted to explain the proposed PSEEMD in this section. Since rubbing is a 

typical fault in rotating machinery, the simulation signal mainly includes the fundamental frequency 
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and harmonics of rubbing. Rubbing is defined as the impact when the interval between static part and 

spindle is tiny. This fault signal is commonly characterized with evident fundamental frequency, along 

with the integer harmonics and the fractional harmonics. The fundamental frequency accompanying 

integer frequency less than or equal to the quadruplicated frequency is a dominant feature presented by 

the running status of our present rotor test bench. A simulation signal constructed by the four 

frequency components is shown in Figure 3, which shows clearly the specified four frequency 

components in the frequency domain. 

 

Figure 3. The simulation signal. 

With the original amplitude of added noise equal to 0.77, the ensemble number of 100 and the 

sifting number of 20, the PSEEMD method is employed to analyze the simulation signal and the 

decomposed first six Modified IMFs, both in the time-domain and the frequency-domain, are 

illustrated in Figures 4 and 5, respectively. 

 

Figure 4. Modified Intrinsic Mode Functions (IMFs) in the time-domain. 
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It can be seen from the two figures that MIMFs 1–6 correspond to the passband noise, the 

quadruplicated vibration frequency (1X), the triple vibration frequency (2X), the double vibration 

frequency (3X), the fundamental vibration frequency (4X), and the low frequency noise, respectively. 

It can also be observed from Figure 3 that MIMFs 2–5 almost correspond to the four components, 

respectively, showing that the four main components existing in the simulation signal are extracted 

independently by PSEEMD. For further comparison, the simulation signal is also analyzed by the 

original EEMD and the optimized EEMD, respectively. Here, the optimized EEMD is referred to as 

iterative search for an optimal ε in a proper interval whose lowerbound is greater than 0.2 times  

of the standard deviation of investigated signal. These two kinds of decompositions are shown in  

Figures 6–9. 

 

Figure 5. Modified IMFs in the frequency-domain. 

 

Figure 6. Original IMFs in the time-domain. 
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Figure 7. Original IMFs in the frequency-domain. 

 

Figure 8. Optimized IMFs in the time-domain. 

 

Figure 9. Optimized IMFs in the frequency-domain. 
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The comparison between the original IMFs in Figures 6 and 7 and Optimized IMFs in Figures 8 and 9 

show that mode mixings are both serious and there is almost no difference between them, especially 

for the main components of IMFs 2–5. The original amplitude of 1X is approximately equal to 0.0256 

and that of 2X is nearly 0.0284, while the optimized IMF1 amplitude of 1X decreases from the initial 

value to 0.01929 and that of 2X also declines to 0.02055—See the marked red circle in Figures 7 and 9. 

This obvious change may be attributed to that the order of magnitude of IMF1 is much less than those 

of IMFs 2–5. Actually, components for other IMFs also increase or decrease slightly. This 

phenomenon suggests that some weak information transfers from the first IMF to the others. 

Therefore, EEMD with optimized ε only enables some weak information transfer rather than 

eliminating mode mixing. Moreover, the information transfer may be more obvious if the complexity 

of investigated signal increases. Thus, these results imply that neither the original EEMD nor the 

optimized EEMD can accurately extract independent information of the simulation signal. 

On the basis of the results of the simulation and comparison, it appears that PSEEMD is able to 

obtain more accurate and independent IMFs than the original EEMD and the optimized EEMD. 

4. Experimental Presentation for Feature Extraction of Faulted Rotor System 

4.1. Brief Introduction of Experiment on Rotor System 

The rotating machinery is a kind of critical equipment in the fields of electrical power, 

petrochemical complex, metallurgical industry and aerospace engineering. Contemporary rotating 

machinery is confronted with severe production conditions, complex and diverse equipment structure, 

and quick updating of physical and virtual function, which has raised a higher reliability requirement 

for the versatile and critical units of rotor systems. For the security and stability of the rotating 

machinery, it is expected to acquire breakthrough on the feature extraction and the identification of the 

running status, especially on the weak feature extraction for the rotor vibration signal with non-linear 

and non-stationary properties under the strong noise condition. 

Consequently, a Bently RK4 rotor test bench is adopted in our research. The main framework is 

given in Figure 10. This platform mainly consists of a rotor system and a vibration testing system. The 

rotor system includes a rotor, a motor, a pair of bearing and a foundation. The vibration testing system 

includes six groups of eddy current sensors and a set of data acquisition instrument connecting 

computer. Sensors 1–4 are divided into two groups for capturing the vibration signals located in the 

cross section with the directions of 45° and 135°. Sensor 5 is used to measure phase and sensor 6 is 

applied to capture the rotating speed.  

A typical fault of rubbing is designed in our research to verify the feasibility of PSEEMD. Rubbing 

is defined as the impact when the interval between the static part and spindle is tiny, and this fault can 

be yielded by a supported design. The installation of the rubbing support is shown in Figure 11. The 

property of this rotor fault can be regarded as an extension of the simulation signal with an increased in  

non-linear and non-stationary features. The sampling rate is set to be 2048 Hz, the sampling number is 

set as 2048 points, and the rotating speed is set as 3000 rpm for safety. 
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Figure 10. Bently RK4 rotor test bench. 1. motor, 2. rotor, 3. bearing, 4. foundation;  

a. sensors 1~2; b. sensors 3~4; c. sensors 5~6; d. data acquisition instrument. 

(a) (b) 

Figure 11. Installation effect of rubbing (a) vertical view; (b) side view. 

4.2. Rubbing Features Extraction with PSEEMD 

The rubbing rotor vibration signal in the time-domain and the frequency-domain are shown in  

Figure 12. 

According to the waveform of the rubbing signal in the time-domain, it is difficult to find detailed 

information of features due to the interference of the strong noise, except the global oscillatory 

amplitude. Although the primary component distribution can be seen in the frequency-domain, 2X, 3X 

and 4X are exactly the weak features, especially 4X. This information indicates non-linear and  

non-stationary complexity of the rubbing features. In order to solve this feature extraction problem and 

manifest the feasibility of PSEEMD, decomposition of the rubbing signal by PSEEMD has been 

computed, as shown in Figures 13 and 14. The amplitude of added noise is equal to 1.09, the ensemble 

number is 100 and the sifting number is 20. 
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Figure 12. The rubbing signal in the time-domain and the frequency-domain. 

 

Figure 13. Modified IMFs in the time-domain.  

 

Figure 14. Modified IMFs in the frequency-domain. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

Time/s

0 200 400 600 800 1000 1200
0

2

4

6

Frequency/Hz

A
m

pl
itu

de
/m

v

1X

2X 3X
4X

-10
0

10

-5
0
5

-0.5
0

0.5

-2
0
2

-2
0
2

-10
0

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1
0
1

Time/s

A
m

pl
itu

de
/m

v

0
0.2
0.4

0
0.1
0.2

0
0.2
0.4

4X

0
0.5

1 3X

0
0.5

1 2X

0
5

10
1X

0 200 400 600 800 1000 1200
0

0.1
0.2

Frequency/Hz

A
m

pl
itu

de
/m

v



Sensors 2015, 15 8564 
 

 

From the two figures, it can be noted that MIMF1 and MIMF2 represent high frequency noises 

lying in the first two regions. MIMF3, MIMF4, MIMF5 and MIMF6 are corresponding to 4X, 3X, 2X 

and 1X, respectively, when MIMF6 and MIMF5 exhibit great smoothness of sinusoidal wave. 

Furthermore, MIMF4 and MIMF3 show inferior smoothness but still represent primary features. This 

distinction is due to the noise strength. Taking MIMF6 and MIMF3 as an example, the 1X of MIMF6 

is from those of IMF5 and IMF4, which are far away from the strong noise region. Nevertheless, the 

4X of MIMF3 is directly from that of IMF2, which is characterized with strong noise. Note that 

MIMFs 3–6 are almost equal to the four marked components in Figure 12. Like the signal simulation 

results, primary components existing in the investigated signal are extracted independently. As a result, 

PSEEMD can still extract the primary and the weak information independently from the strong noise, 

although the noise disturbs the feature extraction. 

For comparison, the rubbing signal is also analyzed, both by the original EEMD and the optimized 

EEMD, where the original amplitude of added noise is equal to 1.09 and the optimized one is 1.26. 

These two kinds of decompositions are shown in Figures 15–18. 

 

Figure 15. Original IMFs in time-domain. 

 

Figure 16. Original IMFs in the frequency-domain. 
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Comparing the original IMFs in Figures 15 and 16 with the optimized IMFs in Figures 17 and 18 

indicate that the two kinds of mode mixing are both serious like the signal simulation result. However, 

3X and 4X of IMF2 (rich noise here) do not display a clear distinction, either by the original EEMD or 

by the optimized EEMD. Moreover, 1X (3.674) of IMF4 by the optimized method is smaller than that 

(4.024) of the original IMF4 while 1X (1.275) of IMF5 by the optimized method is larger than the 

original one (0.947). These two variations can be explained by the relationship between the fixed red 

circles and the moved blue spectral lines. Unlike the signal simulation result, the transfer phenomenon 

of the weak components caused by the adjustment of the parameter consistently exists. In addition, the 

optimized ε only enables some information transfer rather than eliminating mode mixing. Neither the 

original EEMD nor the optimized EEMD can accurately extract the independent information from the 

investigated signal. 

 

Figure 17. Optimized IMFs in the time-domain. 

 

Figure 18. Optimized IMFs in the frequency-domain. 
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ON the basis of the analyses above, it seems that PSEEMD is more accurate than the original 

EEMD and the optimized EEMD in extracting the independent and weak information. For final 

confirmation of PSEEMD, MIMFs 3–6 are applied for reconstructing the rubbing signal. The result 

depicted in Figure 19. 

 

Figure 19. Reconstruction of rubbing signal. 

Compared with the original rubbing signal, the reconstructed signal retains the rubbing features of 

1X, 2X, 3X and 4X; it eliminates the annoying noise and needless compositions due to the independent 

and weak information extraction capability of PSEEMD. The four components of 1X, 2X, 3X and 4X 

contained in the investigated signal are truly represented by the four single, intact and independent 

MIMFs. As a result, PSEEMD can still accurately extract the features independently and eliminate 

mode mixing although the complexity resulting from the non-linear and non-stationary features 

increases significantly compared with that of the simulation signal. 

5. Conclusions 

The independent extraction model of mixing features reconstructed in phase space named PSEEMD 

has been proposed to improve mode mixing of EEMD and realize the independent extraction of the 

frequency information. PSEEMD has been applied in vibration analysis of rotating machinery. 

Moreover, the theoretical analyses, the model construction, and the application have been performed. 

The following advantages of PSEEMD can be obtained.  

1. Style mixing can be eliminated. 

2. The change in the amplitude of added noise is robust. 

3. The weak features can be extracted independently. 

4. The advantages of (1)–(3) are realized under the condition of suffering from strong noise. 

5. PSEEMD may have the generalization capability. It is expected to apply PSEEMD in 

analyzing non-linear and non-stationary signals in other fields. 

Further study on the verification of PSEEMD application in rubbing coupled with other faults 

should be conducted. 
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