

Supplementary Information

Highly Sensitive and Selective Colorimetric and Off-On Fluorescent Reversible Chemosensors for Al³⁺ Based on the Rhodamine Fluorophore. *Sensors* 2015, *15*, 9097-9111

Naveen Mergu¹, Ashok Kumar Singh¹ and Vinod Kumar Gupta^{1,2,3,*}

- ¹ Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India; E-Mails: mergu.naveen@gmail.com (N.M.); akscyfcy@gmail.com (A.K.S.)
- ² Center for Environment and Water, The research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- ³ Department of Applied Chemistry, University of Johansburg, Johannesburg 17011, South Africa
- * Author to whom correspondence should be addressed; E-Mails: vinodfcy@iitr.ac.in or vinodfcy@gmail.com; Tel.: +91-133-2285-801; Fax: +91-133-2273-560.

Figure S1. Absorbance spectra of L1 (**a**, 50 μ M) and L2 (**b**, 50 μ M) in presence of various metal ions (50 μ M) in MeOH–DMSO (99:1 v/v). Inset: Visual color change of probe upon addition of Al³⁺.

Figure S2. Fluorescence spectra ($\lambda_{ex} = 520 \text{ nm}$) of **L1** (**a**, 50 µM) and **L2** (**b**, 50 µM) in presence of various metal ions (50 µM) in MeOH–DMSO (99:1 v/v). Inset: Visual color change of probe upon addition of Al³⁺.

Figure S3. The fluorescence emission spectral pattern of L1 (a) and L2 (b) in the presence of increasing concentrations of Al^{3+} (0, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250 μ M). Inset: Linear regression plot of fluorescence intensity change $1/(F-F_0)$ as a function of concentration $1/[Al^{3+}]$ (top), fluorescence enhancement change as a function of concentration of Al(III) added (bottom).

Figure S4. Job's plot for L1–L3 with Al^{3+} , fluorescence intensity at 587 nm was plotted as a function of the molar ratio.

Figure S5. ESI-MS spectrum of L1 (a) and L2 (b) upon addition of AlCl_{3.6}H₂O (1.0 eqiuv.) in MeOH.

Figure S6. UV-vis absorbance (**a**,**b**) and Fluorescence emission (**c**,**d**) spectral changes of **L1** and **L2** with Al^{3+} as a function of pH. Inset: Color changes of probe + Al^{3+} in different pH media under a normal (a and b) and UV (c and d) lamp (top), absorbance (a and b, at 557 nm) and emission (c and d, at 587 nm) intensities of **L1** and **L2** in the presence of Al^{3+} with pH variation (bottom).

Figure S7. Competitive selectivity of probes L1 (a) and L2 (b) toward various metal ions (1.0 equiv.) in the absence (blue bars) and presence (red bars) of Al^{3+} (1.0 equiv.) with an excitation of 520 nm.

Figure S8. The variation in fluorescence emission spectra of $L1 + Al^{3+}$ (**a**) and $L2 + Al^{3+}$ (**b**) upon addition of EDTA (0, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 225, 250 μ M). Inset: Color changes of probe+Al³⁺ upon addition of EDTA (1.0 equiv.) (top), fluorescence spectral changes at 587 nm as a function of the amount of EDTA (bottom).

Figure S9. Differential pulse voltammograms recorded for L1 and L2, and the corresponding Al^{3+} addition products in MeOH–DMSO (99:1 v/v).

¹H NMR Titration

Both doublet and triplet of H_j and H_l , respectively, were shifted upfield then they were combined with each other and gave a simple multiplet at about 6.8 ppm, while a combine signal of H_b , H_d and H_i was splitted into two signals of H_i and a combine signal of H_b and H_d . The distance between two signals of H_c and H_k of fluoroionophore **L3** is also varied upon addition of Al^{3+} . Other aryl-proton (H_a) of rhodamine moiety was also shifted slightly downfield because the strong coordination between **L3** and Al^{3+} ion.

Figure S10. FT-IR Spectrum (KBr) of 1.

Figure S11. FT-IR Spectrum (KBr) of L1.

Figure S12. FT-IR Spectrum (KBr) of L2.

Figure S13. FT-IR Spectrum (KBr) of L3.

Detection Limit

The detection limit was carried out by the following calculations:

$$LOD = 3\sigma/m$$

where, " σ " is the standard deviation of probe (without metal) and "m" is the slope of the plot of fluorescence emission vs concentration of metal.

From the Figure 2b: σ is calculated to be 46.05 and m is 273.44.

 $LOD = (3 \times 46.05)/273.44$

 $LOD = 0.5 \ \mu M.$

Figure S14. ¹H NMR Spectrum (500 MHz, CDCl₃) of 1.

Figure S15. ¹H NMR Spectrum (500 MHz, CDCl₃) of L1.

Figure S16. ¹H NMR Spectrum (500 MHz, CDCl₃) of L2.

Figure S17. ¹H NMR Spectrum (500 MHz, CDCl₃) of L3.

Figure S18. ¹³C NMR Spectrum (500 MHz, CDCl₃) of 1.

Figure S19. ¹³C NMR Spectrum (500 MHz, CDCl₃) of L1.

Figure S20. ¹³C NMR Spectrum (500 MHz, CDCl₃) of L2.

Figure S21. ¹³C NMR Spectrum (500 MHz, CDCl₃) of L3.

Figure S22. ESI-MS Spectrum of 1.

Figure S23. ESI-MS Spectrum of L1.

Figure S24. ESI-MS Spectrum of L2.

Figure S25. ESI-MS Spectrum of L3.

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).