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Abstract: For the prevention of falling in the elderly, gait training has been proposed using 

tasks such as the multi-target stepping task (MTST), in which participants step on assigned 

colored targets. This study presents a gait measurement system using a laser range sensor for 

the MTST to evaluate the risk of falling. The system tracks both legs and measures general 

walking parameters such as stride length and walking speed. Additionally, it judges 

whether the participant steps on the assigned colored targets and detects cross steps to 

evaluate cognitive function. However, situations in which one leg is hidden from the sensor 

or the legs are close occur and are likely to lead to losing track of the legs or false tracking. 

To solve these problems, we propose a novel leg detection method with five observed leg 

patterns and global nearest neighbor-based data association with a variable validation 

region based on the state of each leg. In addition, methods to judge target steps and detect 
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cross steps based on leg trajectory are proposed. From the experimental results with the 

elderly, it is confirmed that the proposed system can improve leg-tracking performance, 

judge target steps and detect cross steps with high accuracy. 

Keywords: gait measurement; laser range sensor; Kalman filter; data association 

 

1. Introduction 

Falling is a leading cause of unintentional injury and death in the elderly [1,2] and can also result  

in impaired mobility, disability, fear of falling and reduced quality of life [3–5]. Unsurprisingly, the 

prevention of falls in the elderly is a public health priority in many countries across the world [6–8]. 

Falling is a common problem in the growing elderly population and there is a need for effective and 

convenient fall risk assessment tools that can be used in community-based fall prevention programs. 

Falling occurs in various situations of daily life and generally results from an interaction of multiple 

and diverse risk factors [1,2,9,10]. Recently, it has been reported that elderly people at high risk of 

falling show decreases in dual-task performance, i.e., in performing motor and cognitive tasks 

simultaneously [11–14]. To prevent falling in the elderly, gait training tasks have been proposed that 

enhance both motor and cognitive function. One example is the multi-target stepping task (MTST), 

shown in Figure 1, in which participants step on assigned colored targets arranged randomly on a  

mat [15]. The MTST evaluates motor function based on the stride length of each leg and the walking 

speed. Additionally, the MTST judges whether the participant steps on the assigned colored targets 

(target step judgment) and detects any cross steps (cross step detection) to evaluate cognitive function. 

The cross step is a behavior where the swinging leg crosses against the supporting leg as shown in 

Figure 1b. It has been reported that the proportion of missteps on the assigned colored target of  

high-risk elderly is higher than that of low-risk elderly in the MTST. Moreover, it has been confirmed 

that cross steps are likely to be seen during a turn when high-risk elderly people perform the MTST [16]. 

This gait training task requires a gait measurement system to quantitatively measure these parameters 

for the evaluation of the participant’s dual-task performance capability. To measure these walking 

parameters and evaluate the risk of falling using the MTST, a measurement system that can measure the 

foot contact time and position across several meters is required. Furthermore, it is desirable to measure 

not only the foot contact positions but also the trajectory of both legs during the swing phase.  

In many cases, force plates [12,17] or three-dimensional motion measuring devices [18,19] have 

been used to measure walking parameters such as stride length and walking speed with high reliability. 

Force plates can assess dynamic balance function and foot contact time and position. However, to 

measure walking parameters in a several-meter walking test such as the MTST, the measurement 

system must be configured with several force plates, which is expensive. Three-dimensional motion 

measuring devices such as the VICON system can capture and analyze the motion of participants with 

high accuracy. However, the scale of the whole system is larger than the measurement range because 

of the range of the sensor (IR camera). In addition, it is necessary to attach markers to the participants to 

capture and analyze their gait. In actual community health centers [20], a non-contact measurement 

system is desirable because it is necessary to assess many participants in a short time. 
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Figure 1. (a) An appearance of the multi-target stepping task and proposed gait 

measurement system; (b) Cross step. 

In terms of their cost, scale and convenience, it is difficult to install these devices in community 

health centers. Therefore, since the measurement of the effects of this training is carried out by 

observation in actual community health centers, it is difficult to quantitatively evaluate the capability 

of the participants. 

To overcome these problems, an ultrasonic sensor, a laser range sensor (LRS) [21] or a RGB-Depth 

sensor such as the Microsoft Kinect [22] can be used. These devices are comparatively small and 

inexpensive devices. Several methods of tracking people’s center of gravity using these devices have 

been proposed [23–29]. To measure the walking parameters, the system has to track both legs and obtain 

their positions. A method used to track both legs and measure walking parameters based on the  

two-dimensional distance data from an LRS has been proposed and verified in straight walking  

tests [30,31]. Several methods to obtain the posture of a pedestrian based on the RGB-Depth data have 

also been proposed [32–34]. However, in gait training, to avoid the risk of falling for some participants 

during the MTST, a nursing attendant walks alongside the participant and the participant uses a stick if 

they use one normally. Additionally, both legs could be close to each other because of a narrow stride, or 

one leg might be hidden from the sensor owing to the increased number of cross steps in the high-risk 

elderly. These situations are likely to lead to false tracking or loss of leg tracking entirely. A method to 

detect and track the legs based on the RGB-Depth data even in cluttered environments has been  

proposed [35]. To measure walking parameters in several-meter walking tests such as the MTST, the 

sensor must be able to obtain high accuracy distance data over a wide range. Moreover, to assess the fall 

risk of elderly people during the MTST, methods to judge target steps and detect cross steps are required. 

In this study, we develop a gait measurement system using a laser range sensor (LRS) [21] as 

shown in Figure 1a. The LRS is a comparatively small and inexpensive device and can obtain high 

accuracy two-dimensional distance data over a wide range. To reduce the number of occurrences of 

lost tracking of legs and of false tracking, we propose a novel leg detection method with five observed 

leg patterns and global nearest neighbor (GNN)-based [36,37] data association with a variable 
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validation region based on the state of each leg. In addition, we propose methods to judge target steps 

and detect cross steps based on the trajectory of the legs. Comparing the experimental results of the 

MTST with the video analysis, we confirmed that the proposed system can improve leg-tracking 

performance in the elderly, judge target steps and detect cross steps. We also confirmed the validity of 

walking parameters such as foot contact time and position obtained by the proposed system from the 

results of the target step judgment. 

2. Gait Measurement System 

2.1. Configuration 

As shown in Figure 1a, the system consists of an LRS, a personal computer, and two calibration 

poles. In the system, the LRS is installed at shin height (0.27 m in our system) and captures distance 

data by scanning a single laser beam in a horizontal plane. The personal computer acquires data from 

the LRS and calculates the leg positions. 

2.2. Algorithm 

As shown in Figure 2, the system has two main processes. The first process is leg detection and 

tracking. The positions of the legs are calculated based on the proposed leg patterns from LRS scan 

data. In the proposed system, tracking of the legs is carried out based on a Kalman filter. In addition, 

the data association (one-to-one matching of a tracked leg and an observed position with an LRS) has 

been implemented for reliable tracking [37]. In the data association, a validation region is used for 

eliminating unlikely observation-to-track associations [23]. A validation region is constructed around the 

predicted position. In this study, GNN-based [36,37] data association with a variable validation region 

based on the state of each leg is proposed. The second process is extraction of the walking 

performance parameters of the MTST (foot contact time and position, target step judgment and cross 

step detection) based on the trajectory of the legs.  

 

Figure 2. Algorithm of the gait measurement system using an LRS. 
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Before walking measurement, the system measures the leg width wl of the participant at shin height 

shown in Figure 3 and aligns the mat and LRS using two poles in reference [38].  

 

Figure 3. Leg detection using five observed leg patterns; (a) SL pattern; (b) LT pattern;  

(c) FS_O pattern; (d) FS_U pattern; (e) UO pattern. 

2.3. Leg Detection 

This study presents a novel leg detection method to calculate observed leg positions based on the 

leg width wl and five observed leg patterns. To calculate the leg positions, the system searches for 

edges eh 
m(m = 1, …, Mk) from the LRS scan data using the following equation:  

1 2i i ll l w+− >  (1)

where li is the i-th laser-scanned distance data from the right of an LRS. Moreover, the detected edges 

are identified by eB 
m = i, eF 

m+1 = i + 1 when li > li+1, and eF 
m = i, eB 

m+1 = i + 1 when li < li+1 (h = F, B, where F 

and B indicate the forward and backward edges, respectively). Mk is the total number of detected edges 

at time step k. As shown in Figure 3, the system calculates the observed leg positions yj 
k(j = 1, …, J) 

considering five observed leg patterns based on their spatial relationship and the width we between the 

edges. The five observed leg patterns are SL (Single Leg), LT (Legs Together), FS_O (Forward 

Straddle Observable), FS_U (Forward Straddle Unobservable) and UO (Unobservable).  

SL is a pattern in which one leg is fully observable by the sensor alone, and is detected as a 

sequence of edges {eB 
n , eF 

n+1, e
F 
n+2, e

B 
n+3}, with a width condition of 0.2wl < we ≤ 1.5wl. As shown in Figure 3a, 

the observed position of the leg is calculated based on wl. 
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LT is a pattern in which two legs are fully observable side by side by the sensor, and are detected as 

a sequence of edges {eB 
n , eF 

n+1, eF 
n+2, eB 

n+3} or {eF 
n , eB 

n+1, eF 
n+2, eB 

n+3} or {eB 
n , eF 

n+1, eB 
n+2, eF 

n+3}, with a width 

condition of 1.5wl < we < 3.0wl. As shown in Figure 3b, the observed positions are calculated assuming 

that those two legs are side by side. 

FS_O is a pattern in which one leg is observed as a stepped shape by the sensor owing to the 

influence of the other leg or a stick, and is detected as a sequence of edges {eF 
n , eB 

n+1, e
F 
n+2, e

B 
n+3} or {eB 

n , eF 
n+1, 

eB 
n+2, e

F 
n+3}, with a width condition of 0.5wl ≤ we < 1.5wl. As shown in Figure 3c, the observed position is 

calculated in the same way as in the SL pattern. 

FS_U is a pattern that has a similar situation to FS_O, where the leg is again detected as a sequence 

of edges {eF 
n , eB 

n+1, e
F 
n+2, e

B 
n+3} or {eB 

n , eF 
n+1, e

B 
n+2, e

F 
n+3}, with a width condition 0.2wl < we < 0.5wl. However, 

the position of the leg cannot be directly calculated. Thus, as shown in Figure 3d, the observed position 

is calculated virtually based on the leg width wl. 

UO is a pattern in which one leg is unobservable because of occlusion. In particular, even if the leg 

is not fully observable by the sensor, by calculating the position of the tracked leg in the FS_U pattern, 

improvements of the estimation accuracy and tracking performance can be expected.  

2.4. Leg Tracking 

This study presents a novel leg tracking method using a Kalman filter and GNN-based data association 

with a variable validation region based on the state of each leg. If the sampling time ∆t (0.05 s in our 

system) is sufficiently shorter than the gait cycle time, we assume that the change in velocity at the 

next time step is not very large. The discrete time model of leg motion is given as follows: 

( )1 1 ,f f f
k k k f L R− −= + Δ =x Ax B x  (2)

where 

2

2

1 0 0 2 0

0 1 0 0 2
,

0 0 1 0 0

0 0 0 1 0

t t

t t

t

t

Δ  Δ 
  Δ Δ  = =
   Δ
  

Δ   

A B , and 
Tf f f f f

k k k k kx y x y =  x   . ( ), :f f f
k k kx y = p  is the 

estimated position and ( ), :f f f
k k kx y = v   is the estimated velocity of the leg (f = L, R, where L and R 

indicate the left and right legs, respectively). k k
Tx yf

k n n Δ =  x    is the acceleration disturbance vector, 

which is assumed to be zero mean and has a white noise sequence with variance Q. We set the 

variance as 2 2diag (5.0) , (5.0) =  Q  considering that the leg speed is accelerated and decelerated 0.0 

to 2.5 m/s in the swing phase (about 1.0 s) in the experiments. The LRS obtains the leg position from 
Tf f f

k k kx y =  y . The measurement model is as follows: 

f f
k k k= +y Cx w  (3)

where 
1 0 0 0

0 1 0 0

 
=  
 

C . k k
Tx y

k n n =  w  is the measurement noise, which is assumed to be zero 

mean and has a white noise sequence with variance R. In our experiments, we set the variance as 
2 2diag ( / 2) , ( / 2)l lw w =  R  considering that the LRS measures the distance within the error and the 

observed leg position is calculated from the leg width wl.  
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2.4.1. Prediction 

As shown in Figure 4a, based on the model of leg motion, the system predicts the position of the 

tracked leg by: 

/ 1 / 1 1/ 1ˆ ˆ ˆf f f
k k k k k k− − − −= =y Cx CAx  (4)

where / 1ˆ f
k k −x  and 1/ 1ˆ f

k k− −x  are the a priori state estimation at time step k and the a posteriori state 

estimation at time step 1k − . 

 

Figure 4. Leg tracking using validation regions considering the state of each leg;  

(a) Prediction; (b) Data association; (c) Correction. 

2.4.2. Data Association 

As shown in Figure 4b, a validation region is constructed around the predicted position to eliminate 

unlikely observation-to-track associations. The j-th (j = 1, …, J) observed position yj 
k is included in the 

validation region of the predicted position / 1ˆ f
k k −y  of the tracked leg according to: 

/ 1ˆj f f
k k k valr−− <y y  (5)

where rf 
val(f = L, R) is the radius of the validation region. The measurement accuracy changes in 

accordance with the velocity of the leg and whether the leg is moving while hidden. In these situations, 

losing track of the leg or false tracking of another leg or a stick is likely to occur. To solve these 

problems, the radius of the validation region is designed considering the state of each leg: gait phase 

(whether the leg is in the stance phase or swing phase), the speed, and times when the leg is 

unobservable. The radius of validation region considering these points is shown in Table 1. Hf 
k is the 

number of times that no observed positions are included in the validation region (observed leg pattern 
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is UO) continuously at time step k. vsw and vst are the assumed speed of the leg in the swing and stance 

phases while it is hidden. In our experiments, vsw and vst are respectively set to 1.1 m/s and 0.55 m/s 

considering that the average human walking speed is about 1.1 m/s.  

Table 1. Setting of the radius of validation region rf 
val considering the state of each leg. 

Gait phase at k − 1 Observable Unobservable 

Stance phase 1

3

4
f

l kw t −+ Δ v  
3

4
f

l k stw t H v+ Δ  

Swing phase 1
f

l kw t −+ Δ v  1
f f

l k k sww t t H v−+ Δ + Δv  

Then, the following cost matrix D is defined for observation-to-track associations: 

,1 ,2 ,

,1 ,2 ,

L L L J

R R R J

d d d

d d d

 
=  
 

D



 (6)

The element ,f jd  of the cost matrix is the matching cost between the predicted position / 1ˆ f
k k −y  of the 

tracked leg and j-th observed position yj 
k and has the following values: 

, / 1
,

ˆis in the validation region ofj f
f j k k k

f j

if
d

else

λ −
=  ∞

y y
 (7)

,f jλ  is the Mahalanobis distance and is calculated as follows: 

( ) ( ) ( )-1

, / 1 / 1ˆ ˆ
Tj f f j f

f j k k k k k k k− −λ = − −y y S y y  (8)

where Sf 
k is the covariance of the innovation ( )/ 1ˆj f

k k k −−y y . The data association is achieved so that the 

summed total distance of D can be minimized [36]. 

2.4.3. Correction 

Finally, as shown in Figure 4c, based on the result of the data association, the state estimation 

vector is updated using the Kalman filter. If there are no corresponding observed positions in the 
validation region, the predicted position / 1ˆ f

k k −y  is used as an observed position and the observed leg 

pattern is assumed to be UO. 

2.4.4. Gait Phase Identification 

From validation compared with a force plate [38], it is possible to identify the phase of gait (stance 

phase or swing phase) considering the speed of both legs in human walking. The condition that the 

right leg is in the stance phase is: 

_
R L R
k k k st thv< ∨ <v v v  (9)

The condition that the right leg is in the swing phase is: 

_
R L R
k k k sw thv> ∨ >v v v  (10)
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where _st thv  and _sw thv  are the thresholds of the maximum speed in the stance phase and the minimum 

speed in the swing phase, respectively. In our experiments, _st thv  and _sw thv  are respectively set to one 

sixth (0.18 m/s) and one third (0.37 m/s) of the average human walking speed (1.1 m/s). The gait phase 

of the left leg is identified in the same way. 

With the proposed data association method, we can expect that the chances of losing a tracked leg 

will be reduced even if the velocity of the leg changes suddenly. We can also expect that the chances 

of false tracking of other observed objects such as another leg or a stick will be reduced because it is 

difficult for other objects to be included. In addition, the variable validation region is also effective 

even when the leg is moving while hidden from the sensor. 

2.5. Walking Parameters Extraction 

2.5.1. Foot Contact Position Extraction 

In this study, the foot contact time is defined as the time when the bottom of the foot is attached to 

the floor and the leg is perpendicular to the floor. As shown in Figure 5, the speed of the leg at shin 

height scanned by LRS is at a minimum value during the stance phase. Therefore, the foot contact time 

is extracted as the time when the leg speed is at a minimum value in the stance phase. In addition, the 

foot contact position can be acquired as the estimated position at shin height at the foot contact time 

because the leg is almost perpendicular to the floor. 

 

Figure 5. Image of the gait speed diagram during walking. 

2.5.2. Target Step Judgment 

Figure 6a shows the examples of the observed leg position when the participant stepped around the 

target (target size is 0.160 m × 0.165 m). From the experimental results and the leg model based on the 

average value of the physical data shown in Figure 6b, to judge whether the participant stepped on the 

assigned target, the region of the target step judgment was designed as shown in Figure 6c. The system 

judged that the participant stepped on the assigned colored target if the foot contact position was 

included in this region. 
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Figure 6. Target step judgment; (a) Examples of the results of observed leg position;  

(b) Leg model; (c) Region of the target step judgment. 

2.5.3. Cross Step Detection 

As shown in Figure 7, from preliminary experimental data with the elderly, the characteristic 

relationship between the trajectory of the swinging leg and the foot contact position of the supporting 

leg was confirmed when the participant performed a cross step. This study presents a method of 

detecting cross steps based on this relationship. 

 

Figure 7. Cross step detection. 

As shown in Figure 7, an x y′ ′−  coordinate system whose origin was the previous foot contact 

position of the swinging leg (right leg in this case) was defined. In this coordinate system, the foot 

contact position of the supporting leg (left leg in this case) was defined as 
TL L L

st x y′ ′ ′ =  p , and the 

Left leg
(stance phase)

Right leg
(swing phase) 

1
R′p

2
R′p

sw

R
K′p x′

y′

L
st

′p

cw

cw−

Previous foot
contact position

Current foot
contact position
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( )1, ,sw swk K= ⋅⋅⋅ -th position from the previous foot contact position of the swinging leg was 

sw sw sw

TR R R
k k kx y ′ ′ ′=  p . swK  indicates the number of samples in the swing phase. Then, the system 

detected a cross step if these parameters satisfied the following condition: 

( )1, ,
sw

L R
c k c sw swy w y w k K′ ′< ∧ ∃ < − = ⋅⋅⋅  (11)

where wc is the threshold of cross step detection. We determined that wc = wl/2 from the experimental 

results. Cross step detection was performed for the left leg in the same way. The system performed the 

above processing in every foot contact position and recorded the number and position of the detected 

cross steps.  

3. Experiments 

3.1. Participants and Environment 

Sixteen elderly volunteers (eleven men, five women, mean age 78.1 ± 8.7 years), including two 

elderly people using a stick, were recruited as participants for this study. None of them had any 

indications of the following symptoms: serious visual impairment, inability to ambulate independently, 

symptomatic cardiovascular disease, or severe arthritis. Informed consent was obtained from all 

volunteers prior to participation, in accordance with the guidelines approved by the Kyoto University 

Graduate School of Medicine (approval number E-880) and the Declaration of Human Rights, 

Helsinki, 1975.  

Table 2 shows the specification of the LRS (UTM-30LX, Hokuyo Automatic Co., Ltd., Osaka,  

Japan [21]). The sampling time of the system ∆t was set to 0.05 s. The MTST mat size was 5.85 m long 

by 1.15 m wide, and three colored (red, blue and white) targets (0.160 m × 0.165 m) were arranged 

randomly on it. As shown in Figure 1a, participants walked from the start position to the goal position 

stepping on the assigned colored targets three times (three colors). To avoid the risk of falling during 

the MTST, a nursing attendant walked alongside the participant. 

Table 2. Specifications of the UTM-30LX LRS ([21]). 

Detection Range 
0.1–30 m, max. 60 m 

270° 

Measurement Accuracy 
0.1–10 m: ±0.03 m  
10–30 m: ±0.05 m 

Angular Resolution 0.25°(360°/1440) 

3.2. Verification of Leg Tracking 

To verify the effectiveness of the proposed leg tracking method, three conventional methods 

labelled 1 to 3 (see Table 3 for definitions) were used. In Method 1, conventional leg detection method 

excluding the FS_U pattern [27] was used. In Methods 2 and 3, the proposed leg detection method 

using the FS_U pattern was used. We set a large fixed validation region for each method considering 

the observation error and the moving distance at one sampling time point in the swing phase without 
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prediction. In Methods 1 and 2, a radius of the large fixed validation region 
3

2
f

val lr w = 
 

 was used. 

The average leg width wl at shin height is about 0.1 m. We assumed that the observation error was wl/2 

and that the moving distance was wl considering that the leg speed in the swing phase was twice the 

average human walking speed (1.1 m/s) and that the sampling time was 0.05 s in this system. In 

Method 3, a radius of the small fixed validation region (rf 
val = wl) was used. We assumed that that the 

observation error was wl/2 and the moving distance was wl/2 considering that the leg speed in the 

stance phase was the same as the average human walking speed.  

Figures 8 and 9 show example leg-tracking results in those situations that are likely to lead to false 

tracking or losing track of the legs. In addition, Table 3 shows all 48 gait measurement results of  

16 elderly people walking. 

Figure 8 shows an example of the LRS data and gait measurement results in a situation where the 

right leg was temporarily hidden. As shown in Figure 8, the right leg was hidden by the left leg at time 

t = 23.80. In Method 1, which excluded the FS_U pattern for leg detection, the estimated position 

deviated significantly at time t = 23.85 because an accurate observed position could not be obtained at 

time t = 23.80. Therefore, the system lost track of the right leg. In Method 2, used the FS_U pattern for 

leg detection, even if the leg was not fully observable at time t = 23.80, by calculating the position of 

the tracked leg in the FS_U pattern, the system could obtain an accurate estimated position at time  

t = 23.85. The system could therefore keep track of the right leg. 

 

Figure 8. Example of leg tracking results in a situation where the right leg of the 

participant was temporarily hidden; (a) Method 1: conventional leg detection excluding the 

FS_U pattern; (b) Method 2: the proposed leg detection using the FS_U pattern. 
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Figure 9 shows an example of the LRS data and gait measurement results in a situation in which 

both legs were close together. As shown in Figure 9, in both data associations of Method 2 and the 

proposed method, the observed position of the right leg was disconnected from the validation region of 

the right leg at time t = 7.55.  

In Method 2 with a large fixed validation region 
3

2
f

val lr w = 
 

, the right validation region included 

the observed position of the left leg and the left validation region included the observed positions of 

the left and right leg. In this situation, false tracking by switching the left and right legs occurred with 

the GNN algorithm. To avoid switching of the legs in these situations, the validation region should be 

set smaller. However, as shown in Table 3, in Method 3 with a small fixed validation region (rf 
val = wl), 

losing track of the leg is likely to occur when the velocity of the leg changes suddenly or the leg is 

moving while hidden from the sensor. In the proposed method with variable validation regions based 

on the state of each leg, the observed position of the right leg was disconnected from the small 

validation region of the left leg because the left leg was in the stance phase at time t = 7.55. The right 

validation region was expanded because the corresponding observed position did not exist within it, 

then the system detected the right leg at time t = 7.65. 

 

Figure 9. Example of leg tracking results in a situation where both of the participant’s legs 

were close together; (a) Method 2: the radius of the large fixed validation region was used; 

(b) Proposed method: the radius of the validation region was changed depending on the 

state of each leg. 
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As shown in Table 3, it was confirmed that the proposed leg detection and data association method 

can reduce the number of occurrences of lost tracking of legs and of false tracking. 

Table 3. Leg tracking results for each method. 

 

Five 

Observed 

Leg 

Patterns 

Radius of the 

Validation 

Region rf 
val 

Participants not Using a Stick 

(14 people, 42 Trials) 

Participants Using a Stick  

(2 People, 6 Trials) 

Total (16 People, 

48 Trials) 

Number of 

Lost Tracks 

Number of 

False Tracks 

Number of 

Lost Tracks 

Number of 

False Tracks 
Success Rate 

Method 1 No 
3

2 lw  6 5 3 0 70.8% (34/48) 

Method 2 Yes 
3

2 lw  1 1 0 2 91.7% (44/48) 

Method 3 Yes lw  14 0 1 2 64.6% (31/44) 

Proposed Yes Variable 0 0 0 2 95.8% (46/48) 

3.3. Verification of Walking Parameters Extraction 

To verify the validity of the target step judgment and cross step detection of the proposed system, 

we recorded performance on the MTST using video cameras and compared our results with those 

obtained using video analysis. Additionally, we verified the validity of the foot contact time and 

position using the results of the target step judgment. 

Table 4 shows the results of target step judgment and cross step detection from 46 successful 

tracking data series compared with video analysis. Figure 10 shows an example of leg trajectory 

results. In Figure 10, if the system judged a target step, a large “O” symbol was displayed at the foot 

contact position. If the system detected a cross step, a large “+” symbol was displayed at the foot 

contact position. As shown in Figure 10 and Table 4, it was confirmed that the proposed system could 

judge target steps with very high accuracy (success rate: 99.0%), even including the participants using 

a stick. Additionally, the validity of the foot contact time and position obtained by the proposed system 

because of the high accuracy of the target step judgment was confirmed. We also confirmed that the 

proposed system could detect cross steps with high accuracy (success rate: 78.9%). 

Table 4. Results of target step judgment and cross step detection. 

 

Participants not Using a Stick  

(381 Steps, 16 Cross Steps) 

Participants Using a Stick  

(33 steps, Three Cross Steps) 

Total  

(414 Steps, 19 Cross Steps) 

Number of  

Non-Judgments and 

Non-Detections 

Number of 

Misjudgments and 

False Detections 

Number of  

Non-Judgments and 

Non-Detections 

Number of 

Misjudgments and 

False Detections 

Success Rate of 

Judgment and 

Detection 

Rate of 

Misjudgment and 

False Detection 

Target step 

judgment 
4 3 0 3 99.0% (410/414) 1.4% (6/414) 

Cross step 

detection 
2 0 2 0 78.9% (15/19) 0.0% (0/15) 
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Figure 10. Example of gait measurement results. 

4. Conclusions 

This study presents a gait measurement system using a LRS for the MTST to evaluate the risk of 

falling. The system is advantageous over current systems for the MTST in terms of cost, scale and 

convenience of use. When elderly people at high risk of falling perform the MTST, situations in which 

one leg is hidden from the sensor or the legs are close occur and are likely to lead to losing track of the 

legs or to false tracking. To solve these problems, we proposed a novel leg detection method with five 

observed leg patterns and GNN-based data association with a variable validation region based on the 

state of each leg. In addition, we proposed methods to judge whether the participant steps on the 

assigned colored targets (target step judgment) and detect a behavior where the swinging leg crosses 

against the supporting leg (cross step detection) based on the trajectory of both legs. 

To verify the validity of the proposed gait measurement system, we carried out the MTST with  

16 elderly people, including two elderly people using a stick. Comparing the experimental results with 

video analysis, we confirmed that the proposed system could improve leg-tracking performance, judge 

target steps and detect cross steps. We also confirmed the validity of the foot contact time and position 

obtained by the proposed system from the results of the target step judgment. This gait measurement 

system may be helpful in assessing fall risk indicators in the elderly in community health centers. 
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