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Abstract: We present an adaptive algorithm for a system integrated with  

micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the 

influence from the environment, compensate the temperature drift precisely, and improve 

the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but 

appropriate model parameters to implement this algorithm. The model of MEMS gyroscope 

temperature drift is constructed mostly on the basis of the temperature sensitivity of the 

gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters 

of the temperature drift model can be calculated to adapt to the environment under the 

support of the compass. These parameters change intelligently with the environment to 

maintain the precision of the MEMS gyroscope in the changing temperature. The heading 

error is less than 0.6° in the static temperature experiment, and also is kept in the range from 

5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm 

exhibits strong adaptability to a changing temperature, and performs significantly better than 

KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence 

of temperature variation. 
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1. Introduction 

MEMS inertial sensors are more widely used in the middle- and low-level market because of their 

advantages such as diminutive size, low cost, and low power consumption [1]. However, the temperature 

variation reduces the precision of the MEMS gyroscope seriously when the MEMS gyroscope is used in 

a changing environment such as in the car or unmanned aerial vehicle without a constant temperature 

adjustment [2], and this feature makes it necessary to model and compensate for the bias drift (called 

“drift” for short) of the MEMS gyroscope to increase the accuracy.  

The noise in an MEMS gyroscope is composed of two components: a slow-changing component and 

a high-frequency component with an average of zero. The gyroscope is sensitive to temperature 

variations, so the surrounding temperature variation leads to the bias drift of the gyroscope. Then, as the 

error of the angular velocity, the drift causes error accumulation in the orientation, thus, this is the major 

part of the slow-changing component [3]. The drift is not linear with temperature, therefore, the model 

is not entirely accurate. Additionally, different MEMS gyroscopes may have the same drift model, 

however, because of the differences in the respective production process, the parameters of each 

gyroscope vary between one another. Thus, the result is not accurate if we use the same parameters to 

compensate the drifts of all gyroscopes. However, the cost and time of calibration will increase if we 

calibrate the parameters of every MEMS gyroscope, and the parameters will be also changed to affect 

the accuracy of the gyroscope when the supply voltage or work environment changes [4]. Thus, we 

present an adaptive algorithm for a system integrated with MEMS gyroscopes and a compass to 

compensate the drift of MEMS gyroscopes for different temperatures and work environments and to 

improve the accuracy of the MEMS gyroscope. 

Before explaining our algorithm, it is necessary to briefly discuss several other approaches for 

compensating the drift of a MEMS gyroscope. Kirkko-Jaakkola et al. demonstrated that temperature 

variation greatly affects the bias of the MEMS gyroscope [5]. Consequently, temperature drift 

compensation should be implemented to reduce the influence of temperature. There are two common 

ways to implement the compensation. The first way is using a temperature control system to keep the 

temperature stable. Because of the stable temperature, the bias is not influenced by temperature, so this 

method has high precision and reduces the computational burden, and also makes the use of the 

temperature-sensitive instruments much easier, but the cost, power consumption and size are all 

increased [6]. The second way is using signal processing to compensate the temperature drift. This way 

does not increase the size, weight and power consumption, and it analyses the characteristics of the drifts, 

then uses a suitable model to compensate the drift, but the precision depends on the accuracy of the 

model and parameters. As we know, the relation between the drift and the temperature is nonlinear, so 

if the model and parameters are more accurate, the compensation precision is higher, but the more 

complex model increases the computational burden. 

Temperature drift modeling and compensation is used much more widely than the first way. Firstly, 

the model of the temperature drift is built by multiple linear regression (MLR) on the basis of the 

structure of the gyroscope and experimental data. Then, calibration experiments are necessary to obtain 

the available data. Finally, algorithms such as the least squares method, or polynomial segmentation 

fitting are used to calculate the parameters of the model. Afterwards, temperature compensation can be 

implemented [7–11]. These methods are easy to implement and compensate the drift in the full 
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temperature range. However, the main drawback of these approaches is that the relationship between the 

bias of the gyroscope and the temperature is complicated and nonlinear, so the model is not completely 

accurate, so the fixed parameters cannot maintain high compensation precision over the full temperature 

range. Additionally, if the working environment is altered, the accuracy will be affected, because the 

parameters do not change to adapt to the environment. To reduce the error caused by inaccuracy of the 

model and improve the fault-tolerance, the artificial neural network is used for the temperature 

compensation of gyroscope bias, but the features of the neural network, such as low convergence speed 

and easily falling into local minima, limit the compensation accuracy [12,13]. Some methods, such as 

Kalman Filter (KF), extended Kalman Filter (EKF), iterated unscented Kalman Filter (IUKF), can be 

used for neural network training to reduce the influence of these features and improve the compensation 

precision [14,15]. KF, EKF, UKF are the most common methods for integrated navigation systems to 

compensate various errors which include gyroscope drift. The compensation precision is high and the 

estimations of errors change after each iteration to match the environment when each navigation 

subsystem works properly, so the gyroscope drift is compensated accurately with the support of the other 

navigation subsystems [16–18], but the estimation of gyroscope drift changes only after iteration. Once 

a fault occurs at some subsystem, the iteration may stop to wait for the fault removal, and the drift 

estimation also remain unchanged, so faults have a great influence on the compensation precision. 

In order to solve the problem that the model is not completely accurate, decrease the influence of 

faults and accurately compensate the MEMS gyroscope drift, we build a simple drift model and estimate 

suitable parameters for the current environment after each iteration, so an adaptive compensation 

algorithm based on STKF is presented in this paper. Firstly, a simplified bias model is built to reduce 

the amount of calculation. Then the STKF is built on the basis of the simplified bias model, and the bias 

model parameters are set as state variables of STKF, so these parameters are estimated accurately under 

the support of a compass, and these parameters make the simplified model maintain high precision in 

the current environment. When the STKF is stopped for some reason, such as a fault or magnetic 

interference, the bias drift is also compensated accurately by the model and parameters. This algorithm 

is different from the other algorithms in that it can estimate the most appropriate parameters for the 

simplified model in the current environment. If the environment does not change too much, these 

parameters can maintain a high precision of bias estimation. The parameters change adaptively with the 

environment, thus, they have a strong adaptability to the changing environment, which makes the 

compensated gyroscope unaffected by the environment. 

The system configuration is introduced in Section 2. Section 3 provides a detailed description of the 

adaptive compensation algorithm. Section 4 presents the experimental results of this algorithm, and 

finally, the conclusion of this paper is presented in Section 5. 

2. System Configuration 

The system is integrated with a triaxial compass, three MEMS gyroscopes (ADXRS623), and a 

triaxial accelerometer. The triaxial compass is composed of a single-axis magnetoresistive sensor 

(HMC1021Z) and a dual-axis magnetoresistive sensor (HMC1022), which are used to measure the axial 

intensity of the magnetic field for every axis. The triaxial accelerometer is composed of a single-axis 

accelerometer (ADXL103) and a dual-axis accelerometer (ADXL203), which are used to measure the 
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axial intensity of the acceleration for every axis to calculate the attitude angle of the system. Then, the 

orientation of the compass can be calculated from the axial strength of the magnetic field, which is 

compensated by the attitude angle of the system [19]. The characteristics of these sensors are shown in 

Table 1. The orientation is calculated using the arctangent of the axial intensity of the magnetic field 

which is compensated by the axial intensity of the magnetic field on z-axis and attitude angles, so the 

error is not accumulated. Additionally, the impacts of temperature variation on the magnetoresistive 

sensors are at almost the same proportion, so the arctangent can mostly eliminate the impact from 

temperature variation. The orientation of the compass can be used to assist in the compensation of the 

MEMS gyroscope bias drift. 

Table 1. The characteristics of sensors. 

 ADXRS623 HMC1022/1021 ADXL103/203 

Measurement range ±150°/s ±6 gauss ±1.7 g 
Sensitivity 12.5 mv/°/s 1 mv/v/gauss 1000 mv/g 

Sensitivity change due to temperature ±3% −0.3%/°C ±0.3% 
Noise Density 0.04°/s/√hz 48 nv/√hz 110 μg/√hz rms 

3. The Adaptive Compensation Algorithm 

In this paper, we lump all slow-changing errors together, regardless of whether they are caused by 

physical phenomena or temperature sensitivity, and call them collectively ‘drift’. The system is always 

used in many types of environments, and the working temperatures are also different, thus, a temperature 

compensation model is quite necessary, and the errors caused by other error sources can be treated as 

constants in a short period of time. Therefore, a model of the MEMS gyroscope bias drift can be 

constructed as the model below, and an STKF is used to estimate the parameters of model. 

3.1. The Model of MEMS Gyroscope Drift  

The model of the uncompensated angular velocity of the MEMS gyroscope is: 

t dB nω ω= + +  (1)

where: 
ω —measurement of angular velocity.  

tω —true but unknown angular velocity. 

dB —slow-changing component of the signal; this is the gyroscope drift. 
n —stochastic component of the signal. 

In this paper, the precision of the gyroscope is impacted by dB  and n . We know that dB , as the  

slow-changing component, is mainly caused by physical phenomena and temperature variation, so a 

temperature-compensating model is needed, and errors caused by the other error sources can be treated 
as constant in a short period of time. The model of dB  can be constructed [20]. 

The slow-changing component of the gyroscope is not only related to the measured temperature of 

the MEMS gyroscope but is also related to the temperature gradient of the surroundings. Additionally, 
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the temperature gradient and the rate of temperature variation have a linear relationship; therefore, the 

slow-changing component of the MEMS gyroscope can be modeled as: 

 * * 'dB a T b T c= + +  (2)

where: 

T —measured temperature of the gyroscope. 

'T —rate of temperature variation. 

a, b, c—parameters of the model [21]. 

3.2. The STKF for Model Parameters  

The accurate estimated value of the slow-changing component of the MEMS gyroscope requires 

accurate values of a, b, and c in real time. Consequently, the STKF is modeled on the basis of  

Equation (2), and a, b, and c are all state variables of the STKF [22]. The STKF is as follows: 
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. As the initial values of 1ky + , 1y , 2y  and 

3y  is measured when the gyroscope is motionless in the beginning. 

1km + —measurement of the gyroscope drift at time k + 1. 

1 ( 1, ) /kk k km z A t+ += + Δ Δ  (4)

kz —estimated value of the gyroscope drift based on the parameters at time k. 

* * 'k k k k k kz a T b T c= + +
 (5)

( 1, )k kA +Δ – variation of the difference between the orientation of the compass and the orientation of the 

MEMS gyroscope from time k to time k + 1. 

( 1, ) ( 1) ( 1) ( ) ( )( _ _ ) ( _ _ )k k k k k kA A compass A Gyro A compass A Gyro+ + +Δ = − − −  (6)

where: ( 1)_ kA compass + , ( 1)_ kA Gyro + , ( )_ kA compass , ( )_ kA Gyro  are the orientations of compass and 

MEMS gyroscope at time k + 1 and time k respectively. 

tΔ —time interval from time k to time k + 1. 
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1kH + —measurement matrix of the STKF, which can be calculated by the measured temperature and 

the rate of temperature variation. 
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1H , 
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and 
3H  is measured when the gyroscope is motionless in the beginning. 

1kT + —measured temperature of the gyroscope at time k + 1. 

1'kT + —rate of temperature variation at time k + 1; for ease of use, it is simplified as: 

1 1' ( ) /k k kT T T t+ += − Δ . 

The parameters of bias drift model change with the environment, so if the environment doesn’t change 

too much, the parameters also don’t change sharply. Then we can make an assumption that the 
parameters are unchanged in short time, so the matrices ( 1, )k k+Φ  and ( 1, )k k+Γ  are all identity matrix. 

Because of the inaccuracy of the model and noise characteristics, the correction effect of the new 

measurements on the estimated value decreases with time, the correction effect of the early 

measurements increases, and the error of the estimated value of the traditional KF increases. Thus, the 

STKF is used to increase the weight of the new measurements to avoid the error of the estimated value 

increase with time. 

Increasing the variance of the measurement noise R and the initial value of the covariance matrix P0 

can decrease the influence from early measurements on the latest state variable; thus, the noise 

characteristics are necessary to be changed. 

The characteristics of the measurement noise are modified as: 
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where:  
N
kR —modified variance of the measurement noise at time k, which is used to calculate the state 

variable xN at time N. 

kR —original variance of measurement noise at time k. 

ˆNx —the estimation of state variables at time N, which recursively obtained from 1x̂  to 1ˆNx − , so the 

measured values y1 to yN are all useful to calculate the state variable ˆNx ; therefore, ˆNx  is a linear 

combination of the measured values, and 1
NR  to N

NR  are all useful in calculating ˆNx . If the 

characteristics of the measurement noise in Equation (7) are used, the longer the time interval span from 
time k to time N, the larger the value of N

kR  is, and the relevant gain matrix kK  becomes smaller. This 

means that the earlier time implies that the weight of measurement used for calculating ˆNx  is smaller; 

therefore, yk contributes less to ˆNx . 

The initial state characteristic is modified as: 
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The processing noise characteristic is modified as: 
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The noise characteristic of the traditional KF is replaced by Equations (7)–(9) to obtain the STKF: 
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Equation (10) shows that the difference between the STKF and the traditional KF is only the 
attenuation factor s. When s > 1, / 1k kP −  is greater than that of the traditional KF, and kK  becomes larger 

as well. Thus,  
/ 1(1 )k k kk k k kx K H x K y−= − +  shows that the influence from the old measurements on the 

estimated value is decreased, and the weight of the new measurement increases [23,24]. 

The above approach estimates the slow-changing component of the MEMS gyroscope accurately, 

and the parameters are unaltered in a short period of time; therefore the STKF is implemented at a certain 

frequency. A higher frequency will yield better results for the STKF, however, the noise of the compass 
causes errors in ( 1, )k kA +Δ  and also causes the measured value of the STKF to contain the error. If the 

frequency decreases, the time interval tΔ  of the STKF will increase, and the impact of the compass noise 

will be reduced as a result of 1 ( 1, ) /kk k ky z A t+ += + Δ Δ . Considering the two abovementioned aspects, the 

interval for STKF implementation is set every 10 s. Because the environment does not change 

significantly in 10 s, the parameters are not altered significantly in that time, which can guarantee 

accuracy. Also the long time interval reduces the amount of calculation. 

4. Experimental Results  

This section presents the results of the two temperature experiments. For ease of implementation, the 

first experiment was operated in the laboratory with a large change of temperature and in the second 

experiment, the system was installed on a vehicle to test its performance when the vehicle moved in an 

outdoor environment. 

4.1. The Static Experiment  

In the first experiment, the system is motionless during the entire process, and the temperature is 

increased from 23 °C to 58 °C at a non-uniform speed and then lowered to test the performance of this 

algorithm. The magnetic interference can be identified via the insensitivity of the MEMS gyroscope to 

magnetic interference; thus, the STKF is only carried out under the condition in which there is no 

magnetic interference. 

Figure 1 shows that when the gyroscope temperature increased from 23 °C to 58 °C and then lowered 

to ambient temperature, the motionless gyroscope bias drifted with temperature. The gyroscope signal 

changed rapidly when the temperature varied quickly. Thus, the error of the gyroscope accumulated 

rapidly if the bias was not compensated accurately. 
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Figure 1. Original data of motionless gyroscope. (a) Temperature variation;  

(b) Angular velocity. 

The blue line in Figure 2 is the uncompensated angular velocity of the motionless gyroscope, the red 

line is the estimation of the gyroscope bias, and the green line is the ideal bias. We can see that the bias 

estimation follows the ideal bias very well. 

 

Figure 2. Uncompensated angular velocity and the estimation of the bias of the gyroscope. 

In Figure 3, the blue line is the uncompensated angular velocity of the gyroscope, and the red line is 

the compensated the angular velocity. It can be seen that the compensated angular velocity of the 

gyroscope is not affected by the temperature. 
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Figure 3. Uncompensated and compensated angular velocity of the gyroscope. 

Figure 4 shows comparison of the heading error by using different algorithms in the entire process. 

The blue line is the heading error compensated by the adaptive algorithm, and the error is kept in the 

range from −0.6° to 0.4°. The red line shows the heading error compensated by Kalman Filter (KF), and 

the error is kept in the range from −1.5° to 0.5°. The green line is the heading error compensated by 

MLR. The parameters are calculated by the least squares method (called “LSM” for short) using data in 

the entire process. The heading error is much larger than the other methods, and the error is kept in the 

range from −12.5° to 15°. The black line is the heading error compensated by the modified LSM. It 

calculates the parameters every 10 s to make these three parameters change with environment and it 

almost overlaps with the blue line. 

 

Figure 4. Heading error of different algorithms without interference. 

The adaptive algorithm does not work all the time, for example magnetic interference in the 

surroundings may cause some errors in the system, so this algorithm does not run to estimate the 

parameters. To test the temperature compensation performance of different algorithms when the 

algorithms do not work for some reason, we make the algorithms not work in three time periods (300 s, 
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300 s and 600 s). The results are shown in Figure 5. The blue line is the heading error which is 

compensated by the adaptive algorithm, where it can be seen that the algorithm also compensates the 

drift accurately when it is in the outage, and the maximum error is just less than 1.8°. The red line is the 

heading error which is compensated by KF, where the heading error increases significantly during the 

KF outage. The green line is the heading error which is compensated by MLR. The black line is the 

heading error which is compensated by the modified LSM. It shows that the adaptive compensation 

algorithm has a much higher precision than these three algorithms, when the algorithms are in outages 

for some reason.  

 

Figure 5. Heading error of different algorithms with interference. 

On the basis of the experimental data, the Allan variance is used to analyse the performance of the 

algorithms, as shown in Figure 6. The blue line in Figure 6 indicates the Allan standard deviation of the 

uncompensated angular velocity error, and the red line indicates the Allan standard deviation of the 

angular velocity error which is compensated by the adaptive algorithm. The green line indicates the 

Allan standard deviation of the angular velocity error which is compensated by KF. The black line 

indicates the Allan standard deviation of the angular velocity error which is compensated by MLR. It 

can be seen that the rate random walk (RRW) and rate ramp (RR) are obviously decreased [25,26]. The 

comparison of these lines shows the adaptive algorithm and KF compensate the temperature drift 

significantly better than the MLR. If there is no magnetic interference, the KF and adaptive algorithm 

have a similar performance. This adaptive algorithm significantly decreases the influence from the 

temperature and makes the MEMS gyroscope much more accurate and stable. Figure 6 also shows that 

the noise, which was at approximately τ  = 10 s, is not significantly decreased, which is because the 

STKF is implemented every 10 s, this makes the parameters change every 10 s, and the errors caused  

by the noise of compass and gyroscope are also different every 10 s, therefore, this still needs  

further improvement.  
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Figure 6. Allan standard deviation of uncompensated and compensated angular  

velocity error. 

4.2. The Dynamic Experiment  

After the static experiment, we installed the system on a vehicle, and moved outdoors to test the 

dynamic performance. To reduce the influence from pitching and rolling angles, the vehicle ran on a flat 

road. A fiber-optic gyroscope (FOG) (XW-GS1800) was fixed together with the system as the 

benchmark for the orientation. Figure 7 shows the temperature of the MEMS gyroscope in the dynamic 

experiment. The gyroscope temperature was influenced by the surrounding temperature, and changed 

from 26 °C to 37 °C. 

 

Figure 7. Temperature variation in the entire process. 

The orientation in the entire process is shown in Figure 8. During most of the time, the vehicle moved 

around a rectangular area. The blue line is the compass orientation, the red line is the MEMS gyroscope 

orientation, and the green line is the FOG orientation. It can be seen that the MEMS gyroscope 

orientation followed FOG very well. The relative rotation angle of compass was not accurate, but when 

the system moved straight, and the heading error of the compass remained stable, so the adaptive 

algorithm only worked when the system moved straight. 
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Figure 8. Orientation in the entire process. 

The comparison of the results compensated by different algorithms is shown in Figure 9. The result 

of MLR is shown as a green line in Figure 9, and the heading error remains in the range from 15° to 

−13°. The KF improved the compensation precision to the range from 5° to −10°, and it is shown as a 

red line in Figure 9. The modified LSM didn’t compensate the bias very well, because the measurement 

error had a great influence on its precision, as shown as a black line in Figure 9. The compensation 

precision of the adaptive algorithm is better than the former algorithms. Its heading error is shown as the 

blue line, and it is kept in the range from 5° to −2°. 

 

Figure 9. Heading error of different algorithms in the entire process. 

These two experiments results demonstrate that this adaptive algorithm can compensate the 

temperature drift much more accurately than the KF, MLR and modified LSM. The adaptive algorithm 
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estimates the parameters of the drift model. If the algorithm did not work for some reason such as 

magnetic interference, the parameters which were appropriate for the current environment could also 

maintain the high accuracy for a short time. 

In Table 2, we compare the compensation results of the four methods in the experiment. In the static 

experiment, the compensation accuracy of MLR is not affected by interference. As shown in the table, 

the precision is improved to 0.002134°/s with the compensation by MLR. When there is no interference 

in the static experiment, the KF improved the compensation precision to −1.1496 × 10−4 °/s, while the 

modified LSM improved it to −2.4515 × 10−4 °/s, and the adaptive algorithm improved this precision to 

2.1619 × 10−5 °/s. When interference existed in the static experiment, the adaptive algorithm also 

performed better than the other three methods, and the compensation precision is 1.7511 × 10−4 °/s. In the 

dynamic experiment, we used the FOG as the orientation benchmark to test the performance of these 

four methods. The mean of the heading error which was compensated by MLR is 1.4882°. The 

performance of KF and modified LSM were not as good as MLR, and they are −1.9085° and −11.5318°, 

respectively. The adaptive algorithm improved this precision to 0.2743°, and the heading error 

compensated by the adaptive algorithm was much more stable than with the other methods. 

Table 2. Comparison of compensation results of the four methods. 

 MLR KF Modified LSM Adaptive Algorithm 

Bias drift error in 

static experiment 

without interference 

Mean (°/s) 0.002134 −1.1496 × 10−4 −2.4515 × 10−4 2.1619 × 10−5 

Variance 5.5005 × 10−4 7.5105 × 10−5 1.1416 × 10−4 6.7660 × 10−5 

Bias drift error in 

static experiment 

with interference 

Mean (°/s) 0.002134 0.003023 −2.0156 × 10−4 1.7511 × 10−4 

Variance 5.5005 × 10−4 3.4361 × 10−4 1.8643 × 10−4 9.3155 × 10−5 

Heading error in 

dynamic experiment 

Mean (°) 1.4882 −1.9085 −11.5318 0.2743 

Variance 46.9166 9.8503 34.7090 0.9926 

4.3. The Simulation of SF  

The scale factor (called “SF” for short) is as important as bias drift in actual use, so it must be 

compensated accurately. There still are some unsolved problems for us to adaptively compensate both 

SF and bias drift in actual use, so we just use the data which is collected under the conditions with stable 

temperature and magnetic field to reduce the influence from magnetic interference. This data is 

combined with the data of bias and temperature in the static experiment. Then we generated the data of 

SF base on the information of this gyroscope datasheet. The compensation methods for bias and SF are 

all the adaptive algorithm. We used the static data to compensate the bias drift, and used the rotational 

data to compensate SF. The temperature in the simulation is same as in the static experiment. 

The SF is shown in Figure 10. The blue line is the ideal SF, The green line is the estimation of SF 

which is calculated with fixed parameters. The red line is the adaptive estimation of SF. It can be seen 

that the adaptive estimation of SF follows the ideal SF very well. 
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Figure 10. The SF in simulation. 

The heading error in the entire process is shown in Figure 11. The blue line is the heading error 

without SF compensation. The green line is the heading error which is compensated by SF with fixed 

parameters. The red line is the heading error which is compensated by the adaptive estimation of SF. 

The reason of the heading error spikes during rotation is that the sample frequencies of the MEMS 

gyroscope and FOG are different. Thus, a heading error spike will occur if the system has a high 

rotational speed.  The adaptive algorithm estimated the suitable parameters of SF model, so that it could 

compensate the SF much more accurately than the fixed parameters methods. 

 

Figure 11. The heading error in simulation of SF. 

Figures 10 and 11 show that the SF has a great influence on the heading precision. The adaptive 

algorithm has a good performance in simulation, but before it is employed in actual use, there still are 

some problems that need to be solved, such as the fact the magnetic interference is difficult to  

identify during rotation, and the errors during rotation caused by SF errors or bias drift are difficult to  

identify too.  
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5. Conclusions 

In this paper, we propose an adaptive algorithm for a system integrated with MEMS gyroscopes and 

a compass to compensate the bias drift of the MEMS gyroscope accurately in different environments 

and eliminate the influence of temperature variation. This algorithm only works in an environment 

without magnetic interference; otherwise, magnetic interference will introduce errors into the system. 

The proposed algorithm performs much better than KF and MLR, because it uses an STKF to estimate 

the parameters of the bias model of the MEMS gyroscope with the support of the compass orientation, 

and it changes these parameters to adapt to the environment intelligently, and then estimates the bias 

accurately using the model and the parameters. The significant characteristic of this algorithm is that 

when the algorithm is in an outage for some reason, these appropriate parameters can also maintain high 

precision to compensate the temperature drift.  

This approach can be used easily, and the MEMS gyroscope does not need to calibrate its temperature 

model before use. As the state variables of the STKF, the parameters of the bias model change with the 

working environment. Thus, this algorithm has strong adaptability to different work environments and is 

easy to implement, so it is suitable for middle- or low-level inertial gyroscopes which always work under 

changing temperature conditions. 
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