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Abstract: The aim of this research was to validate a new procedure (SkanLab) for the  

three-dimensional estimation of total arm volume. SkanLab is based on a single  

structured-light Kinect sensor (Microsoft, Redmond, WA, USA) and on Skanect (Occipital, 

San Francisco, CA, USA) and MeshLab (Visual Computing Lab, Pisa, Italy) software. The 

volume of twelve plastic cylinders was measured using geometry, as the reference, water 

displacement and SkanLab techniques (two raters and repetitions). The right total arm 

volume of thirty adults was measured by water displacement (reference) and SkanLab (two 

raters and repetitions). The bias and limits of agreement (LOA) between techniques were 

determined using the Bland–Altman method. Intra- and inter-rater reliability was assessed 

using the intraclass correlation coefficient (ICC) and the standard error of measurement. 

The bias of SkanLab in measuring the cylinders volume was −21.9 mL (−5.7%) (LOA: 

−62.0 to 18.2 mL; −18.1% to 6.7%) and in measuring the volume of arms’ was −9.9 mL 

(−0.6%) (LOA: −49.6 to 29.8 mL; −2.6% to 1.4%). SkanLab’s intra- and inter-rater 

reliabilities were very high (ICC >0.99). In conclusion, SkanLab is a fast, safe and  

low-cost method for assessing total arm volume, with high levels of accuracy and 

reliability. SkanLab represents a promising tool in clinical applications. 
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1. Introduction 

The measurement of limb volume is widely employed for diagnosing and monitoring various clinical 

conditions. A common application is the diagnosis of breast cancer-related lymphedema, a condition 

occurring in about 20% of breast cancer survivors [1], that can seriously affect quality of life [2,3]. Other 

fields of interest concern prosthetics [4], biomechanics [5], sport physiology [6] and nutrition  

(regional body composition analysis [7]). 

The widely accepted “gold standard” for the estimation of limb volume in a laboratory context is the 

water displacement technique, based on the measurement of the amount of water displaced by the limb 

when immersed in a tank of water [8]. Although generally considered reliable and accurate, this method 

has inherent technical difficulties: it is time consuming; it requires active cooperation by the subject; and 

it is contraindicated in the case of wounds, abrasions or burns [8,9]. 

A commonly-used technique is the circumferential method [9]. Girth measurements are recorded at 

different levels of the limb, and the volume of each limb section, assumed to be shaped as a truncated 

cone or a cylinder, is calculated by means of geometric formulas. This anthropometric approach is 

inexpensive, easy to use and well correlated with water displacement [9–11]. Nevertheless, it is prone to 

errors linked to the poorly standardized procedure and to the technical error of measurement for 

anthropometry [12]. Another source of error derives from the morphological variability of the limb that 

cannot be accounted for by predictive formulas assuming regular shapes [13–15]. 

More recently, three-dimensional (3D) imaging techniques, such as laser scanning [16], the projection 

of structured light patterns [17] and infrared optoelectronic volumetry (Perometer [18]), have been 

proposed as highly reliable methods. The Perometer was initially validated against the circumferential 

method [15] and then using water displacement or DXA as references [18,19]. It uses a series of infrared 

light sources and sensors, in pairs, interfaced with software for the estimation of transversal limb sections 

and volume. The procedure is fast and safe, can be applied to patients with skin lesions [19] and has been 

suggested as a reference method [20]. However, the relatively high cost limits its application in  

medicine [9,21]. 

Low-cost range sensors represent a promising alternative. Firstly developed for virtual reality 

videogames, the Kinect sensor (Microsoft, Redmond, WA, USA) uses the projection of a structured light 

pattern for 3D data capture. It is able to track the position and orientation of a human body and can be 

used to estimate both whole and segmental body volume. Recent tests using this sensor have been 

conducted in order to measure anthropometric dimensions and body movement for use in various 

biomedical fields, such as ergonomics [22] and kinematics [23,24]. However, to the best of our 

knowledge, there are only a few studies focusing on the use of Kinect for the assessment of total [25] or 

segmental body volume [26,27]. 

The aim of this paper was to validate SkanLab, a new procedure designed on the principles of Kinect 

measurements for the estimation of upper extremity volume. With respect to the alternative Kinect 
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approach for assessing arm volume [27], SkanLab is based on a simpler and lower cost procedure. 

SkanLab is characterized by high spatial resolution, free available software, portability and  

non-invasiveness, hence representing a promising tool for clinical application. 

2. Materials and Methods 

The experimental protocol was designed to assess the accuracy and reliability of the newly 

proposed method by comparison with volumetric reference techniques (Table 1). Volumetric analyses 

were carried out on twelve inanimate objects (plastic cylinders) and a larger sample of human arms  

(30 subjects). 

Table 1. Methods and reference technique applied for volumetric estimations. 

Samples Methods No. of Raters No. of Replications by Each Rater No. of Measurements Reference Technique 

Cylinders 

(N = 12) 
Geometry SkanLab 

1 1 12 - 

2 2 48 Geometry 

Human Total Arms 

(N = 30) 

Water Displacement 

SkanLab 

2 2 120 - 

2 2 120 Water Displacement 

2.1. Samples 

2.1.1. Inanimate Objects 

Three plastic (polyvinyl chloride, PVC) cylinders (diameters: 40, 80 and 110 mm) were marked 

with plastic tape at different heights, resulting in twelve regularly-shaped objects with different 

volumes (25.5 mL to 2002.4 mL). 

The volume of the cylinders was geometrically determined using structured-light scanning as a 

reference method, with one rater and one replication for each object. The experimental model for 

measuring objects with SkanLab was two raters and two replications. For comparative purposes, object 

volumes were also measured with water displacement (two raters and two replications). 

2.1.2. Human Total Arms 

In vivo experimentation was performed considering a sample of thirty subjects (fifteen men and 

fifteen women, aged from 19 to 60 years), recruited from the university staff and students by 

convenience sampling. The study was approved by the ethical committee of Cagliari University 

Hospital (protocol number: PG/2014/21461). The sample size was comparable to that of similar 

validation studies [8,9,13,16,28]. In accordance with the Helsinki Declaration of 1964, as revised in 

2013, all volunteers were informed about the research protocol, and they consented to take part in the 

research. Exclusion criteria included: presence of upper extremity lesions, history of cardiovascular or 

metabolic diseases, cancer, inflammatory conditions and pregnancy. 

Anthropometric measurements (stature; body weight; acromion-olecranon distance, indicating total 

arm length) were taken by an experienced observer according to standard procedures [29]. 

Volumes were determined using SkanLab and water displacement as reference (two raters and two 

replications), because the scanner used to measure cylinders was not suitable for volunteers. 
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2.2. Techniques 

2.2.1. Geometric Volume Determination 

The volume of the cylinders was determined by a skilled operator using a structured-light scanner 

(HDI Advance R2-3D3 Solutions, Canada) with an accuracy of 65 µm and a precision of volume 

estimate equal to 0.001 cm3. 

2.2.2. Water Displacement Method 

A volumeter was assembled following indications detailed by Lette et al. [30]. The PVC water tank 

measured 90 × 14 cm, containing approximately 11 L water. Measurements were taken by filling the 

tank with deionized water to the level of the spout. Water temperature ranged between 20 °C and  

25 °C. Celsius at the time of each measurement. The cylinders to be measured were slowly immersed 

up to the level marked with plastic tape and the displaced water, overflowing through the spout, 

collected into a beaker. The collected water was then weighed using a laboratory digital scale  

(ML Systems, Italy; accuracy: 0.1 g) and the volume calculated from water density, after adjusting  

for temperature. 

An iron cylinder (height = 17.0 cm; diameter = 5.1 cm; volume = 351.2 mL) was used for verifying 

the accuracy and precision of the volumeter. Its mean volume, obtained by ten replicates with the 

volumeter, was 351.0 mL (CV% = 0.228). 

The volume of human total arms was calculated as the difference of total arm and hand volume, the 

latter being excluded because of its variable and irregular shape [31]. Using a dermographic pencil, the 

arm of each volunteer was marked normally to the arm axis at the level of the wrist crease distal to the 

styloid process (minimum wrist circumference) and up to 60% of the distance between the acromion of 

the shoulder and the olecranon of the ulna. Each volunteer placed their hand in the water up to the 

wrist mark and then to the arm mark. In each step, the displaced liquid was weighed. Prior to 

immersion, talcum powder was spread over the arm in order to promote a better view of the water 

level. A line was then drawn in correspondence to the immersion point. 

Each rater registered the duration of the measurement in seconds. 

2.2.3. The Newly Proposed Procedure 

The procedure assesses the total arm volume with the projection of structured light patterns on the 

sample surface and the subsequent image acquisition through electronic cameras. 

The hardware includes a stand and a rotating detection frame, both made of aluminum, the latter 

bearing two visible light LED sources and the Kinect sensor (Figure 1). The length and inclination of 

the instrument have been specifically designed for scanning the human arm. 
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Figure 1. The equipment developed for SkanLab. (a) Sensor unit; (b) visible light LED 

sources; (c) rotating detection frame; (d) manual drive wheel; (e) handle; (f) frame stop;  

(g) rod and balance weights; (h) mains and computer interface. 

The Kinect sensor was chosen for being a low-cost, mass-produced and readily available device, 

with similarly available application programming interfaces. The sensor comprises a source of 

structured radiation in the near-infrared spectrum and two electronic CMOS cameras: the RGB 

camera, which detects the visible light reflected by the points of the sample surface to represent its 

appearance (color and brightness), and the depth camera, which detects the reflected infrared radiation 

to estimate the distance. The images produced by the two cameras are processed with  

640 × 480 pixel resolution and integrated pixel by pixel in a 3D point cloud. Here, each point has the 

appearance given by the RGB camera and the distance from the sensor measured through the depth 

camera. The discriminatory capability of the depth camera is best between 0.6 and 1.8 m; beyond  

1.8 m, it decreases while increasing the distance of the sample surface. 

The sensor unit slowly rotates around the sample by means of two high precision bearings, 

capturing new point clouds at a frequency of thirty per second. These are collimated with the previous 

ones until the entire outer surface of the sample is closed. The LED light sources installed on the 

rotating arm ensure even illumination of the sample regardless of the angle of view, avoiding changes 

in appearance due to variations in ambient lighting conditions. In fact, as shown by our preliminary 

tests and the results of other studies [32], light conditions influence the measurement quality, with the 

worse performance (missing scan points) under sunlight. 

At the beginning of the measurement phase, the sensor unit is placed in its starting position.  

The subject sits on an adjustable stool, stretches his or her right arm and places his or her hand on the 

handle in order to keep the arm parallel to the rotation axis and to minimize involuntary movements 

(Figure 2). 
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Figure 2. Measurement phase with SkanLab. (a) Level marking the 60% of the distance 

between the acromion of the shoulder and the olecranon of the ulna; (b) level marking the 

wrist crease distal to the styloid process (minimum wrist circumference). 

In order to acquire the sample surface as a mesh, a free for non-commercial use software (Skanect 3D 

Scanning Software by Occipital, free Version 1.7, 2015) was interfaced with the Kinect sensor. This 

software is able to compensate for minor movements of the subject, and it was used to fill any small gaps 

in the mesh. Furthermore, it was used to superimpose the information on the position of the points that 

related to brightness and color. Subsequently, the free and open source MeshLab software, developed by 

the Visual Computing Lab, “Istituto di Scienza e Tecnologie dell’Informazione A. Faedo” of the 

National Research Council (ISTI–CNR) of Italy (Pisa, Italy) (Latest Version, V1.3.3, 2 April 2014) [33], 

was used to remove artefacts from the acquisition process, align all meshes with respect to a common 

Cartesian reference system, trim off the region of interest and measure its volume. 

2.3. Statistical Analysis 

Statistical analysis was performed to estimate the accuracy and reliability of the new procedure by 

comparison with geometry and water displacement (for inanimate objects and human arms, respectively). 

2.3.1. Accuracy 

In accordance with Bland and Altman [34,35], plots were drawn to analyze the consistency between 

the volumetric methods. Here, bias was defined as the mean difference between measurements 

obtained with the two techniques on the same object. The 95% limits of agreement  

(LOA = mean difference ± 1.96 standard deviation, SD) were calculated considering the effect of the 

replicated measurements. A plot for each comparison (inanimate objects: SkanLab vs. geometry; 

human total arms: SkanLab vs. water displacement) was derived. 

A positive bias indicates that SkanLab overestimates the value with respect to the reference. 

Further, in order to analyze a possible dimensional effect on accuracy, linear regression analysis was 

applied. The differences between volumes obtained with the reference technique and SkanLab were 

regressed on cylinder or total arm volume, evaluated by geometry or water displacement, and on BMI. 
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2.3.2. Reliability 

In accordance with Shrout and Fleiss [36], the intra-observer reliability for each rater and technique 

was estimated by the intraclass correlation coefficient (ICC), using the (2,1) model. The Currier [37] 

criteria were used to evaluate the ICC results: 0.90–0.99, high reliability; 0.80–0.89, good reliability; 

0.70–0.79, fair reliability; less than 0.69, poor reliability. The standard error of the measurement 

(SEM) was calculated as: SD√(1-ICC). 

Inter-observer reliability was measured by the ICC (2,2) model [36], considering the mean of the 

two measurements taken by each rater on each object. Inter-observer SEM was calculated using the 

average of the replicated measurements for each rater. 

2.3.3. Duration 

A Student’s t-test was applied to compare the mean duration of arm measurements for both water 

displacement and SkanLab techniques. 

3. Results 

3.1. Inanimate Objects 

3.1.1. Accuracy 

The bias of SkanLab was −21.9 mL (−5.7%) (LOA: −62.0 to 18.2 mL; −18.1% to 6.7%) (Figure 3), 

with slightly lower mean volumes with respect to those measured by geometry. The two raters showed 

similar results, with biases ranging between 21.7 mL and 22.2 mL (Table 2, Figure 3). 

The linear regression equation (y = −0.01 × (−6.02); R2 = 0.161) showed no significant relationships 

between the volume measured by geometry (x) and accuracy (y: volumes measured by geometry minus 

volumes measured by SkanLab). 

3.1.2. Reliability 

SkanLab showed very high levels of intra- and inter-rater reliability (Table 3). In fact, the intra- and 

inter-rater ICC values were near one, falling within the limits of high reliability [37]. The intra- and  

inter-rater SEM ranged between 5.82 mL and 5.84 mL. 

Table 2. Accuracy of SkanLab in measuring inanimate objects (cylinders; N = 12). 

 
Rater 1  

Absolute Relative 
Rater 2  

Absolute Relative 

Bias a −21.7 mL −5.7% −22.2 mL −5.7% 
LOA b −63.9 to 20.6 mL −17.9 to 6.6% −61.7 to 17.4 mL −19.4 to 8.0% 

a Mean difference between SkanLab and geometry and the other techniques (water displacement and SkanLab); 
b limits of agreement. 
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Table 3. Reliability of SkanLab in measuring inanimate objects (cylinders; N = 12). 

 
Rater 1  Rater 2  

Mean ± SD Mean ± SD 

Replicate 1 672.7 ± 597.0 mL 671.5 ± 594.7 mL 
Replicate 2 672.7 ± 593.1 mL 674.9 ± 599.6 mL 

Intra-rater SEM a 5.82 mL 5.84 mL 
Intra-rater ICC b 0.9999 (0.9997 to 1) 0.9999 (0.9997 to 1) 
Inter-rater SEM a 5.83 mL 
Inter-rater ICC b 0.9999 (0.9999 to 1) 

a Standard error of measurement; b intraclass correlation coefficient. 

Mean and standard deviation values refer to the measurements taken on the 12 cylinders described 

in Section 2.1.1. These parameters are intended to compare the precision of different raters and not to 

show the actual variability of the cylinders. 

 

Figure 3. Bias and limits of agreement between SkanLab and Geometry for inanimate 

objects. SD, standard deviation. 

3.2. Human Total Arms 

Table 4 shows the anthropometric characteristics of volunteers, separated by sex. Both men and 

women had a normal nutritional status, according to their mean BMI. 

Table 4. Anthropometric variables: descriptive statistics. 

Anthropometric Variable 
Women (N = 15)  

Mean ± SD 
Men (N = 15)  
Mean ± SD 

Height (cm) 157.9 ± 7.2 171.2 ± 7.1 
Weight (kg) 57.1 ± 12.5 69.6 ± 11.8 
BMI (kg/m2) 22.8 ± 3.6 23.7 ± 3.3 

Total Arm Length (cm) 34.2 ± 1.6 37.6 ± 1.9 
Upper Arm Circumference (cm) a 28.8 ± 4.2 30.9 ± 3.1 

a Evaluated at 60% of the distance between the acromion of the shoulder and the olecranon of the ulna. 
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3.2.1. Accuracy 

The bias of SkanLab with respect to water displacement was equal to −9.9 mL (−0.6%) (LOA:  

−49.6 mL to 29.8 mL; −2.6% to 1.4%), showing a slight tendency towards underestimation (Figure 4; 

Table 5). 

Table 5. Accuracy of SkanLab in measuring human arms (N = 30). 

 
Rater 1  

Absolute Relative 
Rater 2  

Absolute Relative 
Bias a −13.6 mL −0.8% −6.1 mL −0.4% 
LOA b −60.1 to 32.8 mL −3.3% to 1.7% −54.4 to 42.2 mL −2.8% to 2.0% 

a Mean difference between SkanLab and (water displacement); b limits of agreement. 

The linear regression equation (y = −0.01x + 29.15; R2 = 0.086) showed no significant relationships 

between total arm volume (x) and accuracy (y, volumes measured by water displacement minus 

volumes measured by SkanLab). 

On the contrary, the relationship between BMI (x) and accuracy (y, volumes measured by water 

displacement minus volumes measured by SkanLab) was highly significant (y = −2.55x + 69.19;  

R2 = 0.266; p = 0.004). 

3.2.2. Reliability 

As for inanimate objects, both SkanLab and water displacement showed high levels of intra- and 

inter-rater reliability (Table 6), with intra- and inter-rater ICC values falling within the limits of high 

reliability [37]. The intra- and inter-rater SEM of SkanLab and the water displacement technique was 

similar (Table 6). 

 

Figure 4. Bias and limits of agreement between SkanLab and Water displacement for 

human arms. SD, standard deviation. 
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Table 6. Reliability of water displacement and SkanLab in measuring human arms (N = 30). 

 
Water Displacement SkanLab 

Rater 1 Rater 2 Rater 1 Rater 2 

Mean ± SD (mL) Mean ± SD (mL) Mean ± SD (mL) Mean ± SD (mL) 

Replicate 1  1927.7 ± 491.9 1919.2 ± 489.9 1911.4 ± 495.4 1911.5 ± 501.8 
Replicate 2  1922.2 ± 495.7 1920.2 ± 497.4 1911.3 ± 496.1 1915.7 ± 501.7 

Intra-rater SEM a 9.79 12.95 15.54 16.50 

Intra-rater ICC b 
0.9996  

(0.9991 to 0.9998) 
0.9993  

(0.9986 to 0.9997)
0.9990  

(0.9978 to 0.9995) 
0.9989  

(0.9977 to 0.9995)
Inter-rater SEM a 6.92 8.56 
Inter-rater ICC b 0.9998 (0.9995 to 0.9999) 0.9997 (0.9994 to 0.9999) 

a Standard error of measurement; b intraclass correlation coefficient. 

3.2.3. Duration of Measurement 

The mean duration the volunteers were involved in the measurements for measuring volume was 

higher for the water displacement technique than for SkanLab, being respectively equal to 2′ and  

3″ ± 29″ and 42″ ± 11″ (p ≈ 0.000). 

The mean duration of data cleaning using MeshLab was equal to 8′ and 35″. 

4. Discussion 

Various methods can be used for determining arm volume: anthropometry, infrared  

technology [11], laser scanning and water displacement; the latter being considered the “gold 

standard” [38,39]. We have shown that SkanLab is a low-cost technique that is fast, reliable and 

accurate in measuring the volume of both inanimate objects and human arms when compared to the 

reference methods. In fact, the very low biases and narrow LOAs obtained in this study were similar or 

lower to the lowest values obtained with other methods (Table 7), while the intra- and inter-rater 

reliability was similar or higher and the measurement time shorter. 

In particular, when measuring inanimate objects with respect to the geometrically-determined 

volume (Table 7), the accuracy of SkanLab, in terms of bias and LOA, was slightly worse than the 

very high one shown by laser scanning [16] and slightly better than that shown by Perometer [18]. 

However, Man et al. [18] do not mention the limits of the agreement nor show the raw data, hence 

reducing the informative value of the observed bias. The comparison with the water displacement 

technique is difficult because of the wide range of biases (from 2.7 mL, obtained in this research, to 

120.7 mL). This variability is probably due to different rater expertise, instruments and experimental 

conditions. Moreover, the lack of information on LOA of some studies [18,30] does not allow a full 

interpretation of the results. 

To our knowledge, there are no statistical indices on reliability, such as ICC or SEM, to be 

compared with the excellent values obtained in this study with inanimate objects. However,  

Mc Kinnon et al. [16] found high reliability evaluated by the coefficient of reproducibility (19.0 mL) 

using laser scanning. 
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When measuring human arms, SkanLab showed a similar or higher accuracy than that observed for 

circumferential methods, Perometer and laser scanning (Table 7). In fact, circumferential methods 

showed very high LOA and relatively low biases [8,9,13]. Perometer showed low biases [18,19] and a 

narrow LOA [19]. An alternative method based on the Kinect sensor showed a higher  

bias [27]. Laser scanning, despite its high-cost and complexity, showed a higher bias and a wider  

LOA [16]. On the basis of the high degree of concordance between perometry and DXA, Santìn and 

Ward [19] have proposed that these two methods could be used interchangeably. 

SkanLab, as well as the other techniques, demonstrated very high levels of both intra- and  

inter-rater reliability, according to the Currier’s criteria [37]. In fact, ICC values for water 

displacement ranged between 0.94 [13] and 0.99 [8,9,40]; those for circumferential methods between 

0.96 [13] and 0.99 [8,9,40,41]; those for Perometer [28,40] or Kinect [27] were equal or higher than 

0.98. Furthermore, according to Mc Kinnon et al. [16], laser scanning showed a better reliability than 

water displacement, as measured by the coefficient of reproducibility (174 mL). 

Lastly, the time needed for data acquisition with SkanLab (42″, in mean) was short and only 

slightly longer to that needed using Perometer (5″; [18]) and shorter than that of water displacement  

(10′, [18]; 2′, present study). 

In comparison with the method recently proposed by Öhberg et al. [27], our procedure, based on a 

single mobile sensor instead of three fixed ones, appears more accurate, less expensive and easier to 

use. Its higher accuracy (−9.9 mL vs. 45.25 mL) is likely to be linked to the different methodological 

approach, which does not require calibration and uses all points of the three-dimensional mesh to 

compute the volume instead of limiting itself to 1 cm-wide limb segments. The higher usability and 

lower cost can be due to the simplified technical apparatus and to the adoption of free for  

non-commercial use and open source software. 

While the arm dimension was not significantly related to accuracy, regression analysis showed a 

significant effect of BMI, as previously observed by Öhberg et al. [27]. This suggests that a better 

accuracy can be achieved with normal weight or slightly overweight people, while the total arms of 

obese ones could be overestimated. 

In synthesis, SkanLab appears to be a promising technique for the measurement of total arm 

volume, combining similar accuracy and reliability of the reference methods, with the advantage of 

being faster, transportable, hygienic, completely safe and potentially low cost. 

SkanLab is a good candidate for use in clinical routines, also being appropriate in patients with skin 

lesions or mobility impairment. In particular, it could be useful for measuring lymphedema. In fact, the 

differences within the limits of agreement observed with SkanLab would not be clinically important, 

considering that the diagnostic threshold for breast-cancer lymphedema is commonly based on a  

200 mL (or 10%) volume difference between arms [42] and that an increase in arm volume between  

5% and 10% has been suggested as the threshold for intervention to prevent lymphedema  

progression [43]. Given its high accuracy in terms of bias (0.6%) and LOA (−2.6% to 1.4%), SkanLab 

can also account for changes in the latent-stage lymphedema, hence being useful for prevention and 

monitoring of early interventions. 
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Table 7. Summary of literature results on accuracy. 

Technique 

under Study 
Standard Bias a (mL) LOA b (mL or %) Sample Characteristics Reference 

Inanimate Objects (Cylinders) 

SkanLab Geometry −21.9 −62.0 to 18.2 Twelve cylinders  

(190 mL to 2002 mL) 
Present Study 

Water 

Displacement 
Geometry 

−2.7 −16.4 to 11.0 

−7.6c --- 
Eleven cylinders  

(10 mL to 4000 mL) 

Lette et al.,  

2006 [30] 

−120.7 −348.1 to 106.7 c 
Seven cylinders  

(272 mL to 2042 mL) 

Mc Kinnon et al., 

2007 [16] 

52 --- A cylindrical object (1568 mL) 

measured 10 times 

Man et al.,  

2004 [18] Perometer Geometry 34 --- 

Laser Scanning Geometry −0.4 −14.7 to 13.9 c 
Seven cylinders  

(272 mL to 2042 mL) 

Mc Kinnon et al., 

2007 [16] 

Human Arms 

SkanLab 
Water 

Displacement 
−9.9 −49.6 to 29.8 

Thirty healthy volunteers;  

right arm 
Present Study 

Circumferential 

Methods 

Water 

Displacement 

29.4 d −158.8 to 216.8 Forty-one breast cancer patients 

and 25 control subjects;  

right arm 

Taylor et al.,  

2006 [13] 75.4 e −110.2 to 260.2 

52 f −282 to 386 Twenty-five breast cancer 

patients; surgical upper 

extremity 

Megens et al.,  

2001 [8] 40 g −194 to 274 

--- 479; 655 h 
Fifty patients with 

lymphedema; edematous arm 

Sander et al.,  

2002 [9] 

Kinect 
Water 

Displacement 
45.3 −36.3 to 126.8 i 

Twenty-five patients with 

lymphedema; both arms 

Öhberg et al., 2014 

[27] 

Laser Scanning 
Water 

Displacement 
151.7 −227 to 53 l Ten volunteers; right arm 

Mc Kinnon et al., 

2007 [16] 

Perometer 
Water 

Displacement 
74.1 --- 

Thirty-one healthy volunteers; 

dominant arm 

Adriaenssens et al., 

2013 [28] 

Perometer DXAi 0.7% −7.7 to 6.3% 
Measurements were performed 

on both whole arms 

Santìn and Ward, 

2014 [19] 

a Negative values represent underestimates with respect to the standard technique; b limits of agreement;  
c calculated from raw data; d anatomic landmarks; e distance from fingertips; f single truncated cone;  
g summed truncated cone; h values representing the range of different cumulative LOA, the lower plus higher 

limit value; i confidence interval; l dual energy X-ray absorptiometry. 

A further application could be based on the combined use of total arm volume estimates and 

bioelectrical data. Some authors already consider bioelectrical-impedance spectroscopy (BIS), which is 

sensitive to the liquid volume of the upper extremity, and to extracellular water in particular, and 

appropriate for diagnosing changes in lymphatic volume [21]. An alternative approach could be based 

on the recently proposed vectorial bioimpedance analysis defined specific BIVA [44,45]. Specific 

BIVA, where bioelectrical values are corrected for body volume estimates, has been shown to produce 
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accurate evaluations of the relative proportion of body fat and extracellular/intracellular water ratio, 

both aspects being related to lymphedema progression [46]. 

5. Conclusions 

With respect to standard techniques, SkanLab proved to be a simpler, faster and safer procedure for 

assessing total arm volume, with very high levels of accuracy and reliability. The validated prototype 

can represent a basis for a low-cost instrument of wider use, suitable in various clinical applications. 

An automatization of the workflow through MeshLab scripts is planned in the future. Further 

validation is needed in clinical populations. 
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