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Abstract: In this paper, a novel feature extraction approach which can be referred to as 

moving window function capturing (MWFC) has been proposed to analyze signals of an 

electronic nose (E-nose) used for detecting types of infectious pathogens in rat wounds. 

Meanwhile, a quantum-behaved particle swarm optimization (QPSO) algorithm is 

implemented in conjunction with support vector machine (SVM) for realizing a 

synchronization optimization of the sensor array and SVM model parameters. The results 

prove the efficacy of the proposed method for E-nose feature extraction, which can lead to 

a higher classification accuracy rate compared to other established techniques. Meanwhile 

it is interesting to note that different classification results can be obtained by changing the 

types, widths or positions of windows. By selecting the optimum window function for the 

sensor response, the performance of an E-nose can be enhanced. 
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1. Introduction 

An electronic nose (E-nose) is a device composed of an array of gas sensors combined with a 

corresponding artificial intelligence algorithm. It is able to imitate the olfactory system of humans and 

mammals and is used for the recognition of gases and odors. Nowadays it plays a more and more 

important role in many fields, including odor analysis [1,2], product quality testing (such as food [3,4], 

tobacco [5], fermentation products [6], flavorings [7], etc.), disease diagnosis [8–10], environmental 

control [11,12], explosives detection [13], etc. 

Previous work has confirmed that it is feasible to use an E-nose to detect bacteria, including the 

investigation of volatile organic compounds (VOCs) from cultures and swabs taken from patients with 

infected wounds [14–16]. However, it is still a great challenge for us to extract features from the 

original signals of sensors to further improve the accuracy of the pattern recognition. Firstly, we can 

extract features from the original response curves of sensors, such as peak values, integrals, differences, 

primary derivatives, secondary derivatives, adsorption slopes, and maximum adsorption slope at a specific 

interval from the response curves [17]. Independent component analysis (ICA) [18–20] is a statistical 

method for transforming an observed multidimensional vector into components that are statistically as 

independent from each other as possible. In this way, it removes the redundancies of the original data. 

Orthogonal signal correction (OSC) [21–23] is a new and popular data processing technique, and its 

basic idea is to remove information in the input matrix which is orthogonal to the target matrix. 

Principal component analysis (PCA) [24,25] extracts the important information from the observations 

which are inter-correlated and expresses this information as a set of new orthogonal variables called 

principal components. Secondly, we can also extract features based on some transformations, such as 

Fourier transformation and wavelet transformation, and then the transformation coefficients are used as 

features. The fast Fourier transformation (FFT) [26] gives useful information for rotating components 

since well-defined frequency components are associated with them. Wavelet transformation [27] is an 

extension of FFT. It maps the signals into new space with basis functions quite localizable in time and 

frequency space. The wavelet transform decomposes the original response into the approximation (low 

frequencies) and details (high frequencies). It bears a good anti-interference ability for the following 

pattern recognition to use the wavelet coefficients of certain sub-bands as features.  

For E-nose pattern recognition, a number of classifier algorithms have been widely used such as 

back propagation neural network (BPNN) [28], radical basis function neural network (RBFNN) [29] 

and support vector machine (SVM) [30]-based methods. Heuristic and bio-inspired methods [31], in 

particular, such as genetic algorithms (GA) [32], simulated annealing algorithm (SAA) [33], particle 

swarm optimization (PSO) [34] and recently the quantum-behaved particle swarm algorithm  

(QPSO) [35] have been applied for feature selection, sensor array optimization, and classifier parameter 

selection. The QPSO algorithm has been investigated in detail and it has been proved that the QPSO 

algorithm is a form of contraction mapping that can converge to the global optimum [36,37]. Ordinary 

optimization methods, which we mention in this paper, can easily to fall into a local minimum point 

and the QPSO outperforms them in the rate of convergence and convergence ability for many 

applications. SVM is a new machine learning method introduced by Vapnik [38,39] based on the small 

sample statistical learning theory. It adopts the structural risk minimization (SRM) principle, and finds 

the best compromise between the learning ability and the complexity of the model to get the best 



Sensors 2015, 15 15200 

 

 

generalization ability according to the limited sample information. Because of its excellent learning, 

classification ability, high generalization capability and good ability of dealing with high 

dimensionality space, SVM has already been widely used with excellent performance in pattern 

recognition, function regression and density estimation problems in recent years. Ordinary classifiers 

based on empirical risk minimization principle, such as artificial neural networks, usually have the 

problem of over-fitting and are liable to fall into local minima. SVM can solve small-sample,  

non-linear and high dimension problems which use the structural risk minimization principle instead of 

empirical risk minimization. 

Previous methods for feature extraction do not include the steady-state and transient information of 

the entire response curve. Moreover, a features-based transform domain will miss the time domain 

information and cannot completely reflect the characteristics of the entire response process. Extraction 

of features only using the response signal itself of an electronic nose cannot reflect the interaction 

between the array signal and other specific functions, which can provide more interesting information. 

In this paper, a novel feature extraction approach which can be referred to as moving window function 

capturing (MWFC) is introduced to enhance the performance of E-noses. In the rest of this paper, we 

will firstly introduce the sampling experiments in Section 2; then the whole methodology of MWFC 

with the QPSO based synchronization optimization of sensor array and SVM model parameters will be 

described in Section 3; the results and discussion will be shown in Section 4; finally we will draw our 

conclusions in Section 5. 

2. Sampling Experiments 

2.1. Material and Gas Sensor Array 

Twenty SD (Sprague-Dawley) male rats, 6–8 weeks old and 225–250 g weight, were provided by 

the Experimental Animal Center of Daping Hospital, Third Military Medical University. All rats were 

randomly divided into four groups (five animals in each), including one control group and three groups 

infected by Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, respectively. 

After the rats were anaesthesized, a small incision (about 1 cm long) was made in the hind leg in each 

rat. Then 100 μL of bacterial solution (109 CFU/mL, Pseudomonas aeruginosa, Escherichia coli, or 

Staphylococcus aureus) was added into the wound described above in the respective infection group. 

Meanwhile, the same volume of physiological saline (0.9% NaCl solution) was added in the control 

group. The rats were used for the further experiment after 72 h. All experiments were approved by the 

Animal Care and Ethics Committee of Third Military Medical University. 

The metabolites in the reproduction process of the three pathogens are shown in Table 1. According 

to the pathogen metabolites in Table 1 and the sensitive characteristics of gas sensors, fourteen metal 

oxide sensors and one electrochemical sensor are selected to construct the sensor array (shown in 

Figure 1). They are nine TGS sensors (TGS2600, TGS2602, TGS2620, TGS800, TGS822, TGS825, 

TGS826, TGS813, TGS816) from Figaro Engineering Inc. (Tianjin, China), one WSP-2111 XSC 

sensor from New Creators Electronic Technology Co. Ltd. (Shenzhen, China), two MQ sensors 

(MQ135, MQ138) from Winsen Electronics Technology Co. Ltd. (Zhengzhou, China), one QS-01 
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sensor from Bluemoon Technology Co. Ltd. (Shenzhen, China), one SP3S-AQ2 FIS sensor from FIS 

Inc. (Itami, Japan), and one AQ electrochemical sensor from Dart Sensors Ltd. (Exeter, UK).  

Table 1. Pathogens in wound infection and their metabolites. 

Pathogens Metabolites 

Pseudomonas aeruginosa 

Pyruvate, 2-nonanone, 2-undecanone, toluene, 1-undecene,  
2-aminoacetophenone, esters, dimethyl disulfide, 2-heptanone, methyl 
ketones, dimethyl trisulfide, butanol, 2-butanone, sulphur compounds, 
isopentanol, isobutanol, isopentyl acetate 

Escherichia coli 

Ethanol, decanol, dodecanol, methanethiol 1-propanol,indole, methyl 
ketones, lactic acid, succinic acid, formic acid, butanediol, dimethyl 
disulfide, octanol, dimethyl trisulfide, acetaldehyde, hydrogen sulfide, 
formaldehyde, acetic acid, aminoacetophenone, pentanols 

Staphylococcus saureus 
Isobutanol, isopentyl acetate, ethanol, ammonia, 1-undecene, methyl 
ketones, 2-methylamine, 2,5-dimethylpyrazine, isoamylamine, 
trimethylamine, formaldehyde isopentanol, aminoacetophenone, acetic acid 

 

Figure 1. Sensor array.  

 

Figure 2. Schematic diagram of the experimental system. 

The sensitive characteristics of the sensors used are listed in Table 2. All sensors are placed in a 240 mL 

stainless steel chamber which is coated with Teflon to avoid the attachment of VOCs. The schematic 
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diagram of the experimental system is shown in Figure 2. A three-way valve is used to change the gas 

circuit to let the desired gas flow into the chamber. The flow velocity of gas is controlled by a flow 

meter and its value is set as 80 mL/min. A data acquisition system (DAS) is employed for the sensor 

signal sampling and its sample frequency is set as 10 Hz. The response of sensors is firstly processed 

by the conditioning circuit and then sampled and saved in a computer via the DAS. 

Table 2. Response characteristics of gas sensors. 

Sensors Response Characteristics 

TGS800 Methane, carbon monoxide, isobutane, hydrogen, ethanol 

TGS813 Methane, propane, ethanol, isobutane, hydrogen, carbon monoxide 

TGS816 Combustible gases, methane, propane, butane, carbon monoxide, hydrogen, ethanol, isobutane 

TGS822 Organic solvent vapors, methane, carbon monoxide, isobutane, n-hexane, benzene, ethanol, acetone 

TGS825 Hydrogen sulfide 

TGS826 Ammonia, ethanol, isobutane, hydrogen 

TGS2600 Gaseous air contaminants, methane, carbon monoxide, isobutane, ethanol, hydrogen 

TGS2602 VOCs, odorous gases, ammonia, hydrogen sulfide, toluene, ethanol 

TGS2620 
Vapors of organic solvents, combustible gases, methane, carbon monoxide, isobutane, hydrogen, 
ethanol 

WSP2111 Benzene, toluene, ethanol, hydrogen, formaldehyde, acetone 

MQ135 Ammonia, benzene series material, acetone, carbon monoxide, ethanol, smoke 

MQ138 Alcohols, aldehydes, ketones, aromatics 

QS-01 VOCs, hydrogen, carbon monoxide, methane, isobutane, ethanol, ammonia 

SP3S-AQ2 VOCs, methane, isobutane, carbon monoxide, hydrogen, ethanol 

AQ 
Carbon monoxide, methanol, ethanol, isopropanol, formaldehyde, acetaldehyde, sulfur dioxide, 
hydrogen, hydrogen sulfide, phenol, dimethyl ether, ethylene 

2.2. Data Collection 

Each rat is placed in a jar with a volume of 2.8 L equipped with a rubber stopper. Two holes are 

made in the rubber stopper where two thin glass tubes were nserted, respectively. One glass tube is 

fixed above the wound as close as possible. The output gases of the tube which contains VOCs of the 

rat wound flow out of the bottle through the glass tube, and then flow into the test chamber through a 

Teflon tube. Clean air flows into the bottle through another glass tube. The dynamic headspace method 

is adopted during all the experiments, and the process is as follows: the first stage is the baseline stage, 

in which the sensors are exposed to clean air for three minutes. The second stage is the response stage, 

which the gas stream containing VOCs of the wound passes over the sensors for five minutes. The 

third stage is the recovery stage: the sensors are exposed to clean air again for fifteen minutes. At the 

end of each experiment, prior to the next experiment, a five minutes purging of the sensor chamber 

using clean air is performed. The gas flow is controlled by a gas flow rate control system, which 

contains a rotor flow meter, a pressure retaining valve, a steady flow valve and a needle valve.  

The flow rate is kept at 80 mL/min. Twenty experiments for each kind of rats in the same conditions 

are made, and so 80 samples are collected. The sensor response curves for one wound infected with  

P. aeruginosa are shown in Figure 3. 
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Figure 3. Response of E-nose to a wound infected with P. aeruginosa. 

3. Methodology 

3.1. Moving Window Function Capturing 

In this work, a window is placed to different stage of the whole response and then the area values of 

two curves surrounded can be obtained by Newton-Cotes as follows: 

(n)

0

(x)dx (b ) (x )
nb

i ia
i

f a C f
=

≈ −   (1)

where (x)f  is integrand, [a, b]  is integral interval and (n)
iC  is Cotes coefficient. When n 4= , 

4 4 4 4 4
0 1 2 3 4

7 16 2 16 7
C ,C ,C ,C ,C

90 45 15 45 90
= = = = =  and then Equation (1) is: 

0 1 2 3 4(x) [7 (x ) 32 (x ) 12 (x ) 32 (x ) 7 (x )]
90

b

a

b a
f f f f f f

−≈ + + + +  (2)

Then we can choose the value of the area surrounded by two curves as extracted features and refer 

to this method as window function capturing (WFC). The schematic diagram of the feature extraction 

approach using WFC is shown in Figure 4. The advantage of WFC is that it can be employed as a filter 

to capture information from the time domain rather than spectral representations. There are several 

kinds of common window functions, as shown in Table 3, and the performance of the E-nose will be 

changed by changing the width, position, shape of the window. In addition, we make the window 

move along with the time axis and simultaneously choose the area values of two curves during the 
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moving process as features, which is referred to as moving window function capturing (MWFC). We 

place a 64 points window around the peak value and then make the window move 64 points to the left 

and right along with the time axis, respectively. Thus three area values surrounded by two curves can 

be obtained during the moving process and we can choose the three area values as features 

simultaneously. The schematic diagram of this method referred as MWFC is shown in Figure 5. 

 

Figure 4. The schematic diagram of WFC technique. 

 

Figure 5. The schematic diagram of MWFC. 
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Table 3. Several kinds of common window functions. 

Window Equation (N is the Width of the Window) 

Triang 
, 0,1,2,..., / 2

(N/ 2)(n)

(N n),n / 2,..., 1

n
n N

W

W N N

 == 
 − = −

 

Blackman 
1 1

(n) 0.42 0.5cos(2 ) 0.08cos(4 ),n 0,1,2,..., N 1
1 1

n n
W

N N

− −= − π + π = −
− −

 

Hamming 
2

(n) 0.54 0.46cos( ),n 0,1,2,..., N 1
n

W
N

π= − = −  

Hanning 
2

(n) 0.5 0.5cos( ),n 0,1,2,..., N 1
n

W
N

π= − = −  

Boxcar 
1,0 1

(n)
0,

n N
W

else

≤ ≤ −
= 


 

Gaussian 
21 2

[3( )]
2 1(n) ,n 0,1,2,..., N 1

n

NW e
−

−= = −  

3.2. SVM 

SVM is a new machine learning method introduced by Vapnik based on the small sample statistical 

learning theory [18,19]. Because of its high generalization capability and good ability to deal with high 

dimensionality space, SVM has already been widely used in pattern recognition, function regression 

and density estimation problems in recent years, with excellent performance. 
The basic theory of SVM is to map the n-dimensional input vectors into K-dimensional feature 

space usually of K > n using a non-linear transformation ( )xϕ  and then construct the optimal 

separating hyper-plane in the feature space: 

1 , 1

1

1
maxmise ( ) ( )

2

subject  to              0, 0, 1,...,

x x
l l

i i j i j i j
i i j

l

i i i
i

W y y

y i l

α
= =

=

             α = α − α α ⋅

α =     α ≥ =

 


 (3)

From Karush-Kuhn-Tucker complementarity condition, iα  are not equal to zero only for the points 

nearest to the hyper-plane and iα corresponding to other points are zero. These points with non-zero 

iα  are called support vectors because the hyper-plane is decided only by them, while the other points with 

0iα =  are irrelevant. The discriminant function of classifying new points x  is given by Equation (4): 

( )
1

( )x w x x x
l

i i i
i

f b y b
=

= ⋅ + = α ⋅ ⋅ +  (4)

If the data vector x  fulfils the condition ( ) 0xf > , it will be classified into one class and when 

( ) 0xf <  it will be in the opposite class. If the original data are non-linearly separable and more 

complex separating surfaces are need, the non-linear SVM first maps the input data into a higher 

dimensional space called feature space by using a non-linear transformation ϕ , where the previous 

criterion can be implemented. Instead of calculating the inner products between the transformed data in 

the feature space, the inner products can still be measured in the original space with the introduction of 
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the kernel function. Calculate the optimization problem in the feature space defined by kernel function 

implicitly, and Eqution (5) is transformed into: 

1 , 1

1

1
maxmize ( ) K( )

2

subject  to       0, 0 , 1,...,

x x
l l

i i j i j i j
i i j

l

i i i
i

W y y

y C i l

α
= =

=

       α = α − α α ⋅

α =     ≤ α ≤ =

 


 (5)

where K( , ) ( ) ( )x x x xi j i j= ϕ ⋅ϕ  is a kernel function which allows the inner products in feature space to 

be calculated directly in original space, without performing the mapping. The constant C, which can be 

regarded as regularization constant, is a positive number and determines the balance between accuracy 

on the training set and margin width. Increasing C leads to the more complex model structure and 

giving more importance to the errors on the training set in determining the optimal hyper-plane; 

decreasing C means smaller significance of the learning errors and simpler model structure with larger 

separation margin. Then we can construct optimal separating hyper-plane 
1

K( , )x x
l

i i ii
y y b

=
= α +  in 

feature space.  

3.3. QPSO 

Particle swam optimization (PSO) is a population-based swam intelligence algorithm that has 

attracted widespread interest from a large number of researchers. As a branch of PSO, quantum-behaved 

particle swarm optimization (QPSO), which was inspired by the thought of quantum mechanics and 

traditional PSO, shines for its simplicity, easy implementation, and fine search ability. 
In the standard PSO model, with M particles in D-dimensional problem space, the position for 

particle i at iteration t can be represented as 1 2( , ,..., ) , 1, 2,...,t t t T
i i i iDX x x x i M= = , the velocity for particle 

i at iteration t can be described as 1 2( , ,..., ) , 1, 2,...,t t t T
i i i iDV v v v i M= = . By calculating the values of 

fitness function of M particles, the local optimal position (the position giving the best fitness value) of 

particle i at iteration t is recorded and represented as 1 2( , ,..., )t t t t T
i i i iDpbest p p p= . The global best 

position in the population at iteration t is represented as 1 2( , ,... )t t t t T
g g g gDgbest p p p= , where g  is the 

index of the best particle among all the particles in the population. The velocity and position of particle 

i at iteration t + 1are update by the following equations: 

1
1 1 2 2( ) ( ), 1, 2,...,t t t t t t

id id id id id idv v c r pbest x c r gbest x d D+ = ω + − + − =  (6)

1 1, 1, 2,...,t t t
id id idx x v d D+ += + =  (7)

where I = 1, 2,…, M, c1 and c2 are learning factors, in general, c1 = c2 = 2 , r1 and r2 are random 

numbers uniformly distributed in [0,1], and ω  is inertia weight which balances and reconciles the 

global and local searching capability. 

QPSO was inspired by analysis of the convergence of the traditional PSO and quantum systems. In 

QPSO, we hypothesize that each particle is in a quantum state and is formulated by its wave function 
( , )X tψ  instead the position and velocity which are used in PSO. The probability density of a 

particle’s appearance in a certain position can be obtained from 
2

( , )X tψ , and then the probability 
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distribution function can be obtained. For the probability distribution function, through Monte Carlo 

stochastic simulation method, the particle’s position is updated according to the following equation: 

1 1
ln( ), (0,1)t t t t

id id id idx p mbest x u rand
u

+ = ± α × =-  (8)

(1 ) , (0,1)t t t
id id idp pbest gbest rand= φ× + − φ × φ =  (9)

where α  is the parameter of the QPSO algorithm, called contraction-expansion coefficient. We set the 

parameters as 0.5 0.5 ( ) /loopcount currentcount loopcountα = + × −  and t
idp  is a local attractor, 

t
idmbest  is the average optimal position of all the particles and defined as:

 
 

1 2
1 1 1 1

1 1 1 1
( , ,..., ,)

M M M M
t
i i i i id

i i i i

mbest P P P P
M M M M= = = =

= =∑ ∑ ∑ ∑  (10)

Here, QPSO is implemented in conjunction with SVM for the classification of four different types 

of pathogens of rats wound infection, the flow chart of the optimization process is shown as Figure 6.  

 

Figure 6. Flow chart of the optimization process. 

3.4. Comparing Methods 

To prove the efficiency of MWFC, we compare the accuracy rate between this method and some 

other feature extraction techniques combined with QPSO-SVM, such as peak value, rising slope, 

descending slope, FFT, DWT and WFC. Brief descriptions of these feature extraction methods are 

given in Table 4. 
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Table 4. Brief description of the parameters extracted from the sensor response. 

Method Description 

Peak value Max value of sensor response max
iψ  

Rising slope 

max

1

i
R

Baseline
S

T

ψ −
= ,  

T1 is the time from the beginning of the adsorption stage to peak value. 

Descending 

slope 

max

2

i
F

Baseline
S

T

ψ −
= ,  

T2 is the time from peak value to the end of the desorption stage. 

FFT Coefficients of the DC component and first order harmonic component 

DWT 
Approximation coefficients 

Wavelet function is db5 wavelets and decomposition level 13. 

WFC The area value of sensor response curve and window curve surrounded 

MWFC 
The three area values of sensor response curve and window curve 

surrounded during the window moving process 

4. Results 

The window function of 64 time-points is placed at four different positions which response time are 

180 s (the end of baseline stage), 330 s (the middle of response stage), 480 s (the end of response 

stage) and 930 s (the middle of the recovery stage), respectively, and four area values are extracted as 

different features. Table 5 shows the classification accuracy rate of six different windows placed at 

four different positions, respectively. It is observed that the type and position of the window function 

will both influence the classification. Compared with other positions, 480 s is a more suitable position 

relatively, where the Triang window, Blackman window, Hamming window, Hanning window, 

Boxcar window and Gaussian window can achieve classification accuracies of 95.0%, 92.5%, 92.5%, 

92.5%, 90.0% and 95.0% , which are higher than the other positions.  

Table 5. Classification accuracy (%) of four positions based on different windows. 

Windows 
Positions 

180 s 330 s 480 s 930 s 

Triang 85.0 90.0 95.0 90.0 
Blackman 82.5 90.0 92.5 87.5 
Hamming 85.0 87.5 92.5 90.0 
Hanning 85.0 90.0 92.5 90.0 
Boxcar 80.0 90.0 90.0 87.5 

Gaussian 85.0 92.5 95.0 87.5 

Table 6 shows the classification accuracy of different windows placed at the 480 s position with 

different widths. It is interesting to note that the classification accuracy rate will be different as the 

width of the window is changing. It is observed that the width of 64-points is a relatively more suitable 

width compared to the other widths, whereby the Boxcar window obtains a classification of 90.0%, the 
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Blackman window, Hamming window and Hanning window obtain classification rates of 92.5%, and 

the Triang window and Gaussian window can obtain a classification rate of 95%. 

Table 6. Classification accuracy (%) of different windows shaped different widths. 

Windows 
Widths 

32-points 64-points 128-points 256-points 512-points 1024-points

Triang 92.5 95.0 92.5 92.5 90.0 90.0 
Blackman 87.5 92.5 92.5 90.0 90.0 87.5 
Hamming 90.0 92.5 90.0 90.0 87.5 85.0 
Hanning 90.0 92.5 92.5 90.0 90.0 87.5 
Boxcar 87.5 90.0 90.0 87.5 87.5 85.0 

Gaussian 90.0 95.0 92.5 92.5 92.5 90.0 

From Table 5, it can be observed that 480 s is relatively a more suitable position compared with 

other positions. This means that the surrounding range of peak values contains much more key 

information to improve the classification accuracy. The positions where each sensor obtains its peak 

value are different, which is shown in Figure 7. Moreover, we take the width of window into 

consideration and find that the width of 64-points is relatively a more suitable width compared to the 

other widths shown in Table 6.  

 

Figure 7. The positions where each sensor obtains the peak value. 

The importance of the 15 sensors is shown in Figure 8, where the corresponding optimal 

normalizing importance factors, that is the weighting coefficients of sensors, are [0.7445, 0.1032, 0.1144, 

0.0180, 0.0816, 0.2771, 0.0668, 0.0224, 0.9095, 0.0299, 0.0539, 1.0000, 0.0279, 0.5109, 0.0646]. 
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Figure 8. Optimal importance factors with QPSO for 15 sensors. 

Table 7 shows the classification accuracy of MWFC with SVM and RBFNN. It is observed that the 

classification accuracy with SVM is higher than RBFNN and the classification accuracy with sensor 

optimization is higher than without sensor optimization. From Table 7 we can see that the QPSO-SVM 

method combined with weighting sensor array by importance factors obtains a 97.5% classification 

rate with the Triang window, 95.0% classification rate with the Blackman window, 95.0% 

classification rate with the Hamming window, 97.5% classification rate with the Hanning window, 

95.0% classification rate with the Boxcar window, 97.5% classification rate with the Gaussian window.  

Table 7. Classification accuracy (%) of MWFC with SVM and RBF. 

Methods 
Types 

Triang Blackman Hamming Hanning Boxcar Gaussian

RBF-MWFC a 87.5 85.0 90.0 85.0 85.0 90.0 
QPSO-RBF-MWFC b 92.5 87.5 92.5 90.0 87.5 90.0 

SVM-MWFC a 92.5 90.0 92.5 92.5 92.5 92.5 
QPSO-SVM-MWFC b 97.5 95.0 95.0 97.5 95.0 97.5 

a means without sensor optimization and b with sensor optimization. 

Table 8 lists the results of accuracy comparison of various feature extraction techniques. It is 

observed that the peak value method obtains an accuracy rate of 87.5%, the same as that of the rising 

slope, and is better than that of descending slope, which is only 85.0%. FFT and DWT achieve 

classification accuracies of 90.0% and 92.5%, and the SVM-WFC method which uses QPSO to 

optimize SVM parameters and the weights of each gas sensor can achieve an accuracy rate of 95.0%. 

It is interesting to note that the performance of the E-nose can be improved further when choosing the 

method of SVM-MWFC, which can achieve an accuracy rate of 97.5%. 
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Table 8. Accuracy comparison of various feature extraction techniques (%). 

Feature Extraction Accuracy Rate 

Peak value 87.5 
Rising slope 87.5 

Descending slope 85 
FFT 90.0 

DWT 92.5 
WFC 95.0 

MWFC 97.5 

To demonstrate the generalization to other datasets of the proposed approach, we use the feature 

extraction method of MWFC to deal with another two experimental E-nose datasets: (1) MWFC has 

been applied to deal with the data of an E-nose which detects five odors: nonane, 2-propyl alcohol, 

heptanal, 1-phenylethanone, and isopropyl myristate, and the classification results are shown in  

Table 9. More details about the sample preparation experiments can be found in [40]; (2) MWFC has 

also been applied to deal with the data of an E-nose which detects six indoor air contaminants 

including formaldehyde (HCHO), benzene (C6H6), toluene (C7H8), carbon monoxide (CO), ammonia 

(NH3) and nitrogen dioxide (NO2) and classification results are also shown in Table 9. More details 

about the sample preparation experiments can be found in [41].  

Table 9. Accuracy of various feature extraction techniques for other datasets (%). 

Feature Extraction 
Accuracy Rate 

Dataset in [40] Dataset in [41] 

Peak value 85.33 82.11 
Rising slope 88.00 80.49 

Descending slope 82.67 81.30 
FFT 89.33 83.74 

DWT 90.67 86.17 
WFC 92.00 89.43 

MWFC 93.33 91.06 

From Table 9, MWFC also achieves better classification results of than the compared feature 

extraction methods. This shows the generalized performance of the feature extraction method of 

MWFC with other datasets. The efficacy of this approach does not depend on a particular dataset.  

5. Discussion 

We use one-way analysis of variance (ANOVA) to test whether the feature extraction methods have 

a significant influence on the classification accuracy rate and then the test results can be obtained by 

SPSS as shown as Table 10. A one-sample Kolmogorov-Smirnov test confirms that the distributions of 

each feature extracted follow normal (or Gaussian) distributions. It can be found that the value of the 

F  statistic is 553.976, which is significantly greater than 1 and the significance value is 0. Given the 

level of significance  = 0.05α , we can reject the null hypothesis and conclude that there is a significant 

difference of accuracy rates under different feature extraction methods. 
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Table 10. ANOVA Results. 

 Sum of Squares df Mean Square F Significant 

Between Groups 4.1817 6 0.6969 553.976 0 
Within Groups 0.3434 273 0.0013   

Total 4.5251 279    

To visualize the efficacy of the proposed method, PCA is applied for the peak value, WFC and 

MWFC features and the PCA score plots are shown from Figure 9, respectively. The higher degree of 

overlaps of four kinds of samples can be observed in Figure 9a and the distribution of four kinds of 

samples is relatively dispersive in Figure 9b, whereas, in Figure 9c, the cluster of four kind of samples 

are overlapping little and can be more easily distinguished. In a word, the performance of classification 

with the MWFC method is better than the others. 

From the results shown above, the MWFC method can obtain a better accuracy rate for 

classification of different E-nose data than the compared methods. Peak value, which only represents 

the final steady-state feature of the entire dynamic response process in its final balance, reflects the 

maximum reaction degree change of sensors responding to odors. However, it misses all the transient 

response information of the reaction kinetics process and cannot describe the process well. Rising 

slope and descending slope also have specific physical meanings and represent the rate of the reaction 

of sensors responding to odors in the response and recovery stages, respectively. Although the rate of 

reaction of the sensors reflects the transient information in different stages, it only describes the 

reaction kinetics at one aspect. For the above features, it is difficult to distinguish tiny differences 

between response curves of different odors. They are not like the MWFC method which represents the 

cumulative total of the reaction degree change, accumulates these tiny differences in a specific way 

and makes these differences more significant. Moreover, these features only use the response signal 

itself and cannot reflect the interaction between the array signals to other specific functions, which can 

provide more interesting information. The widely used FFT, for which the basis functions are sine and 

cosine, maps the original data into a new space. It decomposes the original response into the 

superposition of the dc component and different harmonic components, and the feature characterized 

by amplitude of each component can be used for qualitative and quantitative analysis. However, FFT 

transforms the original signals from the time domain to the frequency domain and extracts features in 

the frequency domain. It misses the information in the time domain and cannot completely reflect the 

characteristics of the entire response process. Moreover, although extracting the coefficients of the dc 

component and first order harmonic component as features contains a large proportion of information 

of the original response curve, it misses the information in the higher harmonic components. Wavelet 

transform is an extension of the Fourier transform. It maps the signals into a new space with basis 

functions quite localizable in time and frequency space. DWT decomposes the original response into 

the approximation (low frequencies) and details (high frequencies). It bears good anti-interference 

ability for the followed pattern recognition to use the wavelet coefficients of certain sub-bands as 

features, so it obtains better result than the former features.  
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Figure 9. PCA score plot of different features.  

However, extracting the approximation coefficients as features, which reflects the low frequencies 

information, misses the details, which reflect the high frequencies information, though the low 

frequencies signal contain much more information. What is more, there are many parameters of DWT 

to set, which have an effect on the decomposition results, and it is difficult to determine an optimal 

parameters set. WFC chooses the area surrounded by a window function curve and the original 

response curve as an extracted feature. Because the WFC method only places the window at the 

position of the peak value and extracts one area value as feature, it only reflects the information around 
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the steady-state response of the entire dynamic response process in its final balance, which is the most 

important information to distinguish different types and concentrations of gases. It does not take a 

great deal of transient information in the whole response and recover stages into consideration and 

obtains worse results as compared to MWFC.  

MWFC is the extension of the WFC method, which can be employed as a filter to capture 

information from the time domain. It reflects the interaction between the response curve and different 

windows. If there are tiny differences between the response curves of different odors, the areas which 

are obtained by MWFC can accumulate these differences in a specific way, which is determined by 

different windows, and make these differences more significant. In this way, it can achieve a higher 

accuracy rate after selection of the proper window parameters. 

6. Conclusions 

In this paper, a novel feature extraction approach which can be referred to as moving window 

function capturing (MWFC) has been introduced and QPSO is implemented in conjunction with SVM 

for the classification of four different types of pathogens based on E-nose signals. The proposed 

approach has been compared with other established techniques for E-nose feature extraction, such as 

peak value, rising slope, descending slope, FFT, DWT and WFC. The results prove the efficacy of 

proposed method which can lead to an ideal accuracy rate for classification. It has also been shown 

that the performance of an E-nose will be enhanced by optimizing the SVM parameters and the gas 

sensor array. In addition, the types, widths or positions of windows will influence the classification 

result and better classification results can be obtained by choosing the appropriate type, width or 

position of windows. 
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