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Abstract: Longitudinal acceleration comfort is one of the essential metrics used to evaluate 

the ride comfort of train. The aim of this study was to investigate the effectiveness of using 

hand grip force as a correlate of longitudinal acceleration comfort of rapid transit trains. In 

the paper, a motion simulation system was set up and a two-stage experiment was designed 

to investigate the role of the grip force on the longitudinal comfort of rapid transit trains. The 

results of the experiment show that the incremental grip force was linearly correlated with 

the longitudinal acceleration value, while the incremental grip force had no correlation with 

the direction of the longitudinal acceleration vector. The results also show that the effects of 

incremental grip force and acceleration duration on the longitudinal comfort of rapid transit 

trains were significant. Based on multiple regression analysis, a step function model was 

established to predict the longitudinal comfort of rapid transit trains using the incremental 

grip force and the acceleration duration. The feasibility and practicably of the model was 

verified by a field test. Furthermore, a comparative analysis shows that the motion simulation 

system and the grip force based model were valid to support the laboratory studies on the 

longitudinal comfort of rapid transit trains. 

Keywords: hand grip force; longitudinal acceleration comfort; rapid transit train; motion 

simulation system  
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1. Introduction 

As green travel is becoming popular with the public, more and more people are choosing rapid transit 

systems to travel in metropolis. People have high requirements for riding comfort in rapid transit systems. 

Riding comfort can be influenced by many factors, such as acceleration performance, interior space [1], noise 

and vibration [2], ventilation [3], temperature [4], seat design [5] and passenger services [6]. Longitudinal 

acceleration is one of the essential factors that effects the riding comfort of trains [7]. Longitudinal 

acceleration comfort has been widely considered in the areas of vehicle design, such as adaptive cruise 

control design [8] and braking system design [9].  

Longitudinal acceleration comfort research has been carried out since the 1930s [10]. So far, some 

relevant standards, such as TB/T2370 and ISO 2631-1, have been released. The standards stipulate the 

acceptable maximum acceleration value of the traction and braking system of the train [11], which can be 

used as the vehicle design basis. However, the value is a minimum requirement for the ever-growing 

comfort requirements of passengers. Hence, further research was promoted to investigate the longitudinal 

acceleration comfort of passengers. For example, Feng et al. investigated the longitudinal acceleration 

comfort of passengers in different resting and reading postures [12].  

Longitudinal acceleration comfort can be measured by objective or subjective approaches [10]. The 

subjective approach use questionnaires. Selected participants, who are placed in vehicles or laboratory 

devices, are asked to write down their sensations about various motions on a questionnaire after being 

exposed to the motion. Since the sensation a participant describes may not indicate how he behaves, 

subjective approaches need to recruit enough participants to obtain statistically feasible results. 

Objective approaches use some physical quantity to directly evaluate the comfort level. An objective 

approach has the advantage of calculating the result through the single measurement of the physical 

quantity. The physical quantities recently used to measure longitudinal acceleration comfort include 

acceleration and balance retention [10]. Most tests use acceleration as the physical quantity, as it can be 

acquired through accelerometers [13] or the accelerometer in a mobile phone [14].  

For security and efficiency reasons, researchers usually prefer using laboratory devices to using real 

vehicles, for example, Fard discussed the effects of seated structural dynamics on ride comfort criteria 

using a vibration simulation system [15]. With the development of simulation technology, a motion 

simulation system now can convey the effect of gravitational forces and cues participants experience 

during kinematic changes in acceleration. Motion simulation systems also have disadvantages. The 

motion simulation systems simulate acceleration by tilting forward and backward. It should be noted 

here that the acceleration sensor can measure the acceleration of the simulation system, but cannot 

measure the acceleration of the simulated train. Hence, there’s impossible to measure the acceleration 

of the simulated train directly with an accelerometer.  

It is hard for a standing passenger to maintain his balance because the center of his mass is higher 

than the one of a seated passenger in a rapid transit train. As the train accelerates or decelerates, the 

passenger must to hold on to a handrail and exert significant forces to maintain his balance. Hence, the 

changes of the grip force are supposed to be a feasible criterion to calculate the longitudinal acceleration 

comfort of the passengers. In order to objectively evaluate the longitudinal acceleration comfort of 

passengers in a real train or on a motion simulation system, the novel idea of using pressure map systems 

to evaluate the longitudinal acceleration comfort is presented in the this paper. 
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A pressure map is a system for assessing pressure distribution. The system includes a thin sensor mat 

which can be placed on a working surface. The system also includes a computer used to process the 

sensor data. When something is put on the working surface, a map of pressure data will be recorded by the 

system for subsequent further analysis. Pressure map systems are widely used in the area of clinical  

medicine [16], product design [17], manufacturing [18], ergonomics [19], sport [20], among others.  

In the present study, a motion simulation system was used to simulate the working conditions of a 

rapid transit train, and a pressure map system was used to record the changes of hand grip force under 

different working conditions. The goal of the study was to determine the correlation between comfort 

score and hand grip force to extend the use of the pressure sensors. 

2. Methodology 

2.1. Simulation Setup 

We built a motion simulation system, which was composed of a motion system, a standing platform 

and a virtual simulation system, to simulate the motion of a passenger’s standing situation. 

2.1.1 Motion System 

A three axis electric motion system (MSE 710S-3, MSE Simulation Ltd.) was used to generate the 

pulse. The system (see Figure 1) had three electric motors, which could work together to drive the upper 

frame of the system to tilt forward and backward, tilt side to side and move up and down. The ranges of 

the pitching, rolling and heaving motions of the system were −15° to 15°, −15° to 15° and −5 cm to 5 cm, 

respectively. The response speeds of the pitching, rolling and heaving motion of the system were 60°/s, 

60°/s and 33 cm/s, respectively.  

 

Figure 1. The three axis motion system. 

The motion system cannot simulate a long acceleration process due to its space limitations. Hence, 

the constantly acceleration was simulated by tilting participant backwards and using the gravity vector 

as a replacement for the forward acceleration force. As the tilting could cause the movement along the vertical 

axis (Z axis), a Z axis compensation based algorithm was designed and used to drive the motion system. The 

participants’ standing vestibular heights were used as the input parameter of the motion system. 
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2.1.2. Standing Platform 

The standing platform was made of three components: a steel frame, a support plate and a stainless 

steel tube. The steel frame was the load bearing structure of the platform. The support plate was a piece 

of bamboo plywood that participants could stand on. The length and the width of the plate were 1200 mm 

and 600 mm, respectively. The stainless steel tube, which was welded on the steel frame as a vertical 

handrail, was 38 mm in diameter. The diameter was as same as the diameter of real handrail on trains. 

The plate was screwed onto the steel frame. The standing platform was bolted to the upper frame of the 

motion system. The standing platform setup is shown in Figure 2. 

 

Figure 2. The standing platform setup. 

2.1.3. Virtual Simulation 

A virtual simulation system was used to improve the user immersion of simulation scenarios. The virtual 

simulation system included visual simulation and audio simulation. Computer generated imagery (CGI) was 

used to create the visual scene. The scene included all the rapid transit system elements, such as tracks 

and subsidiary facilities of the rapid transit system, and landscapes on both track sides. Examples of the 

visual simulation scene for the experiment scenarios are shown in Figure 3. 

 
(a) (b) 

Figure 3. Examples of visual simulation scene: (a) Front view; (b) Side view. 

An audio simulation system was used to generate the sound of the train running, including the track 

noises, braking noises, among others.  

A head mount display (HMD, Virtual Research V8, Aptos, CA, USA) was used as the visual and 

aural display. The HMD (see Figure 4) had dual 1.3″ diagonal active matrix liquid crystal displays with 
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resolution of 640 pixels in width and 480 pixels in height. The field of view of the HMD was  

60° diagonal.  

 

Figure 4. V8 head mount display. 

2.2. Participants 

In total fifteen participants were recruited from students in Beijing Jiaotong University. All 

participants were male, with an average age of 23.3. The participants were all right-handed. The  

stature of the participants ranged from 1650 mm to 1870 mm (average stature, 1752 mm. Participants  

were ask to avoid strenuous exercise or physical activity for 24 h before the experiment, to preclude  

possible variations in motion sensation. For safety, participants with high blood pressure, heart, back or  

neck problems, motion sickness were excluded from the study. All the participants had  

previous experience of taking rapid transit trains. The participants were able to understand the  

test procedures. 

2.3. Apparatus 

A Tekscan (South Boston, MA, USA) grip pressure mapping system (see Figure 5a) was used to 

gather the hand grip forces of participants. The system was composed of a Tekscan pressure mapping 

sensor, a VersaTek cuff and a VersaTek hub. The cuff connected to the sensor to gather, process and 

send data to a computer via the hub. The properties of the sensor (#4256E) are described in Table 1. The 

scan rate of the system was up to 750 Hz. For convenience, the sensor was stuck on a right hand rubber 

glove (see Figure 5b). 

Table 1 Properties of the pressure sensor. 

Name Value 

Accuracy Better than ±10% 
Linearity <±3% 

Repeatability <±3.5% 
Hysteresis <4/5% 

Drift per log time <5% 
Lag Time 5 µs 

Spatial Resolution As fine as 0.6 mm × 0.6 mm 
Thinness 0.1 mm 

Pressure range 0–345 kPa 
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(a) (b) 

Figure 5. (a) Tekscan grip pressure mapping system; (b) Sensor mounted on a right hand 

rubber glove. 

2.4. Experimental Design 

We proposed a two-stage experimental designs which allow for early stopping with a negative result 

of the first-stage experiment.  

2.4.1. Stage One 

The first-stage experiment evaluated whether the simulation setup was suitable for simulating the 

longitudinal pulse of a rapid transit train. Six acceleration and deceleration working conditions, which 

were similar to the working conditions of Beijing metro line 4, were chosen as the experimental working 

conditions. Table 2 describes the six working conditions in detail. 

Before the start of the experiment, a signed informed consent document was obtained from the 

participants. Subsequently, information on their age and height was gathered. Participants’ standing ear 

heights (vestibular height), which were used as an input parameter of motion system controller, were 

measured with a ruler. Experimental setup, including the six working conditions, was described to all 

the participants. 

Table 2. Experimental working conditions. 

 Working Condition Value (m/s2) 

Traction 
Micro acceleration 0.28 
Slow acceleration 0.56 
Hard acceleration 0.83 

Braking 
Micro deceleration −0.28 
Slow deceleration −0.56 
Hard deceleration −0.83 

After the motion system had finished its initialization, the participant donning the head mount display 

stood on the platform and held the pole with his gloved hand. The experimental situation is shown in 

Figure 6. The experiment was conducted in three steps: 
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(1) Participants took part in the simulation of all the six working conditions. After the motion system 

finished running a set of random working conditions. Participants verbally made their judgment on 

which the current working condition was. Each working condition appeared at least three times. 

(2) The motion system ran a simulation scenario, which was designed following the real trip between 

the National Library station and Weigongcun station of Beijing metro line 4, to simulate a 

complete running process of a train’s departure and arrival procedures. The process included 

three major phases: traction phase, cruise phase and braking phase. The detailed working 

conditions of the trip are listed in Table 3. When the simulation was running, participants 

continuously provided verbal judgments on which the current working condition was. 

Meanwhile, the grip pressure mapping system continuously recorded the grip force of 

participants. The sampling rate of the grip force system was set to be 5 Hz. After the simulation, 

a visual analog scales of motion sensation were used and participants verbally gave their ratings 

to the experimenter. The scales ranged from 0 to 1, with 0.5 as neutral. The motion sensation 

scale ranged from no fidelity (score 0) to considerable fidelity (score 1). 

(3) After finishing all the above simulation tasks, each participant filled out a five-point Likert visual 

analog scales questionnaire to report their motion sensation of vertical direction (Z axis). The 

sensation scale ranged from no sensation (1), to mild (2), moderate (3), noticeable (4) and 

considerable sensation (5). 

 

Figure 6. The experimental situation. 

Table 3. Working conditions of the whole running process scenario.  

Time (s) Acceleration Value (m/s2) 

0–14 0.83 
14–23 0.57 
23–37 0.28 
37–75 0 
75–83 −0.28 
83–99 −0.57 

99–111 −0.83 
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2.4.2. Stage Two 

The second-stage experiment was designed to investigate the correlation between hand grip force and 

longitudinal comfort. The preparatory work of the second-stage was similar to the one of the first-stage 

experiment. Acceleration value and acceleration duration of acceleration were considered as the 

experimental parameters in the second-stage experiment. The tested acceleration values ranged from  

0.2 m/s2 to 1.0 m/s2 with 0.1 m/s2 as an interval, for a total of nine levels. The maximum acceleration of a 

rapid transit train is much lower, typically of the order of 1.0 m/s2 [21]. The tested acceleration duration 

ranged from 3 s to 10 s with 1 s as an interval, for a total of eight levels. Participants were asked to stand on 

the platform and hold the pole with a gloved hand. The grip pressure mapping system continuously recorded 

the grip force of participants. The level of acceleration value and the level of duration time were randomly 

chosen to avoid spurious distortions of the experimental results. Each possible combination of the 

acceleration value level and duration time level was presented at least two times to each participant. A visual 

analog scale of motion comfort was used and participants verbally reported their motion comfort at each 

acceleration value level and acceleration duration level. The scales range from 0 to 1 with 0.5 as neutral. The 

scale’s labels ranged from extremely comfortable to extremely uncomfortable.  

2.5. Data Analysis 

The pressure data was processed using Grip Research version 6.51 (which is shipped with Tekscan 

grip pressure mapping system) to obtain the grip force of the participants. The base grip force was 

different due to the individual differences between participants. Hence, the average grip force of each 

participant in a static state was defined as the base grip force of the participant, and incremental grip 

forces, which were the differences between the present grip force and the base grip force, were used to 

do the subsequent analysis. The mean grip force of each participant in static state, and the incremental 

grip forces of each participant at difference acceleration levels were calculated as follows: = 1
 (1)

= 1
 (2)= −  (3)

where  was the average grip force in static state, 	 was the total data frame number in static state, 

 was the grip force at data frame n,  was the average grip force at the acceleration level of a, 	 
was the total data frame number at the acceleration level of a,  was the incremental grip forces at the 

acceleration level of a. Paired t-tests, Tukey’s HSD procedure and multitude regression analysis [22] were 

used to study the effects of incremental grip force on the longitudinal comfort score of rapid transit train. 

p < 0.05 was considered significant.  
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3. Results 

3.1. Validity and Fidelity of the Simulation System  

3.1.1. Working Condition Judgment  

All fifteen participants judged all the six acceleration and deceleration working condition correctly.  

3.1.2. Fidelity Evaluation 

The fidelity ratings range is shown in Figure 7. There were 80% participants considered that the fidelity rating 

of the motion system was moderate or more than moderate. The average score (M = 0.5533, SD = 0.1187) 

indicates that the motion system had a fidelity rating between moderate and noticeable. 

 

Figure 7. Fidelity ratings. 

3.1.3. Motion Sensation of Z Axis 

Table 4 shows the frequency statistics of the Z axis motion sensation. The percentages of feeling no 

sensation, mild sensation and moderate sensation were 40.0%, 47.7% and 13.3%, respectively. There 

were 86.7% participants had no sensation or mild sensation on the motion along Z axis. Hence, the Z 

axis compensation based control algorithm could resolve the implication of the motion along Z axis. 

Table 4. Z axis motion sensation. 

 Frequency Percentage 

No sensation 6 40.0% 
Mild sensation 7 46.7% 

Moderate sensation 2 13.3% 

The results of the present section verified the validity and fidelity of the motion system. The system 

was ready for the second-stage experiment. 

3.2. Effect of Acceleration and Deceleration 

The six working conditions, shown in Table 2, could be divided into three groups according to the 

absolute values of the acceleration and deceleration. Paired t-tests were used to compare the grip force 
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of each group. There was no significant different in the grip force for micro-acceleration (M = 24.9773, 

SD = 3.4056) and micro-deceleration (M = 25.1027, SD = 3.2506); t(14) = −0.135, p = 0.895, or for slow 

acceleration (M = 52.0513, SD = 6.7028) and slow deceleration (M = 53.5540, SD = 10.0233); t(14) = −1.027, 

p = 0.322, or for hard acceleration (M = 86.4893, SD = 11.7320) and hard deceleration (M = 84.7387, 

SD = 9.2731); t(14) = 0.794, p = 0.441. Tukey’s HSD showed that the incremental grip force were significantly 

different between each acceleration and each deceleration level; F(5, 84) = 169.347, p < 0.0001, as shown in 

Figure 8. The result indicated that the acceleration and deceleration values had a significant effect on the 

grip force, while the form of acceleration or deceleration had no significant effect on it. 

 

Figure 8. Incremental grip force at each acceleration or deceleration, *** p < 0.0001. 

3.3. Relationship between Acceleration and Incremental Grip Force 

There was a linear relationship between acceleration and incremental grip force (Figure 9; R-square 

adjusted = 0.864; F(1, 133) = 852.392, p < 0.0001). Tukey’s HSD showed that the incremental grip force 

were significantly different between each acceleration level; F(8, 126) = 126.866, p < 0.0001, as shown 

in Table 5. 

Table 5. Incremental grip force vs. acceleration. 

Acceleration 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Mean incremental 
grip force (N) 

17.636 28.377 35.931 44.041 56.306 69.189 80.467 100.02 121.12 

 

Figure 9. Incremental grip force at each acceleration. 
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3.4. Grip Force Based Comfort Prediction Model  

Multiple regression analysis was used to test if the incremental grip force significantly predicted 

participants’ ratings of longitudinal comfort. As the results of Section 3.3, the incremental grip force and 

the acceleration were highly correlated, they would create multicollinearity problems. Hence, the 

acceleration was omitted from the regression model, the grip force and the duration were considered the 

predictor variables in the model. 

The means, standard deviations, and intercorrelations can be found in Table 6. This combination of 

variables significantly predicted the comfort score, F(2, 1077) = 620.698, p < 0.0001, with both variables 

significantly contributing to the prediction. The beta weights, presented in Table 7, suggest that grip 

force contributes most to predicting the comfort score, and duration also contribute to this prediction. 

The adjusted R squared value was 0.535. This indicates that 53.5% of the variance in comfort score was 

explained by the model. This is a large effect. 

Table 6. Means, standard deviations, and intercorrelations for comfort score and predictor 

variables (N = 1080). 

Variable M SD 1 2 

Score 0.6045 0.3036 0.720 *** 0.130 *** 
Predictor variable     

1. GripForce 61.4543 34.3981 - 0.000 
2. Duration 6.5000 2.2924  - 

*** p < 0.0001. 

Table 7. Simultaneous multiple regression analysis summary for grip force, duration and 

comfort score (N = 1080). 

Variable B SEB β 
Grip Force 0.006 0.000 0.720 *** 
Duration 0.017 0.003 0.130 *** 

(Constant) 0.102 0.022  

R2 = 0.535; F(2, 1077) = 620.698, p < 0.0001; *** p < 0.0001 

The following was the regression function of the grip force, duration and longitudinal comfort: 		 = 	0.006 + 0.017 + 0.102 (4)

where  is grip force,  denotes acceleration duration, y is comfort score. The regression coefficient 

of the equation is positive, indicating that Equation (4) is an increasing function. When the grip force 

and acceleration duration increased, the comfort score increased, which meant that when there was more 

longitudinal acceleration it was more uncomfortable.  

An increasing linear function will have a very large result value if the independent variables are large 

numbers. It would be irrational for the comfort score to be larger than 1 or less than 0. Hence, we defined 

the comfort score equal to 0 when the train was stopped or ran at a constant speed. When the incremental 

force was less than 0 or equal to 0, the comfort score value was 0. We defined the comfort score equal 
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to 1 when the result of Equation (4) was larger than 1. The final step function of the grip force, duration 

and longitudinal comfort is as follows: 		 = 	1 0.006 + 0.017 + 0.102 > 10.006 + 0.017 + 0.102 > 00 ≤ 0  (5)

From the function, the longitudinal comfort under any grip force and acceleration duration can  

be calculated. 

4. Discussion 

4.1. General Discussion 

The results of the experiment show that the incremental grip force is linearly correlated with the 

acceleration. The incremental grip force increased as the acceleration increased. Figure 9 shows the 

linear relationship between the two variables. Figure 8 shows the incremental grip force is linearly 

correlation with the value of acceleration but has no correlation with the direction of the acceleration 

vector. In the experiment, the participants stood on the standing platform facing the right side of the train 

and held the handrail with their right hand. Hence, when the train accelerated, more force was imposed 

on the fingers of the hand, and when the train decelerated, more force was imposed on the palm of the 

hand (see Figure 10). Although the distribution of grip force was different between acceleration and 

deceleration working conditions, the participants needed use the same force to overcome the same 

acceleration or deceleration. In the study, we analyzed the total grip force of the entire hand. Hence, the 

results showed that there was the no correlation between the incremental grip force and the direction of 

the acceleration vector. 

(a) (b) 

Figure 10. (a) Grip force distribution of acceleration; (b) Grip force distribution of deceleration. 
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The present results show that the incremental grip force and acceleration duration both had effects on 

the comfort score. The standardized coefficient shows that the incremental grip force had a greater effect 

on the comfort score. There was no correlation between the incremental grip force and the acceleration 

duration. The longitudinal comfort function was a step function. The step function ensured the value of 

the longitudinal comfort ranged from 0 to 1. The incremental grip force ( ) couldn’t be infinite because 

it was linearly correlated with the acceleration that had a reasonable range. The function would become 

useless if the duration time had a large number. Actually, the distances between two adjacent stations of 

rapid transit system are always short (the average distance for Beijing metro line 4 is 1.2246 km), and 

the maximum speed of a rapid transit train is up to 80 km/h. Hence, the time duration ( ) would not be 

an irrationally large value. The function was suitable for the prediction of longitudinal comfort of rapid 

transit trains. 

4.2. Case Study and Comparative Analysis 

4.2.1. Case Study 

A field test was conducted on a train running between National Library station and Weigongcun 

station of Beijing metro line 4. The working conditions of the train were shown in Table 3. A volunteer 

participated in the test. The grip pressure mapping system was used to gather the hand grip forces of the 

participant. The test situation is shown in Figure 11. 

 

Figure 11. Field test situation. 

The grip force result of the participant is shown in Figure 12. The tendency of the curve approximates 

the working conditions. The grip force level increased or decreased when the acceleration changed. 

There were some steep curves, which were marked with oval tags in the figure. It should be noted that 

the steep curves lagged behind the change of acceleration. The steep curves correspond to the reaction 

of the participant. When the acceleration changed, the participant needed time to react and needed time 
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to move [23]. Hence, the delay happened. The steep curves’ changing pattern could help us to determine 

the variations of working conditions. 

 

Figure 12. The result of hand grip force for the whole trip. 

The mean grip force (see Table 8) was calculated according to the working conditions. During the 

first 2 s of the trip, the train was stopped at National Library station, and the participant stood on the 

train and held a stanchion during the stop. The basic grip force was recorded during this time. After that, 

there was a traction stage from 2 s to 39 s. Subsequently, the train cruised at constant speed between 39 s 

and 77 s during which the grip force was also recorded as the basic grip force. At the end of the trip, 

there was a braking stage from 77 s to 113 s. The grip forces, incremental grip forces and the comfort 

scores are shown in Table 8. The incremental grip forces of traction stage and braking stage were 

calculated based on the mean grip force of the stopping stage and the cruising stage. The comfort scores 

were calculated using Equation (5). 

Table 8. The grip forces and the comfort scores of the trip. 

Working Condition Time(s) 
Mean Grip 
Force(N) 

Incremental 
Grip Force (N) 

Comfort Score 

Stopping & cruising 0–2 & 39–77 19.7599 ‒ ‒ 

Traction 
2–16 107.1465 87.3867  0.8643 
16–25 61.9873 42.2275 0.5084 
25–39 40.3354 20.5756 0.4635 

Braking 

77–85 35.7030 15.9432 0.3337 

85–101 68.0290 48.2691 0.6636 

101–113 105.5420 85.7822 0.8207 

4.2.2. Comparative Analysis  

In the first-stage experiment, the grip forces of all participants were recorded when the motion system 

run the simulation scenario. The mean grip forces of each working condition of the simulation scenario 



Sensors 2015, 15 15769 

 

 

are shown in Table 9 and Figure 8. It should be noted the working conditions in the simulation trip were 

the same as ones in the case study trip. The two incremental grip force were strongly correlated, r(6) = 0.995, 

p < 0.0001. Wilcoxon signed rank test was conducted between incremental grip force of simulation trip 

and case study trip for different working conditions. No significant difference was found among the pairs 

between the trips under any working conditions (p = 0.116). This means that the simulation system and 

the grip force based method were valid to evaluate the longitudinal comfort of rapid transit trains.  

Table 9. Incremental grip force of simulation trip and case study trip. 

Working Condition Time (s) 
Mean Incremental Grip Force (N) 

Simulation Trip  Case Study Trip 

Traction 
2–16 86.4893 87.3867 
16–25 52.0513 42.2275 
25–39 24.9773 20.5756 

Braking 

77–85 25.1027 15.9432 

85–101 53.5540 48.2691 

101–113 84.7387 85.7822 

5. Conclusions 

In the present study, a simulation system was set up and a two-stage experiment was designed to 

investigate the role of the grip force on the longitudinal comfort of rapid transit trains. The results of the 

experiment show that the incremental grip force was linearly correlated with the acceleration value, 

while the incremental grip force had no correlation with the direction of the acceleration vector. The 

results also show that the effects of grip force and acceleration duration on the longitudinal comfort of 

rapid transit train were significant. Based on multiple regression analysis, a step function model was 

established to predict longitudinal comfort of rapid transit train using the incremental grip force and time 

duration. Field tests verified the feasibility and practicably of the model. Furthermore, a comparative 

analysis shows that the simulation system and the grip force based model were valid to support the 

laboratory studies on the longitudinal comfort of rapid transit trains. 
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