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Abstract: Advances in mobile technology have led to the emergence of the “smartphone”, 

a new class of device with more advanced connectivity features that have quickly made it a 

constant presence in our lives. Smartphones are equipped with comparatively advanced 

computing capabilities, a global positioning system (GPS) receivers, and sensing capabilities 

(i.e., an inertial measurement unit (IMU) and more recently magnetometer and barometer) 

which can be found in wearable ambulatory monitors (WAMs). As a result, algorithms 

initially developed for WAMs that “count” steps (i.e., pedometers); gauge physical activity 

levels; indirectly estimate energy expenditure and monitor human movement can be utilised 

on the smartphone. These algorithms may enable clinicians to “close the loop” by prescribing 

timely interventions to improve or maintain wellbeing in populations who are at risk of 

falling or suffer from a chronic disease whose progression is linked to a reduction in 

movement and mobility. The ubiquitous nature of smartphone technology makes it the ideal 

platform from which human movement can be remotely monitored without the expense of 

purchasing, and inconvenience of using, a dedicated WAM. In this paper, an overview of the 

sensors that can be found in the smartphone are presented, followed by a summary of the 

developments in this field with an emphasis on the evolution of algorithms used to classify 

human movement. The limitations identified in the literature will be discussed, as well as 

suggestions about future research directions. 
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1. Introduction 

A wearable ambulatory monitor (WAM) or wearable sensor is an electronic device that can be 

attached to the body or embedded in a clothing garment and is able to record information about the user’s 

body movements by analysing the signals produced by the device’s transducers. The earliest WAMs 

consisted of a single uniaxial accelerometer [1] or three orthogonally positioned uniaxial accelerometers [2]. 

The advent of micro-electro-mechanical systems (MEMS) technology allowed accelerometers and other 

sensing components to be miniaturised, leading to smaller wearable sensors which contained triaxial 

accelerometers, triaxial gyroscopes, barometric pressure sensors, and triaxial magnetometers; electronic 

components that have become commonplace in modern smartphones. 

Wearable sensors have garnered much attention in recent decades for their ability to non-invasively 

estimate energy expenditure [3] and remotely monitor physical movement [4]; all of which are crucial 

in the evaluation of chronic diseases like diabetes [5] and obesity [6], that can be managed through 

regular physical movement [7,8]. The analysis of gait has been used to monitor the progression of 

diseases affecting mobility, such as Parkinson’s disease [9], where WAMs can detect freezing of  

gait [10]. In the elderly, wearable sensors have found prominence as a means of detecting falls [11] or 

estimating the likelihood of future falls via gait analysis [12,13]. 

Bouten et al. [2] were pioneers in remote monitoring of physical movement. They conceived a device 

comprised of a single triaxial accelerometer and data processing unit which could be used to assess 

physical movement via human body accelerations. Their work established a significant relationship  

(r = 0.89) between accelerometry and energy expenditure [2], which became the impetus for the wearable 

sensor revolution that followed. Subsequent work by Najafi et al. [14] illustrated that gyroscopes can be 

used to detect postural transitions and would lead others to use inertial measuring units (IMUs: electronic 

devices containing a triaxial accelerometer and triaxial gyroscope which can measure both acceleration 

and angular velocity along three orthogonal axes) to: detect falls using accelerometry signals [15]; 

incorporate a barometric pressure sensor into a device for fall detection [11]; detect stair ascent and 

descent with a triaxial accelerometer and barometric pressure sensor [16,17]; non-invasively monitor 

physical movement with a magnetic and inertial measuring unit (MIMU) [18] and incorporate an IMU 

into a shoe containing force, pressure, electric field and bend sensors for quantitative gait analysis [19]. 

Additional information pertaining to the type of physical movement identified could be captured if 

contextual information about the person’s surroundings was combined with measurements from a 

MEMS sensor. Ward et al. [20] combined a triaxial accelerometer with body-worn microphones to 

identify nine physical movements in a workshop environment, whilst Rodríguez et al. [21] demonstrated 

that both the speed and positional data from a global positioning system (GPS) receiver could be used 

to improve algorithms that estimate physical movement in outdoor environments. Concurrent 

developments in gait analysis that combined knowledge from dead reckoning (a noisy positional 

estimate due to the error that accumulates when an object’s position is calculated based on both the last 
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known position and estimated velocity during the time interval) with aspects of human biomechanics 

created a new domain of study, called pedestrian dead reckoning (PDR) [22], that enabled precise 

estimates of the individual’s position and velocity to be obtained in indoor environments using IMUs. 

The most reliable estimates could be made when these devices were located on the dorsal surface of the 

foot, because zero velocity updates (ZUPT) [23] or zero angular rate updates (ZARU) [24] could be 

performed between each step, allowing for accumulated errors in velocity estimates to be corrected. 

These breakthroughs played a pivotal role in establishing WAMs as a means of non-invasively 

monitoring physical movement; however, their widespread adoption has been limited by the cost 

associated with purchasing the device, an issue which advances in mobile technology may have 

inadvertently addressed. The arrival of the smartphone coupled with its ubiquitous nature [25,26] make 

it the ideal platform upon which to develop a WAM that individuals could elect to use at no additional 

cost. Smartphone applications designed to replicate the functionality of a dedicated WAM have the 

potential to assist subsets of the population with the management of a chronic health condition [27] or 

prevent its onset [28,29]. Individuals who suffer from a health condition that affects gross motor function 

can use smartphone-based monitors to analyse their gait [30,31] or tremor [32], whilst those who suffer 

from diabetes or obesity may benefit from an estimate of their energy expenditure [33]. 

This paper provides a review of the literature related to smartphone-based monitoring of physical 

movement. A critical analysis of the state-of-the-art in algorithms for smartphone-based monitoring of 

physical movement are presented, with a focus on the sensors used, features extracted from the sensor 

signals, movements classified, and the accuracy of each algorithm. Challenges that must be addressed 

in the future will be identified and possible solutions proposed. In the interests of brevity, the terms 

accelerometer, gyroscope and magnetometer will refer to tri-axial accelerometers, tri-axial gyroscopes 

and tri-axial magnetometers, respectively, unless stated otherwise. A smartphone will be defined as the 

amalgamation of a personal digital assistant (PDA) and mobile phone into a single device [34]. 

Consequently, those algorithms which were designed for PDAs or mobile devices will be excluded from 

this review as they have less functionality than smartphones [35]. Whilst the smartphone’s Bluetooth 

and Wi-Fi connectivity allow it to communicate with countless accessories that increase the 

smartphone’s sensing capabilities, these sensing modalities require interaction with other devices which 

are external to the smartphone, and hence will not be discussed further. Instead this review will focus 

only on sensors whose operation is entirely internal to the device. 

The remainder of the paper can be separated into four sections. First, the multimodal sensors that can 

be found within the smartphone are described, followed by a summary of the state-of-the-art methods 

by which information about physical movement is extracted from these sensors. A selection of 

algorithms that illustrate landmark achievements in the state-of-the-art are presented. Comprehensive 

reviews which focus solely on smartphone-based solutions for fall detection [35] and “online” activity 

recognition [36] (in which all computation is performed on the smartphone) have been discussed 

previously. Instead, this paper will review the variety of algorithms that have developed by using the 

smartphone as a non-invasive physical movement monitor: which sensors can be used to characterise 

human movement; the breadth of movements that can be identified; as well as how algorithms have 

evolved to deal with the issue of inconsistent device placement. Finally, the limitations of the  

state-of-the-art are identified before discussing the challenges that need to be overcome in future work 

to address these limitations. 
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2. Identifying Physical Movement 

Regardless of the physical movement performed by the user (who is wearing or carrying the device), 

the movement identification process can be separated into three distinct phases; sensing, information 

extraction and physical movement identification (as illustrated in Figure 1). During the sensing phase, 

algorithm designers must decide which sensing components within the smartphone will be utilised. 

Although it is acceptable to use all of the smartphone’s sensors, the number of sensing components 

utilised is often minimised to maximize the smartphone’s limited battery life.  

 

Figure 1. Workflow for identifying physical movement in a smartphone application. 

2.1. Sensing 

The smartphone contains multimodal sensors which can be utilised to identify physical movement. 

Contextual information about the movement can be derived from location sensors (which contain radio 

frequency components) and audio-visual components, whilst the MEMS sensors experience environmental 

changes (in the case of the ambient light sensors, barometric pressure sensor and magnetometer) or 

measure motion due to the movement of the body (in the case of the gyroscope and accelerometer).  

2.1.1. Motion MEMS Sensors 

Earlier smartphone models contained a single MEMS sensor, an accelerometer. This sensor measures 

the combined acceleration due to gravity and body movement along three orthogonal axes and enabled 

existing algorithms [37–39] to be implemented as smartphone applications which could estimate the 

number of steps taken by the user when the smartphone was placed in the pants pocket [40]. Similarly, 

the incorporation of a six degree of freedom (6DOF) IMU within the smartphone enabled the 

development of algorithms dependent on the signals from the IMU to be implemented for estimating 

physical movement. The IMU combines a triaxial accelerometer with a triaxial gyroscope that measures 

angular velocity along three orthogonal axes and enables changes in the orientation of the device to be 

determined. In most current smartphones, the IMU would be replaced with a MIMU which incorporated 

a magnetometer into the IMU. 

2.1.2. Environmental MEMS Sensors 

The magnetometer measures the strength of the local magnetic field (whose magnitude and direction 

is influenced by ferromagnetic materials and other magnetic sources in the environment) along three 

orthogonal axes and can be used to determine the heading of the device relative to the Earth’s magnetic 

north pole, making it an essential component of a MEMS-based attitude and heading reference system 

SENSING (1)

• Motion
• Environmental
• Location-based
• Audio-visual

INFORMATION 
EXTRACTION (2)

• Pre-processing
• Feature Extraction

PHYSICAL MOVEMENT 
CLASSIFICATION (3)
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(AHRS) which estimates the device’s orientation (pitch, roll and yaw). Note that the magnetometer 

sensor has poor frequency response compared to the accelerometer and gyroscope (see Figure 2). 

Figure 2. Sensor data stream from the micro-electro-mechanical systems (MEMS) sensors 

within a smartphone. The accelerometer, gyroscope and magnetometer produce signals 

along three orthogonally mounted axes: x (blue), y (red) and z (green). The vertical line 

(magenta) which is present in all of the sensor data streams denotes the time point 

corresponding to an older adult walking up a staircase whilst a smartphone is placed in the 

pocket of their pants (image on the right). 

Similarly, the altitude of the device relative to its initial position can be determined from the 

smartphone’s barometric pressure sensor, which measures absolute atmospheric pressure to infer altitude 

above sea level (in Figure 2, the measurements from the barometric pressure sensor can be seen to 

decrease as altitude increases). Whilst the resolution of the barometric pressure sensor is often reported 

as being accurate to 1 m, the signal may need to be temporally averaged over a number of seconds (e.g., 

5 s at 50 Hz) to obtain this level of accuracy [41]. The triaxial accelerometer, triaxial gyroscope, triaxial 

magnetometer and barometric pressure sensor (see Figure 2) form the central component of non-invasive 

physical movement monitors due to their ability to sense gross body movement and their relatively low 

power consumption [42,43] compared to the audio-visual components (i.e., microphone or camera) and 

location based sensors (i.e., Wi-Fi, Bluetooth) [44]. 
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2.1.3. Location-Based Sensors 

Location-based sensors can aid in the identification of physical movement by providing information 

about the individual’s location. In the smartphone, these sensors include the Wi-Fi transceiver and GPS 

receiver. Early GPS receivers could perform geolocation (the process of identifying the smartphone’s 

position on the Earth) in outdoor environments with an accuracy varying between 300 m and 1 km [45], 

however the current generation of smartphones have built-in GPS receivers that are accurate to within a 

few metres outdoors [46]. Utilising the device’s GSM module to estimate the distance to cellular base 

stations within range [47], or the Wi-Fi module to estimate the distance to known access points (within 

range) can increase the accuracy of GPS-based positional estimates and assists with localisation indoors 

where GPS signals are ineffective [48]. Although more power-intensive, these two approaches can be 

combined to improve positional estimates in outdoor environments too.  

Liu et al. [49] proposed a novel method for improving indoor positioning by incorporating the 

kinematic motion of the smartphone into the algorithm they developed to estimate the user’s position 

indoors. Their approach fused information from a PDR algorithm with knowledge obtained by 

estimating the distance between the smartphone and Wi-Fi access points (whose positions are known) 

to compensate for the variance in the received signal strength indication (RSSI) at a particular location. 

Whilst the effects of reflection, diffraction and scattering will impact the propagation of a Wi-Fi  

signal [50], multipath fading in indoor environments [51] causes the measured RSSI at a particular 

location to vary about an average value. There is always the risk of violation of personal privacy [52] 

when tracking a user’s location, an issue which can be exacerbated if the smartphone’s microphone or 

camera are used, as they may reveal private information about the user and those in close proximity.  

2.1.4. Audio-Visual Sensing Components 

Lu et al. [53] were among the first to identify sound types (such as speech and music) as well as 

specific sound events (such as driving and climbing stairs) by extracting frequency and time domain 

features from the smartphone’s microphone. The time domain features they identified were incorporated 

into an activity classification algorithm by Khan et al. [54] that combined information from the 

smartphone’s microphone, accelerometer and barometer to identify fifteen physical movements. A more 

power intensive approach involves periodically taking pictures with the smartphone’s camera whilst 

recording data from the smartphone’s microphone as well as the motion and environmental sensors [55]. 

Utilising the entire array of the smartphones multimodal sensors enables algorithm designers to 

harvest more contextual information about the activity when estimating physical movement, however it 

does reduce battery life, as these contextual sensors are less power efficient than MEMS sensors. Even 

if the number of sensors used is kept at a minimum, it is still possible to drain the smartphone’s battery 

in less than one day if the information extraction process is too computationally intensive [56]. 

2.2. Information Extraction 

Information extraction encompasses both the data pre-processing and feature extraction methods 

which are essential to reduce the raw sensor data to a finite number of derived parameters from which a 

physical movement can be inferred. 
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2.2.1. Pre-Processing 

Pre-processing the MEMS data is of particular importance. Digital filters (i.e., systems that alter 

discrete-time signals via mathematical operations) are traditionally applied to these signals to improve 

the signal to noise ratio. Median filters of a short window (i.e., length, n = 3) are often applied to remove 

spurious noise [4] though they can alter the absolute peak value in the signal [57]. Accelerometer data 

is typically high-pass filtered to separate acceleration due to gravity (the low frequency component of 

the signal which can also be used to estimate the orientation of the device) from acceleration due to body 

movement [58].  

Since the smartphone is used for communication and leisure, it will not always be fixed to the body 

in the same orientation, which can lead to data with high variability with respect to the activity being 

performed. The issue of inconsistent device orientation has been partially addressed by authors using 

dimension reduction techniques such as principal component analysis (PCA) [59]; linear discriminant 

analysis (LDA); kernel discriminant analysis (KDA) [60]; or eigenvalue decomposition [61], to reduce 

the intraclass variance in the data streams by projecting the normalised accelerations to a global frame 

in which it is assumed that most of the measured acceleration is due to body movement in the  

forward-backward plane [61].  

Alternatively, the data from an IMU or MIMU can be processed through an AHRS algorithm to 

estimate the orientation of the device and project the accelerations (measured in the sensor frame) back 

to the earth frame of reference, which would make the measures robust to inconsistent device orientation. 

The position of the smartphone in the global frame can then be estimated by double integration of the 

accelerometry signal, however, the accuracy will be poor without using the zero velocity update 

technique [23] which relies on the device being worn on the foot. The error associated with the estimated 

position in the vertical plane can be bound by combining the vertical position estimated from the 

accelerometer with the relative altitude estimated by a barometric pressure sensor [62]. If the 

distributions of the noise in the signals from the accelerometer and barometer are known (or 

approximated) [63], the measurements can be fused to obtain an optimal estimate of the vertical position. 

2.2.2. Feature Extraction 

Once the data pre-processing is complete, features are usually extracted from sequential epochs of 

time (each no more than a few seconds long) using a sliding windowing method, often with 50% overlap 

between consecutive windows [64]. In previous research, features extracted from MEMS signals have 

shown that the gyroscope and accelerometer signals contain the most information about human 

movement because they indirectly measure kinematic motion [65]. That being said, the smartphone’s 

environmental sensors (barometric pressure sensor) can provide supporting information in situations 

where the physical movement involves rapid changes in altitude (e.g., walking down stairs) or changes 

in magnetic fields. Furthermore, the smartphone’s microphone allows additional information about the 

physical movement to be obtained by analysing the audio signal in both the time and frequency domain 

(see Table 1 for more details) to extract information that may be indicative of motion (such as the rustling 

of pants or footsteps, or the sound of running water in a kitchen or bathroom) or a particular sporting 
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activity (e.g., the dribbling of a basketball). Time domain features are calculated once for each window, 

whilst frequency domain features are calculated using all data in the window.  

Table 1. Features that can be extracted from the smartphone’s sensors to characterise 

physical movement. The smartphone’s camera is not listed in the table as the images they 

can produce are often processed with “computer vision” based methods, e.g., speeded-up 

robust features [66]. 
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Signal Magnitude Area [2]       

Signal vector magnitude [4]       

Differential pressure [11]       

Autoregressive coefficients [56]       

Tilt angle [58]       

Relative altitude [67]       

Peak-to-peak amplitude       

Zero crossing rate [68]       

Short-time average energy [69]       

F
re

q
u
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Low energy frame rate [46]       

Entropy [64]       

Energy [70]       

Fast Fourier transform coefficients [71]       

Discrete cosine transform coefficients [72]       

Spectral flux [73]       

Spectral roll-off [74]       

Spectral centroid [74]       

Bandwidth [74]       

Normalised weighted phase deviation [75]       

Statistical measures [76,77] of the time domain features are calculated for each window so that a 

finite number of measures containing information about the physical movement during that epoch can 

be compiled. Time domain features that have previously been calculated for each window include: mean; 

median; maximum; minimum; standard deviation; variance; skew; kurtosis; root mean square [78]; 

correlation between axes [70]; interquartile range and percentile [79,80]. The features that are extracted 

every window are assigned to a category (i.e., the physical movement) that best describes the physical 

movement that occurred and form the training data that will be used during the development of the 

classification model [81]. In order to provide accurate descriptions of physical movement, algorithms 

may utilise a hierarchical description of physical movement (Figure 3) that contain both “higher level” 

descriptions and “lower level” descriptions of the physical movements that an individual may perform. 

Training data that is poorly labelled (or has undetailed labels) can lead to models that can only identify 
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movements at a “higher level” (i.e., identify stationary, or moving periods), whilst well-labelled training 

data (data with detailed labels) can lead to models that can possibly identify movements at a “lower 

level” (i.e., identify lying, sitting, standing, walking upstairs, walking downstairs, walking on a flat 

surface, etc.). The complexity of the algorithm as well as the level of detail of the training data will 

determine the degree to which the physical movements can be identified. 

 

Figure 3. Physical movements in daily living. An example of a hierarchical description of 

the movements that models built with machine learning algorithms may be able to identify. 

The “…” symbolises that there may be more than one “intermediate” level before the lowest 

level of the hierarchy is reached. 

2.3. Physical Movement Classification 

Various models of human movement can be developed depending on the machine learning algorithm 

(MLA) that is used to analyse the training data. Whilst it may be possible to build a model that it is 

capable of correctly classifying all of the training data, this can lead to over-fitting which will limit the 

model’s ability to correctly categorise new/unseen data [82]. 

2.3.1. Feature Selection 

Prior to building a model that will classify human movement, algorithm designers may apply feature 

selection techniques to the training data to minimise the number of features that are calculated thereby 

reducing the algorithm’s processing time. In classification problems, such as physical movement 

identification, feature selection finds the optimal feature subset (from all of the features generated) that 

can best distinguish between movements. Capela et al. [83] recommend using Relief-F, Correlation-based 

Feature Selection or the Fast Correlation Based Filter because these methods are not biased toward 

categories that are over-represented in the training data. A comprehensive survey of feature selection 

algorithms has been compiled by Huan and Lei [84]; all of which can be used in the evaluation of features 

extracted for the identification of physical movement. 

2.3.2. Model Development 

At this point, the model which will ultimately identify the physical movements can be developed. 

Initially, these models were limited to heuristic classifiers due to the smartphone’s limited processing 
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capabilities; however, the modern smartphone has sufficient computational capability to execute  

state-of-the-art feature extraction algorithms and classification models. These models are trained using 

an MLA which will analyse the training data during a supervised learning process to define a function 

(or series of rules) which can be used to separate the training data according to the different assigned 

categories (in this case physical movement types) whilst minimising the number of misclassifications. 

In many cases the Waikato Environment for Knowledge Analysis (WEKA) [85,86] data mining 

toolbox, has enabled these MLAs to be seamlessly implemented on the smartphone because they were 

written in the Java programming language which is the primary language used when developing 

smartphone applications for the Android platform. Preece et al. [87] provides a thorough summary of 

the MLAs (listed in Table 2) that can be used to build models for identifying physical movement. 

Accepted methods for validating the models include (but are not limited to): leave-one-out  

cross-validation; the k-fold cross validation method; or the ‘.632+’ bootstrap method [88]. The type of 

physical movement identifiable using the smartphone’s internal sensors is dependent on how the 

smartphone is worn on the body and the granularity of the collected training data (i.e., the variety of 

activities and the number of instances of each activity). In the absence of a belt or clip to fix the 

smartphone to the body, it is difficult to distinguish between sport-specific movements and those that a 

person might perform as they move throughout the day because the orientation of the device relative to 

the body cannot be assumed to be constant. This would make it difficult to distinguish the movement of 

a seated individual swinging their arms whilst holding a smartphone in-hand from walking whilst the 

smartphone was placed in the pocket of their pants. 

Table 2. Examples of machine learning algorithms which can be used to build models that 

can classify human movement. 

Machine Learning Algorithms (MLAs) 

Hidden Markov Models (HMM) K Nearest Neighbours (KNN) Support Vector Machines (SVM) 
Bayesian Networks (BN) Gaussian Mixture Models (GMM) Logistic Regression (LR) 

Naïve Bayes (NB) Decision Tree Classifiers (DTC) Artificial Neural Networks (ANN)

If the smartphone is fixed to the body (e.g., belt, armband, wrist strap) or is placed in a custom apparatus 

(e.g., balance board) the movements can be specific to a particular sport [89,90] or exercise [91,92]. In 

certain circumstances, the movement measured by the sensors at some body positions may not contain 

enough information to distinguish between different physical movements (e.g., sensors placed on the 

trunk will struggle to differentiate between standing and sitting.) which can limit the number of 

identifiable movements that a model (which is built using this training data) will be able to identify. 

3. Limitations Leading to Algorithm Evolution 

A major limitation of using smartphones to estimate human movement is that the device’s 

multifunctional nature ensures that it will not be consistently located and/or oriented at the same position 

on the body. Consequently, algorithms for monitoring physical movement have evolved to address the 

limitations of prior art. The initial generation of algorithms required the smartphone to be firmly fixed 

to the body at a known location with a strap, armband or custom apparatus (Figure 4a). This constraint 

was relaxed in the second generation of algorithms which allowed the smartphone to be placed in a 
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specific pocket of the user’s clothing (Figure 4b), a constraint which was removed in the current  

state-of-the-art (Figure 4c). 

Fixed to the 

body (a) 
 

Body position 

dependent (b) 
 

Body position 

independent (c) 

   

Figure 4. Evolution of smartphone algorithms with respect to where they are carried:  

(a) assume the smartphone is firmly fastened to the body at a known location; (b) assume 

that the smartphone is located in the same area on the person’s body (whether it is held in 

the hand, placed in the chest or trouser pocket) throughout the day, but its orientation need 

not be fixed with respect to the body; (c) “state-of-the-art” algorithms are capable of 

identifying physical movement whether the device is held in the hand, or in a pocket of the 

individual’s clothing. 

3.1. Fixed to the Body Algorithms (FBAs) 

Early algorithms required the smartphone to be fixed to the body with a strap or additional apparatus 

at a predetermined position, which ensured that the relative orientation of the smartphone to the body is 

fixed [93] necessitating only the use of “digital filters” during the pre-processing stage. This enabled 

features to be extracted that are derived from biomechanical principles unique to the point of fixation 

(e.g., tilt angle) which can then be exploited by the MLAs in the development of a model that can identify 

specific body movements. If the goal is to characterise gross body movement, the device should be 

positioned close to the body’s centre of mass [94]. The lower back is closest [95] to the body’s centre of 

mass (just above/below the level of the navel), which has led researchers to place the smartphone on a 

belt at this position. Shumei et al. [96] used the ensemble learning (i.e., they combined two MLAs, in 

this case a DTC and SVM) approach and the smartphone’s accelerometer to identify six physical 

movements that only required the device to be fixed on the left side of the waist with a belt. 

Improvements to their approach were made by using a smartphone which contained an IMU [97] and 

eventually a MIMU [77], thereby enabling a wider variety of movements to be identified (for more 

details see Table 3) and allowed estimates of energy expenditure based on metabolic equivalents [98] to 

be calculated. Similarly, smartphone applications which detect simulated falls are most reliable when 

the device is located near the body’s centre of mass because this position is in a near free-fall state (i.e., 

the measured acceleration will be close to 0 m·s−2) [99]. 



Sensors 2015, 15 18912 

 

 

Physical movements unique to a particular sport or activity can be identified if the smartphone is 

placed in a custom apparatus. Mitchell et al. [90] created a vest with a pouch between the scapulae where 

the smartphone could be placed and models developed utilising MLAs (i.e., SVM, KNN, ANN, NB, 

DTC) to identify seven movements specific to the sports of field hockey and soccer. In this scenario, the 

smartphone would enable the team’s physical trainers to quantify their athletes’ performance.  

Waterproof cases have expanded the reach of smartphone technology to marine environments. 

Marshall [89] devised a prototype application capable of tracking the absolute position, posture and 

velocity of swimmers (in the pool) by attaching the waterproof case at the lower back, with a strap around 

the waist. It is hoped that this application could ultimately serve as a surrogate “swimming coach”, 

capable of providing users with feedback after their practice session. 

The use of smartphone technology as a coach or personal trainer has also been explored in the more 

traditional environment of the gym. Kranz et al. [91] developed a personal training application that could 

provide users with feedback on twenty exercises performed whilst a smartphone was mounted to the 

center of a balancing board. The application analysed data obtained from the smartphone’s motion 

sensing MEMS (i.e., the accelerometer) and environmental sensing MEMS (i.e., the magnetometer) to 

provide feedback on how the user performed each exercise.  

Pernek et al. [100] devised a similar model that used logistic regression to monitor weight training 

programs in a gym. Their application counted the number of times different muscle groups were 

exercised but required users to place the smartphone in a strap for the ankle or wrist and specify which 

muscle group (biceps brachii, gluteus maximus, hamstrings, latissimus dorsi, pectoralis major, 

quadriceps, rectus abdominis, soleus, and triceps brachii) was being exercised. Although users would 

have to continually move the smartphone between ankle and wrist as they exercised, it could determine 

the number of repetitions performed regardless of whether the individual was using a machine in a gym 

or free weights and resistance bands. This limitation was overcome by Muehlbauer et al. [92], whose 

model for identifying physical movement could distinguish ten upper body exercises, count the number 

of times each exercise occurred and distinguish these physical movements from other movements whilst 

in the gym (drinking water, walking, etc.). 

All of these algorithms require the smartphone to be firmly fixed to the body, often with a strap that 

is not commercially available [91,92,100,101] and can be restrictive to wear [77,90]. Additionally, some 

manufacturers have increased the device’s screen size from an initial size of 3.5” (1st generation iPhone) 

or 3.7” (Nexus One) to 4.7” (iPhone 6) or 5.1” (Samsung S6) which would make them more cumbersome 

to wear, but is catering to user demand for the device as medium for video. In either case, these 

apparatuses may not be representative of how people carry their smartphone throughout the day. 
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Table 3. Applications where the smartphone has been used as a substitute for a dedicated wearable ambulatory monitor (WAM). 

Author Application Sensors Placement Subjects (M:F) Machine Learning Algorithm Movements Outcome 

Joundi et al. 
[32] 

Rapid tremor assessment Accelerometer 
Strapped to the forearm  

or lower leg 
7 (undisclosed) Undisclosed 

Tremor (multiple sclerosis, essential 

tremor, post-stroke, dystonic,  

Parkinson’s Disease ) 

iPhone accelerometer can be 

used to identify the dominant 

tremor frequency 

He and Li 

[77] 

Physical movement,  

simulated falls 
MIMU Placed in a strap over the chest 10 (6:4) 

Hierarchical classifier 

comprised of 14 binary 

classifiers. 

Sitting, lying, standing, postural 

transitions, walking, stair ascent and 

descent, running, jumping, falling 

(forward, backward, to the left or right) 

Accuracy 95.03% 

Marshall [89] Swim coach MIMU Placed on the lower back Undisclosed Undisclosed Body posture, swim velocity Undisclosed 

Mitchell et al. 
[90] 

Athletic performance  

during five-a-side  

soccer and field hockey 

Accelerometer 
Inserted into vest,  

between scapulae 
32 (undisclosed) 

Wavelet transform, NB, KNN, 

ANN, DTC, SVM 

Stationary, walking, jogging, sprinting, 

hitting the ball, standing tackle, dribbling 

Fsoccer = 0.799 

Fhockey = 0.823 

Kranz et al. 
[91] 

Physical exercise trainer 

Accelerometer, 

magnetometer, 

Wi-Fi, 3G 

Placed in the centre of  

a balance board 
6 (undisclosed) 

Pyramidal principal component 

breakdown analysis 

Static and dynamic balancing exercises 

performed on a balancing board  

(20 in total) 

rdynamic = 0.549 

rstatic = 0.771  

Muehlbauer 
et al. [92] 

Detect specific upper arm 

exercises and the  

number of repeats 

IMU Holster on upper arm 7 (6:1) KNN 

Butterflies, chest press, latissimus, 

abdominal, upper back, shoulder press, 

pulldown, low row, arm curl or extension 

Accuracy 85.1% 

Tacconi et al. 
[95] 

Simulated falls Accelerometer 
Belt-worn on the waist  

over the lower back 
3 (undisclosed) 

Single-threshold based 

algorithm 

Various falls: forward, lateral, backward, 

sliding against a wall, out of bed 

Detected 65 out of 67  

simulated falls 

Shumei et al. 
[96] 

Physical movement Accelerometer 
Belt-worn on the left side of the 

waist, landscape orientation. 
10 (7:3) 

DTC 

SVM 

Sitting, standing, lying, walking, postural 

transitions, gentle motion 
Accuracy 82.8%  

Anguita et al. 
[97] 

Physical movement IMU Placed in a belt on the waist 30(undisclosed) SVM 
Standing, walking, sitting, lying,  

stair ascent, stair descent 
Accuracy 89%  

Aguiar et al. 
[98] 

Physical movement, estimate 

energy expenditure 
Accelerometer 

Placed in a belt,  

worn on the waist 
31 (21:10) DTC Lying, standing, walking, random, running Accuracy 99.4% 

Pernek et al. 
[100] 

Exercise repetition detection 

using exercise machines in a 

gym or free weights and 

resistance bands. 

Accelerometer 

Placed on the exercise  

machines weights; attached  

to the wrist or ankle. 

10 (6:4) Logistic regression 

Squats, leg curl, leg extension, calf raise, 

triceps extensions, bicep curls, abdominal 

crunches, bench press 

F = 0.993 ± 0.034 

Stöggl et al. 
[101] 

Cross-country skiing Accelerometer 
Smartphone strapped to chest 

(portrait orientation) 
11 (7:4) 

Markov chain of multivariate 

Gaussian distributions 
Skating techniques G2, G3. G4. G5 Accuracy 100% 

Mellone et al. 
[102] 

Simulated falls MIMU 
Placed in a belt and worn on 

the waist over the lower back 
Undisclosed 

Threshold of 2.3 g on the 

acceleration sum vector 
Timed-up-and-go test, fall detection 

Validation of smartphone’s 

ability to host another process 

for fall monitoring. 
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3.2. Body Position Dependent Algorithms (BPDAs) 

Body position dependent algorithms (see Table 4) require the smartphone to be placed in a consistent 

location (e.g., pants or shirt pocket) but do not need the device to be firmly fixed to the body in a specific 

orientation, an issue which can be overcome by utilising pre-processing techniques, in particular 

dimension reduction (PCA/LDA/KDA). The primary advantage of these algorithms over FBAs is that 

they are not reliant on the user purchasing additional equipment to estimate physical body movement. 

This has led to the emergence of algorithms capable of estimating physical movement whilst the phone 

is held in the hand, or is placed in the pants or shirt pocket. 

Table 4. Applications where a smartphone has been used as a body position dependent WAM. 

Author Application Sensors Placement 
Subject total 

(M:F) 

Machine 

Learning 

Algorithm 

Movements Outcome 

Guidoux  
et al. [33] 

Physical 

movement, 

estimate energy 

expenditure 

Accelerometer Pants pocket 

12 (6:6) 

directed 

30 (15:15) 

free-living 

Periodic 

function peak 

Sitting, normal and brisk 

walking, stair ascent, stair 

descent, standing, slow 

running, riding a tram 

Accuracy of 73.3% ± 10.3% 

Shoaib  
et al. [65] 

Physical 

movement 
MIMU 

Pants pocket, 

chest pocket, 

lateral surface of 

the bicep, wrist  

10 (10:0) 
DT, KNN, BN, 

NB. SVM, LR 

Stair ascent, stair descent, 

walking, jogging, biking, 

sitting, standing 

Gyroscope can detect stair 

ascent/descent with greater 

accuracy than accelerometer. 

Jogging, walking and running 

identified at comparable rates with 

either gyroscope or accelerometer 

Aguiar  
et al. [98] 

Physical 

movement, 

estimate energy 

expenditure 

Accelerometer Pants pocket 31 (21:10) 
Decision tree 

algorithm 

Sitting, standing, walking, 

running, random 
Accuracy of 99.5% 

Albert et al. 
[103] 

Physical 

movement 
Accelerometer Pants pocket 

18 (6:12)  

8 (1:7)  

SVM, sparse 

multinomial 

LR 

Walking, standing, sitting, 

holding the phone whilst 

standing (arms bent 

forward), holding phone 

placed on table 

The model trained on data from 18 

healthy individuals could only 

predict the activity of the 8 

individuals with Parkinson’s 

disease with an accuracy of 60.3%

Pei et al.  
[104] 

Physical 

movement 
MIMU Pants pocket 

4 

(undisclosed) 

Least squares 

SVM 

Sitting, walking, fast 

walking, standing, sharp 

turning (>90°),  

small turns (<90°) 

Accuracy 92.9% 

Del Rosario 
et al. [105] 

Physical 

movement 
IMU, barometer  Pants pocket 57 (40:17) J48 DT 

Standing, sitting, lying, 

walking, stair ascent, stair 

descent, postural 

transitions, elevator up, 

elevator down 

Data from older cohort can be 

used to build a decision tree based 

classifier that is more robust at 

estimating activities of daily living 

from different age groups. 

Varnfield  
et al. [106] 

Count steps, 

physical  

activity level 

Accelerometer Belt on waist 11 (7:4) Undisclosed 

Count steps, activity  

level: (sparse, moderate, 

high, intense) 

Step counter <2% error rate in 

controlled environment 

Bylemans et al. [107] used the accelerometer within a smartphone to detect steps, and dynamically 

estimate step length based on the height and gender of the user. The accuracy of their model was affected 

by the magnitude of the impact accelerations measured due to the heel striking the floor during 

ambulation, causing those who tread more lightly or heavily to have their step length underestimated or 

overestimated (respectively) because the model assumed that larger accelerations during ambulation are 

indicative of bigger steps. Similarly, Pratama et al. [108] evaluated the accuracy of three step length 
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estimators (Weinberg [37], Kim et al. [38] and Scarlett [39]) which assumed that the phone was held in 

the hand with the screen facing the user during walking on level ground. The method proposed by 

Scarlett [39] produced the lowest error in total distance travelled.  

Ayub et al. [109] benchmarked the same step length estimators (Weinberg [37], Kim et al. [38] and 

Scarlett [39]) under three different “carrying modes” (in pants pocket, held in hand, or held next to the 

ear) and again found that the step length estimation method proposed by Scarlett [39] produced the 

smallest error. Combining these estimates of walking distance with models (developed from MLAs) that 

characterise physical movement [65,103–105] will facilitate long-term, non-invasive monitoring, 

enabling clinicians and healthcare professionals to determine if patients are maintaining a healthy 

lifestyle [110] whilst analysing gait with dedicated wearable ambulatory monitors has been shown to 

offer insight into the physical health of patients [111–113]. 

Antos et al. [93] identified the most important limitation of BPDAs when they demonstrated that the 

accuracy of models developed with a MLA (i.e., SVM and HMM) drop significantly if they are used to 

estimate physical movement while worn at an alternative location on the body. In the analysis they 

performed, the accuracy of the model used to identify five physical movements (standing, sitting, 

walking, transition between sitting and standing) from data collected with a smartphone at four different 

body locations (hand, belt, pants pocket or bag) dropped; from 90.8% when the location of the 

smartphone was known; to 56.8% when data collected from all positions were classified by a model that 

was trained on data obtained from only one position. Whilst models dependent on device position should 

not be used in critical contexts, for example, where a person’s health or welfare may be dependent on the 

model’s accuracy (e.g., fall detection algorithms [114]), they are adequate for estimating physical 

movement provided that the user places the device at the same location on their body. 

3.3. Body Position-Independent Algorithms (BPIAs) 

Throughout the day the user may move the smartphone from one location on the body to another, 

depending on what they are doing. To account for this variability, models (see Table 5) needed to be 

developed that considered smartphone position on the body [93] before determining the physical 

movement. Incorporating this logic into existing smartphone applications increases their ability to 

identify the correct movement regardless of the device’s position on the body, but results in increased 

computational complexity because the information extraction phase may require the use of digital filters 

and dimension reduction techniques before estimating where the device is positioned on the body and 

attempting to identify the physical movement. Additionally, it may reduce the granularity of the 

identifiable physical movements (i.e., the model may not be able to identify all of the movements listed 

at the lowest level of the hierarchy in Figure 3). 

Anjum and Ilyas [115] proposed a model capable of identifying seven physical movements, although 

it was not able to identify the three stationary postures (standing, lying or sitting) or transitions between 

them (recall Figure 3). This would inhibit the application’s ability to estimate the individual’s risk of 

cardiovascular disease, which has been shown to be linked to prolonged periods of sitting [116–119]. 

Antos et al. [93] was able to distinguish standing and sitting but could not identify ambulatory 

movements associated with walking on stairs, which expends more energy compared to walking on a 
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level surface [120]. Henpraserttae et al. [61] could identify the three primary postures but also failed to 

identify stair ascent and descent. 

Table 5. Applications where a smartphone has been used as a position independent WAM. 

Author Application Sensors Placement 
Subject Total 

(M:F) 

Machine 

Learning 

Algorithm 

Movements Outcome 

Khan et al. 
[54] 

Physical 

movement 

Accelerometer, 

barometric 

pressure, 

microphone 

Front and back  

pants pocket, jacket 

breast pocket  

30 (18:12) 

Kernel 

discriminant 

analysis, 

SVM 

Walking, walking on treadmill, 

running, running on treadmill, stair 

ascent, stair descent, elevator up, 

elevator down, hopping, riding a bike, 

inactive (sitting or standing), 

watching TV, vacuuming,  

driving a car, riding a bus 

Accuracy 

94% 

Khan et al. 
[56] 

Physical 

movement 
Accelerometer 

Front and back  

pants pocket, jacket 

breast pocket 

10 (6:4) ANN 
Standing, walking, running, stair 

ascent, stair descent, hopping 

Accuracy 

86.98% 

Henpraserttae 
et al. [61] 

Physical 

movement 
Accelerometer 

16 orientations  

on the waist, shirt 

and pants pocket 

10 (undisclosed) KNN (k = 3) 
Lying, sitting, standing, walking, 

running, jumping 

Accuracy 

86.36% 

Antos et al. 
[93] 

Physical 

movement 
IMU 

Hand, belt on waist, 

pants pocket, 

backpack 

12 (undisclosed) SVM, HMM 

Standing, sitting, walking, transitions 

between  

sitting and standing 

Accuracy 

87.1% 

Anjum and 

Ilyas [115] 

Physical 

movement 
IMU 

Hand, pants pocket, 

handbag, shirt 

pocket 

10 (undisclosed) J48 DT 
Walking, running, stair ascent, stair 

descent, driving, cycling, inactive 

Accuracy 

94.39% 

Lu et al. [121] 
Physical 

movement 

Accelerometer, 

microphone, 

GPS 

Pants pocket 

(front/back), hand, 

armband, backpack, 

belt, jacket  

breast pocket 

16 (12:4)  SVM  
Stationary, walking, cycling, running, 

vehicle 

Accuracy 

95.1% 

Han et al. 
[122] 

Physical 

movement, 

context 

recognition 

Wi-Fi, GPS, 

microphone, 

accelerometer 

Waist, pants  

pocket or hand 
10 (undisclosed) HMM, GMM 

Walking, jogging, inactive, bus 

moving, bus (traffic jam) bus 

stationary, subway moving,  

subway stationary 

Accuracy 

92.43% 

Sun et al. 
[123] 

Physical 

movement 
Accelerometer 

Pants pocket 

(front/back), 4 

different orientations 

in the front pants 

pocket, blazer  

front pocket 

7 (6:1) SVM 

Stationary, walking, running, cycling, 

stair ascent,  

stair descent, driving 

F-score 

93.1% 

Thiemjarus  
et al. [124] 

Physical 

movement 
Accelerometer 

Placed on the waist, 

in the shirt and 

trouser pocket 

8 (6:2) KNN (k = 1) 
Lying, sitting, standing,  

walking, running, jumping 

Accuracy 

75.19% 

The advantage of position-independent algorithms over those previously described is that they allow 

the user to use their smartphone as they would otherwise, without restriction. A recent study by  

Wang et al. [125] remotely monitored forty-eight university students over a period of ten weeks, 

requiring participants to simply install an application, StudentLife, on their smartphone. The application 

they developed combined their previous work [53,121,126] to detect physical movement regardless of 

device position and orientation. Whilst their application could only detect periods of physical activity in 

windows of ten minutes, they were able to use the measurements they obtained from the smartphone to 

show a significant negative correlation between total activity time per day and loneliness (݌ = 0.018). 
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This finding, along with recent work by Varnfield et al. [106] in which the smartphone’s sensing 

capabilities are used to remotely count the steps of patients undergoing cardiac rehabilitation within their 

own homes, illustrate the vast potential that smartphones have to improve healthcare if they are utilised 

as a non-invasive monitor of physical movement. 

4. Challenges 

There are a number of design criteria which need to be addressed when algorithms for estimating 

physical movement are developed (see Figure 5). Ideally the algorithm would consume a minimal 

amount of power whilst accurately classifying physical movements to the “lowest level” of detail  

(see Figure 3), regardless of the smartphone, its position on the body, its orientation and the physical 

characteristics of the user. The challenges that prevent these criteria being satisfied by a single algorithm 

will be discussed before outlining future avenues that warrant further investigation. 

 

Figure 5. Properties of the ideal algorithm for physical movement identification. Examples 

of what an ideal algorithm would need to achieve to satisfy each criterion are listed below 

each property. 

4.1. Smartphone Battery Life 

The limited battery life of the smartphone is a prominent issue which users deal with by regularly 

charging their device, or charging when they receive a notification from the device to do so [127].  

Falaki et al. [42] identified that the rate at which the smartphone’s battery is consumed is dependent on 

three factors: (i) the number of user interactions with the device; (ii) the applications installed and run 

by the user on the device; and (iii) the hardware and operating system within the device. Carroll and  

Heiser [43] determined that in a “suspended” state (no applications running/screen switched off) much 

of the Android smartphone’s battery power (OpenMoko Neo Freerunner) is consumed by the GSM 

module, whilst in an “idle” state (screen on but no applications running) the graphics processor consumes 

the most power (a more detailed breakdown can be found in Figure 6). In an attempt to determine which 

hardware components consume the most power, they performed a number of use case scenarios, to assess 

which hardware components consumed the most power under varying circumstances. Among their 
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findings, Carroll and Heiser identified that even modest smartphone usage (using the device to call; 

SMS; browse the internet; and email for a total of three hours) could reduce the battery life to  

twenty-one hours. 

The bigger displays which have become prominent in modern smartphones require more power  

and have exacerbated battery life problems [128,129]. This limitation led Khan et al. [56] and  

Han et al. [130] to develop computationally “lightweight” algorithms (i.e. feature extraction methods 

and models that do not require large amounts of memory or relatively complex mathematical operations) 

that could estimate physical movement whilst minimising the rate at which the smartphone’s battery  

was consumed. 

Figure 6. Power consumption of various smartphone hardware components. Adapted from 

Carroll and Heiser [43]. 

The rate at which the smartphone’s battery is depleted will be affected by internal and external sensing 

characteristics. Internal sensing characteristics are sensor-dependent and include the sampling rate and 

resolution mode of the sensor (in the case of the motion and environmental MEMS sensors). The 

resolution mode of the sensor can dramatically alter the rate of power consumption, particularly if the 

barometric pressure sensor is used. The LPS331AP from STMicroelectronics (found in the Samsung 

Galaxy S3) consumes 5.5 μA in its low resolution mode, but consumes 30 μA in its high resolution 

mode. Similarly, the BMP180 from Bosch Sensortec (found in the Samsung Galaxy Nexus and Nexus 4) 

consumes 3 μA in the ultra-low power mode and 32 μA in the advanced resolution mode if the sensor is 

sampled at 1 Hz. 

Conversely, external sensing characteristics are related to the number of active sensors and the 

computational complexity of the information extracted from the data (i.e., during the pre-processing and 

feature extraction stages). Abdesslem et al. [44] showed that a 1200 mAh battery could power a 

smartphone (Nokia N95) for 170 h with all sensors switched off, whilst Khan et al. [56] demonstrated 

that physical activity could be estimated with sampling rates as low as 20 Hz without compromising 

classification accuracy and recommended the use of time-domain features over frequency domain 

features as their calculation consumed less power. Additionally, further reductions in energy 

consumption could be attained by reducing the number of features extracted as well as the computational 

complexity of the features [56,131]. Algorithm energy efficiency will continue to be an important 

criterion that needs to be considered, unless advancements in battery technology lead to higher density 

energy storage, or methods for reducing the power consumption of hardware components are developed [44]. 

GSM
45%

CPU
19%

RAM
4%

WiFi
10%

Graphics
13%

Audio
5%

Other
4% Suspended

GSM
21%

CPU
14%

RAM
3%WiFi

3%
Graphics

30%

Audio
10%

Other
1%

LCD
18%

Idle



Sensors 2015, 15 18919 

 

 

Such methods could include power management algorithms that dynamically change which sensing 

components are switched on, or change the sampling rate of powered-on MEMS sensors based on battery 

life or magnitude of acceleration/angular velocity. 

4.2. Algorithm Granularity 

In order to develop algorithms that can identify physical movements to the “lowest level” of detail 

(recall Figure 3), the notion of energy efficiency is largely disregarded, since data from all of the 

available sensing components must be analysed in combination [49,104,122,130]. The granularity to 

which physical movement can be estimated is inherently dependent on where the device is located on 

the body and how firmly it is fixed at that location. If the smartphone is placed in the pants pocket, it can 

separate the physical movements of walking and running [132], but may struggle to distinguish bicep 

curls from tricep extensions. This will have implications on energy expenditure estimates which will be 

unable to account for increased energy expenditure due to carrying a load (realistically it is not possible 

for any wearable sensors worn on the lower body to estimate energy expenditure due to upper body 

movement); or performing an activity which consists primarily of upper body movement [133]  

(when the smartphone is placed on the waist or in the pants pocket); or deviations in energy expenditure 

due to changes in walking surface (such as moving between sand and a firm-surface) [134]. Additionally, 

the accuracy of the estimated energy expenditure has been shown to deteriorate with increased work rate 

due to a combination of moving at greater velocity or on an incline [3]. 

4.3. Algorithm Robustness 

4.3.1. Cross Platform Variability 

Ideally, a single algorithm would be developed that could be deployed across all smartphone handsets. 

This is not a trivial exercise due to differences in the smartphone operating system (OS), software and 

hardware which vary across platforms. Yanyan et al. [135] identified the three options (native, web, 

hybrid) that software developers can choose between when developing an application for the smartphone 

and noted that whilst native applications lead to better application performance, it is more difficult to 

migrate these applications from one platform to another compared to web or hybrid applications. 

Additionally Android, MeeGo, and Symbian platforms allow any application to run in the background 

(i.e., applications that continue to run even when they are not visible on the smartphone’s screen), whilst 

iOS does not support applications that continuously access the inertial sensors in the background [136]. 

This difference can limit the type of applications that are suitable for cross platform development. 

Whilst the MEMS sensing components of many smartphone devices are comparable, the operation 

mode (sensor resolution and range of operation) vary considerably across devices and is a critical issue 

which would prevent the widespread adoption of a single algorithm. Table 6 lists the specifications of 

the MEMS sensors (both motion and environmental) in some currently available smartphone devices, 

and clearly illustrates that the range of operation and resolution are not consistent across devices. This 

limits the portability of algorithms developed with data obtained from one smartphone and deployed on 

another device with a different sensor set or operation modes, since measurements across devices will 

not be comparable, particularly if the sensors reach their saturation value. Habib et al. [35] reported that 
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the range of operation of smartphone accelerometers (±2 g; g = 9.81 m·s−2) may ultimately prove too 

narrow for the purposes of fall detection; however this limitation is due to an inability to change the 

sensor’s resolution. Whilst it is not yet possible to change the sensor’s range of operation, the newest 

commercially available smartphones (HTC One, iPhone 6/6+) have accelerometers with a range of 

operation far exceeding ±2 g, making these devices more suitable for detecting falls, where the 

magnitude of the impact acceleration can reach values of 3.5 g [137], but at the cost of reduced resolution. 

Table 6. Sensor specifications of some commercially available smartphones. Note the 

following abbreviations: accelerometer (A), gyroscope (G), magnetometer (M), barometer 

(B), g = 9.81 m·s−2. 

 A G M B Range Resolution 

Galaxy Nexus 

    ±2 g ±0.61 m·s−2 

    ±2000 °/s ±0.06 °/s 

    ±800 μT ±0.15 μT (x/y axis) ±0.30 μT (z axis) 

    300–1100 hPa ±1 hPa 

HTC One 

    ±4 g ±0.039 m·s−2 

    ±2000 °/s ±0.06 °/s 

    ±4900 μT ±0.15 μT 

Samsung S4 

    ±2 g ±0.001 m·s−2 

    ±500 °/s ±0.057 °/s 

    ±1200 μT ±0.15 μT (x/y axis) ±0.25 μT (z axis) 

    300–1100 hPa ±1 hPa 

Samsung S3 

    ±2 g ±0.01 m·s−2 

    ±500 °/s ±0.015 °/s 

    ±1200 μT ±0.30 μT 

    260–1260 hPa ±0.24 hPa 

Samsung S2 

    ±2 g ±0.002 m·s−2 

    ±2000 °/s ±0.06 °/s 

    ±1200 μT ±0.30 μT 

iPhone 6/6+ 

    ±8 g ±0.002 m·s−2 

    ±2000 °/s ±0.06 °/s 

    ±4900 μT ±0.15 μT 

    300–1100 hPa ±0.16 hPa 

iPhone 5/5s 

    ±8 g ±0.002 m·s−2 

    ±2000 °/s ±0.06 °/s 

    ±1200 μT ±0.30 μT 

iPhone 4/4s 

    ±2 g ±0.002 m·s−2 

    ±2000 °/s ±0.06 °/s 

    ±1200 μT ±0.30 μT 

LG Nexus 4 

    ±4 g ±0.001 m·s−2 

    ±500 °/s ±0.015 °/s 

    ±4912 μT ±0.15 μT 

    0–1100 hPa ±1 hPa 
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4.3.2. Device Placement 

Smartphones will continue to be an attractive platform for identifying physical movement so long as 

they are placed on the body. Whilst dimension reduction techniques (see Section 2.2.1) have been 

employed to normalise data of high variability due to inconsistent device orientation, the data from a 

MIMU has yet to be fused via an AHRS algorithm for the purposes of identifying physical movement. 

Utilising an AHRS would enable local frame accelerations to be projected back to the global frame of 

reference, enabling features to be derived that are independent of device orientation and may lead to new 

features based in biomechanics, akin to the principals which govern the ZARU and ZUPT used in 

pedestrian dead reckoning.  

Habib et al. [35] noted that individuals may not place their smartphone in a garment of clothing that 

they are wearing whilst at home, limiting the ability of the smartphone to monitor physical movement 

in the home. That being said, older adults have shown a preference to place a smartphone in a pocket of 

their clothing rather than wear a dedicated device [138] when given the option, a preference which may 

extend to other subpopulations when asked to wear a non-invasive monitor for their health. At present, 

it is unclear if methods need to be developed to identify these periods when the smartphone is not placed 

on the body, as well as developing mechanisms or strategies to facilitate non-invasive monitoring during 

these times. 

4.3.3. Inter-Subpopulation Predictive Capability 

Albert et al. [103] identified a model’s inability to correctly classify movements across 

subpopulations that performed the same physical movements when they trained an algorithm for 

quantifying physical movement on eighteen healthy individuals (33.0 ± 4.5 years) and evaluated its 

predictive capability in a cohort of eight individuals with Parkinson’s disease (67.0 ± 8.1 years). They 

discovered that the algorithm could not predict the movements to the same degree of accuracy within 

the group suffering from Parkinson’s disease. This inability to predict physical movements  

across cohorts with different physical/physiological characteristics was independently identified by  

Del Rosario et al. [105] who found that an algorithm trained on older adults (83.9 ± 3.4 years) was better 

able to predict physical movements in younger adults (80.5% ± 6.8%) than an algorithm trained on 

younger adults (21.9 ± 1.7 years) and tested on older adults (69.2% ± 24.8%).  

These findings have consequences if the classifier forms the basis of an algorithm designed to 

estimate energy expenditure due to the link between metabolic equivalents (METS) and physical  

activity [139]. Guidoux et al. [33] incorporated this approach into an algorithm for estimating the total 

energy expenditure (accurate to within 10%) which they tested in a group of young adults  

(34.1 ± 10.5 years). They acknowledged that these estimates would not be generalisable to a population 

of young children or obese adults due to differences in behaviour during physical movement.  
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4.4. Future Research 

4.4.1. New Sensing Components 

Smartphones will continue to change as emerging technologies are miniaturised before being 

integrated into the “next-generation” device. Comparing the first generation of smartphones with those 

that are representative of the current “state-of-the-art” it is evident that future devices will contain more 

sensing components (a fact that is self-evident), all of which may aid in the identification of physical 

movements. Whilst algorithms have been developed which use the smartphone’s camera and flash to 

estimate heart rate/pulse [140,141], the advent of a dedicated “heart-rate” sensor within the latest 

iteration of smartphones (e.g., Samsung S5) provides further evidence that more sensors which were 

initially restricted to the healthcare sector may eventually be found within smartphone devices. In this 

domain, future research efforts should focus on identifying sensors that might be suitable for integration 

into the next generation of smartphones, as well as developing algorithms that incorporate these sensing 

components to improve existing algorithms for identifying human movement. 

4.4.2. MEMS Sensor Management 

“Smart” algorithms that are able to dynamically alter the sampling rate of the smartphone’s MEMS 

sensors need to be investigated and developed to maturity. These smart algorithms would decrease the 

sampling rate of the MEMS sensors when the individual is determined to be sedentary, disable the 

MEMS sensors completely when the smartphone is not located on the person’s body and increase the 

sampling rate when the person is active. Methods should also be developed to change the sensor’s range 

of operation as this may aid in the identification of certain physical movements which are difficult to 

discriminate, particularly when the accelerometer is in the ±2 g range of operation mode [137]. 

4.4.3. Convergence with Emerging Technologies 

The arrival of the “smartwatch” as well as the inevitable development of other “smart” garments of 

clothing which are able to communicate with the smartphone will present an opportunity for algorithm 

designers to identify (with greater certainty) both where and when the smartphone is located on the body. 

Methods should be investigated that use RSSI to estimate the distance between “smart” devices that are 

in close proximity. Presumably these techniques would be analogous to those used in magnetic position 

and orientation tracking systems [142]. Future research should also consider the possibility that these 

“smart” garments (embedded with MEMS sensors) may eventually become preferable to utilising the 

sensors within the smartphone for identifying physical movement. In this scenario, the smartphone may 

become the “data-hub” or nexus at which all the sensor data is processed. If this should eventuate, it will 

become necessary to develop new ways for establishing communication between wireless devices that 

do not require the devices to be manually “paired” every time as this would become a hindrance to  

their use. 
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4.4.4. Algorithm Personalisation 

“Aggregator” applications such as “HealthKit” [143] (from Apple Inc.) and “S Health” [144]  

(from Samsung) have emerged that consolidate information from various third-party smartphone 

applications designed to collect data about different aspects of an individual’s health and wellbeing  

(e.g., blood pressure; heart-rate; weight; location). These aggregator apps could be leveraged to improve 

algorithms that estimate physical movement by utilising the individual’s personal information  

(as additional features that were extracted) to tailor the algorithm’s behaviour so that it accounts for their 

physiological characteristics (age, current fitness level) as well as their daily-routines, both of which 

may change over time. 

5. Conclusions 

The smartphone has demonstrated a tremendous amount of capability as a non-invasive monitor of 

physical movement. The studies referenced herein have shown that when the smartphone’s vast array of 

sensing components are utilised the device can estimate a variety of physical movements with potentially 

far reaching applications in healthcare. Further research is required to resolve the issues generated by 

the multifunctional nature of the device as well as the maturation of smartphone technology to mitigate 

the limitations imposed by battery capacity. The advent of “smartwatches” which contain MEMS 

sensors, as well as other items of clothing which may become “smart” (i.e., embedded with electrical 

components that can transduce movement and communicate with other electronic devices wirelessly) 

have the potential to dramatically impact future methods for identifying movements. Instead, the 

smartphone could become the hub to which all data is relayed and processed, rather than solely relying 

on the sensors within the smartphone to identify physical movement. 
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