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Abstract: This paper presents preliminary polarization measurements and systematic-error 

characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE 

experiment. The instrument has been designed to measure the polarization of Cosmic 

Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes 

parameters of the incoming signal simultaneously. Two kinds of linearly polarized input 

signals have been used as excitations in the polarimeter measurement tests in the 

laboratory; these show consistent results in terms of the Stokes parameters obtained. A 

measurement-based systematic-error characterization technique has been used in order to 

determine the possible sources of instrumental errors and to assist in the polarimeter 

calibration process. 
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1. Introduction 

In 1964 Penzias and Wilson measured by chance a noise-like signal [1] that turned out to be the 

Cosmic Microwave Background (CMB). This radiation is the remaining footprint of the Big Bang and 

was postulated by Gamow, Alpher, and Herman in the late 1940s [2]. Ultra-sensitive radio astronomy 

instruments have been used since then to characterize the CMB. Space missions like COBE [3] in the 

late 1980s, WMAP [4] in the early 2000s and more recently, the PLANCK mission [5,6], have been 

dedicated to the analysis of temperature and polarization anisotropies of the CMB. Moreover,  

ground-based experiments, such as QUIET [7] and BICEP [8,9], have been developed to measure the 

CMB polarization to increasingly higher sensitivity with the aim of measuring the B-mode polarization 

pattern predicted by inflationary models of the early Universe.  

The present study is focused in the Q-U-I Joint Tenerife (QUIJOTE) experiment. This ground-based 

experiment has been designed to measure the polarization of the CMB and other galactic and 

extragalactic signals at medium and large angular scales in the frequency range from 10 to  

47 GHz [10,11]. The project consists of two telescopes and three instruments: the Multi-Frequency 

Instrument (MFI), operating at 10–20 GHz, the Thirty-GHz Instrument (TGI) and the Forty-GHz 

Instrument (FGI). These are able to obtain the polarization state of the incoming electromagnetic 

radiation [12] by measuring the Q, U, and I Stokes parameters. Preliminary polarization measurements 

performed in the laboratory and a simplified method of systematic-error [13] characterization to assist 

in the calibration [14] of the QUIJOTE TGI polarimeter is presented in this paper. Two polarimeter 

units have been measured to obtain the detected output voltages, which depend on the polarization of 

the incoming signal. Furthermore, the measurements of the polarimeter response have been used to 

characterize the systematic errors of each polarimeter by using a system-level parametrical model. The 

reported polarization measurements and systematic-error analysis is a preliminary laboratory task with 

the general goal of learning about the measured signals and instrumental errors that will be present 

when the complete instrument is installed in its cryostat first and on the telescope for the 

commissioning stage. The behavior of the receivers will change owing to the cryogenic cooling of 

their Front-Ends, the telescope action, and by the use of real excitation signals coming for the sky, but 

the reported measurement and error analysis methods will possibly also be applied in those conditions. 

This document is divided into five sections. The first is an introduction followed by a description 

and analysis of the TGI polarimeter in Section 2. Section 3 focuses on the phase-adjustment and 

polarization measurement methodology, and provides representative examples. A simplified 

systematic-error characterization technique is presented and discussed in Section 4, and, finally, 

Section 5 draws general conclusions. 
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2. Tgi Quijote Polarimeter  

The ground-based QUIJOTE experiment is currently being operated at Teide Observatory (2400 m, 

a.s.l, Canary Islands, Spain) with a multi-frequency instrument (MFI) characterizing the CMB within 

the frequency range 10–20 GHz. Two other instruments are under development: the Thirty-GHz 

Instrument (TGI), and the Forty-GHz Instrument (FGI), working in the 26–36 GHz and 35–47 GHz 

frequency bands respectively [15]. These experiments will undertake two surveys: a wide survey 

covering 20,000 deg2 reaching a sensitivity of ~15 µK/beam with the MFI, and a deeper survey of  

3000 deg2 with a sensitivity of ~4 µK/beam with the MFI and better than 1 µK/beam with the TGI and 

the FGI. As QUIJOTE is a multi-frequency experiment, the beam size depends on frequency (in the 

particular case of TGI the beam size is 0.36°), but in the previous values of sensitivity are referred to a 

1 solid degree beam size. These data will probe multipoles roughly between multipoles  

l = 10 and l = 200 (survey of 3000 square deg. with an angular resolution of 1°) providing essential 

information about the polarization of low-frequency galactic foregrounds, and about the amplitude of 

the cosmological B-mode signal.  

2.1. TGI Polarimeter Theoretical Behavior  

The TGI polarimeter block diagram for one pixel is shown in Figure 1, which shows a cold stage 

module inside a cryostat (20 K) and a Back-End module at room temperature (298 K). The cryogenic 

part is made up of a feed-horn, a polarizer, an orthomode transducer (OMT), and two Low-Noise 

Amplifiers (LNAs) in the Front-End Module (FEM). Outside the cryostat, operating at room 

temperature, the Back-End Module (BEM) is composed of an Phase adjusting (PA) component, two 

Gain and Filtering Modules, the Phase Switch Module (PSM), and the Correlation and Detection 

Module (CDM).  

 

Figure 1. TGI polarimeter block diagram. 

In this study, the calculation of the Stokes parameters is achieved from the detected voltage 

waveforms of each independent detector. These waveforms are determined by the successive  

phase-states provided by the phase-switching module. The polarizer, together with the OMT, provides 

left-hand and right-hand circular polarization output signals, which, properly combined and detected, 

enable us to obtain the parameters. The PSMs alternate the phase differences between branches 

between 0/180º and 0/90° to generate four independent phase states. These modules minimize the 

leakage among the Stokes parameters and overcome the 1/f noise and different systematic errors in the 

receiver. Using a Cartesian coordinate system, the Stokes parameters are defined by: 
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YX EEI +=
 (1) 

22

YX EEQ −=  (2) 

( )YX EEU ··2 *ℜ=  (3) 

( )YX EEV ··2 *ℑ=  (4) 

where EX and EY are the orthogonal electrical field components in the coordinate system received by 

the feed-horn. The parameter V is assumed to be zero since the CMB is considered not to be circularly 

polarized [16] and is not measured. Therefore, assuming the incoming signal at the receiver to be 

linearly polarized , a translation to a circularly polarized wave is performed with the square quad-ridge 

waveguide polarizer [15] combined with the OMT, which splits the left- and right-hand circular 

components to accomplish the behavior of a septum polarizer [17] with the benefit of avoiding its 

usual bandwidth limitation. 

The combination of the 90°- and 180°-phase switches in Figure 1 (Φ1, Φ3 and Φ2, Φ4 respectively) 

provides four phase states in each branch resulting in sixteen phase states in the overall pixel. As 

different combinations in the module cause redundant states, the pixel behavior is easily analyzed in 

terms of the phase difference between the two branches of the pixel ΦT, given by: 

( ) ( )2143BBT ΦΦΦΦΦΦΦ
12

+−+=−=  (5) 

where ΦB2 and ΦB1  are the insertion phases of the lower and upper branches of the PSM shown in 

Figure 1. The input signals to the PSM, El and Er, are the outputs of the OMT [17] and are defined by:  

( )YXl EjEE ··
2

1 +∝  (6) 

( )YXr EjEE ··
2

1 −∝  (7) 

Assuming ideal behavior of the scheme in Figure 1 and the previous equations, the detected 

voltages for the different phase states as a function of the Stokes parameters are easily obtained  

(see Table 1, where K is a proportionality constant related to the gain of the polarimeter).  

Table 1. Detected voltages for an x-axis linearly polarized signal. 

ΦT Vd1 Vd2 Vd3 Vd4 

0º K·(I + Q) K·(I − Q) K·(I + U) K·(I − U)
90º K·(I + U) K·(I − U) K·(I − Q) K·(I + Q)

180º K·(I − Q) K·(I + Q) K·(I − U) K·(I + U)
270º K·(I − U) K·(I + U) K·(I + Q) K·(I − Q)

Alternatively the detected voltages can be expressed as a function of ΦT by means of the  

following equations:  

( ) ( )( )( )QUΦIIKUΦQIKV TpTTd
1

1 tancossincos −+⋅+⋅=Φ⋅+⋅+⋅=  (8) 

( ) ( )( )( )QUΦIIKUΦQIKV TpTTd −−+⋅+⋅=Φ⋅−⋅−⋅= −1
2 tancossincos  (9) 
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( ) ( )( )( )UQΦIIKQΦUIKV TpTTd −+⋅+⋅=Φ⋅−⋅+⋅= −1
3 tancossincos  (10) 

( ) ( )( )( )UQΦIIKQΦUIKV TpTTd −+⋅+⋅=Φ⋅+⋅−⋅= −1
4 tancossincos  (11) 

where Ip is given by: 

22 QUI p +=  (12)

3. Preliminary Polarization Measurements 

A broad-band linearly polarized input signal was used to excite two pixels of the QUIJOTE TGI. 

The detected voltages at the BEM outputs were recorded to calculate Stokes parameters according to 

the polarization of the input signal. The receiver chains are two of the pixels that will be installed in 

the TGI at Teide Observatory. The FEM cryogenic LNAs have not been included in the receivers 

owing to the excess of signal power at room temperature. In any case, the functionality of the 

polarimeters is not affected by this since the optomechanics (feed-horn, polarizer, and OMT), PSMs, 

and CDMs are the more relevant modules in the overall polarimeter functionality.  

3.1. Measurement Test-Bench 

The polarimeter phase-adjustment and measurement process is carried out by exciting the receiver 

with broadband x-axis and y-axis linearly polarized signals respectively. Figure 2 shows a sketch (a) 

and pictures of the measurement test-bench (b), and the noise source (c) used as excitation sources in 

the laboratory.  

 
(a) 

(b) (c) 

Figure 2. TGI Polarimeter measurement test bench. (a) Receiver functionality test bench 

(BEM details in Figure 1). (b) Polarimeter test bench with x-axis linearly polarized source. 

(c) y-axis polarized source. 



Sensors 2015, 15 19129 

 

 

The broadband noise-like linearly polarized signal is accomplished using a 346C (option K01) noise 

source model from Agilent Technologies (Santa Rosa, CA, USA) together with a conical horn having a 

rectangular waveguide input. The orientation of the rectangular waveguide port determines the 

orientation of the radiated E-field within the cross-polarization limits of the horn. Between the noise 

source and the horn, a broadband LNA raises the signal power while the distance between the 

transmitting antenna and the receiver feed-horn is adjusted to avoid compression in the detectors. The 

two signals split up in the OMT outputs and are correlated in the last module of the chain. Since both 

signals are affected by a phase imbalance due to small differences in the electrical paths, one of the 

branches of the receiver is provided with a commercial PA coaxial component, which enables the 

minimization of the phase difference between branches. The detected voltages, once amplified with 

video amplifiers in a differential configuration, provide output levels lower than 10 V. These signals 

are sampled by a 24-bit resolution Data Acquisition System (DAS) [18] (PXI-4495 from National 

Instruments, Austin, TX, USA). 

As has been explained in the previous section, the combination of the 90°- and 180°-phase switches 

provides four phase states in each branch, resulting in sixteen redundant phase states in the overall 

pixel. The phase shift between the two branches of the pixel (ΦT) can be provided in a sequence given 

by the repetition of the four fundamental values (0°, 90°, 180°, and 270°) until covering the sixteen 

possible phase-states. The detected voltages of the polarimeter have been measured, covering all the 

phase switch states, in order to calculate the Stokes parameters after processing the obtained values. An 

acquisition period of one second has been used to cover the complete sequence of sixteen phase states.  

3.2. Measurement and Phase-Adjustment Process  

The polarization measurement method is a real-time process in which the detected signals are 

acquired by the DAS in the successive 16 phase states provided by the PSM. The resulting detected 

signals can be analyzed by means of a Fast Fourier Transform (FFT) in order to obtain their amplitude 

and phase and also to calculate the Stokes parameters. The measured waveforms are sinusoids but, as 

the detected voltages provide only four points per cycle, they are represented as saw-tooth waveforms 

in this work. To illustrate this situation and how the 16 phase states are achieved, Table 2 shows the 

values of one of the four detected voltages (vd) measured in the resulting sequence of phase-states.  

If the FFT of vd is called Vd, a simplified version of vd can be reconstructed by means of the DC 

component (Vd[0]) and the fundamental harmonic (Vd[4]) following Equation (13): 

[ ] [ ]( ) [ ]( ) [ ]( )( )( )( )4V4Vtan2cos*4Vabs0Vv dd
-1

dd_FFTd iiiii ft ℜℑ++= π  (13)

f = 4 Hz in this case because in one second the sequence of four phase shift fundamental values 

between branches (0º, 90º 180º, and 270º) is repeated four times. For the example in Table 2, these 

values are Vd[0] = 2.59 V and Vd[4] = 2.395 − 0.054i V respectively. The rest of the FFT harmonics 

are not taken into account because they can be considered as residual terms. By comparison of  

Equations (8)–(12) with Equation (13), it is easy to identify the Stokes parameters [19] and some 

figures of merit related to them as the Q/U isolation (ISO) and the polarization percentage (Pol_perc) 

of the signal. Other parameters, such as the phase of the signal, can also be calculated in order to  
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get the phase-error of the polarimeter that is directly related with ISO. Equations (14)–(19) define all 

these parameters.  

Table 2. Detected voltage values for each of the phase-states forming a saw-tooth waveform. 

State ΦT (deg) ΦB2 (deg) ΦB1 (deg) vd (V)
0 0 0 0 5.28 
1 90 90 0 2.71 
2 180 180 0 0.19 
3 270 270 0 2.54 
4 0 90 90 4.66 
5 90 180 90 2.68 
6 180 270 90 0.17 
7 270 0 90 2.54 
8 0 180 180 5.26 
9 90 270 180 2.62 

10 180 0 180 0.18 
11 270 90 180 2.47 
12 0 270 270 4.67 
13 90 0 270 2.63 
14 180 90 270 0.17 
15 270 180 270 2.66 
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As can be observed in Equation (19), the Ii value represents the polarization percentage as the 

parameters are normalized by the total intensity that is given by Vdi[0] (see Equations (8)–(12) and 

Equation (13)). The index i goes from 1 to 4, representing each detector output of the polarimeter. 

Figure 3 shows the measured waveform of the detected voltage in Table 2 (black trace) and the 

resulting waveform calculated from the FFT main harmonic values (blue trace).  

The PA component setting is to minimize the phase-error over the detected signals. This error 

comes from both the electrical paths of the two polarimeter branches, including the PSM, and also the 

CDM. These errors are difficult to avoid because they come mainly from tolerances in the fabrication 

of every component of the polarimeter. In order to illustrate the effect of the adjusting phase over the 
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waveform of a detected signal, Figure 4 shows one detected signal before and after applying the phase 

correction. In the reported case, the phase of the signal should be 90°, so the phase error has decreased 

from 6.8° to 1.7°. 

 

Figure 3. Detected voltage waveform from Table 2 values (black trace) and the resulting 

waveform calculated from the FFT of the measured values (blue trace). 

 
(a) (b) 

Figure 4. Detected signal before (a) and after (b) phase-error correction. 

The PA component has a different effect on each detected voltage, so the following practical 

examples show how to measure polarization when instrumental errors are present.  

3.3. Practical Measurement Examples  

A first measurement example is illustrated in Figure 5 where the upper part (a) shows the detected 

signals after the phase-adjustment process, exciting the polarimeter with a 100% x-axis polarized 

signal (Figure 2b), and the lower part (b) shows the detected signals when using a 100% y-axis 

polarized signal (Figure 2c) and the previously achieved phase adjustment. Table 3 shows the 

parameters (Equations (14)–(19)) achieved from the detected voltages shown in Figure 5. In the left 

columns EY = 0, so it should be measured that I = Q and U = 0. In the right columns EX = 0, so we 

should get I = −Q and U = 0.  
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(a) 

 
(b) 

Figure 5. First polarimeter example: Detected signals resulting from the phase-adjustment 

process with an x-axis polarized input signal (a) and measurement process with a y-axis 

polarized input signal (b). 

Table 3. Parameters calculated from the detected signals shown in Figure 5 (Phase in Deg. 

and ISO in dB). 

Detector Ux Qx Phasex ISOx Ix Uy Qy Phasey ISOy Iy 

1 −2.1·10−2 0.92 −1.295 −16.46 0.92 2.2·10−2 −0.93 178.64 −16.25 0.93
2 −1.0·10−2 0.89 179.34 −19.41 0.89 1.2·10−2 −0.89 −0.79 −18.61 0.89
3 0.13 0.93 −82.19 −8.63 0.94 −0.13 −0.93 97.79 −8.64 0.94
4 0.11 0.94 96.78 −9.21 0.94 −0.11 −0.94 −83.18 −9.22 0.95

It can be seen that the PA component provides correct results in detectors 1 and 2 (good isolation 

and phase-error values), whereas detectors 3 and 4 remain uncorrected. In fact, it has been seen that, by 

using this component, it is possible to adjust the phase of only one pair of detectors (the one 

corresponding to Vd1 and Vd2 or Vd3 and Vd4) leaving the other pair uncorrected. This behavior arises 

because the polarimeter presents two main sources of phase error (the electrical paths of the 

polarimeter branches, including the PSM, that affects the four detectors and the 90°-phase-shifter of 

the CDM that affects only detectors 3 and 4) and one correction factor (the adjusting-phase 

component) that is able to correct only the error coming from the electrical paths of the polarimeter 

branches. So, in the general case, one pair of detectors will be corrected while the other  

pair will remain affected by the error in the 90º-phase-shifter of the CDM. Therefore, the need for 

redundant measurements using four detectors per polarimeter enables the following measurement 

solution to be proposed. 

Until now, the 16 states provided by the PSM have been used, but the choice of only four 

independent states with the lowest phase-error is now considered. In principle there are 256 combinations 

of four independent states that could be analyzed. An exhaustive search of the optimal combination 

can be implemented in the FPGA that is used to perform the measurements but, for simplicity, here we 



Sensors 2015, 15 19133 

 

 

have selected the last four phase states of the sequence (states numbered from 12 to 15 in Table 2). 

They provide less error than others due to the lower difference between the detected values when ΦT is 

90 and 270°, as can be observed in Table 2 by comparing states 13 and 15 with the pairs 1–3, 5–7 and 

9–11. Table 4 shows the parameters measured using these four independent states and a 100% x-axis 

polarized excitation signal (left columns) and a 100% y-axis polarized excitation signal (right 

columns). By comparing these results with those of Table 3, the improvement achieved in the results is 

clear, thus providing more accurate measurement of the incoming polarization by using the four 

detectors of each polarimeter.  

Table 4. Parameters calculated by using only the states numbered from 12 to 15 in Table 2 

(Phase in Deg. and ISO in dB). 

Detector Ux Qx Phasex ISOx Ix Uy Qy Phasey ISOy Iy 

1 5.72·10−3 0.89 0.37 −21.91 0.89 −1.24·10−3 −0.9 −179.92 −28.62 0.9 
2 1.07·10−2 0.87 −179.29 −19.09 0.87 −1.62·10−2 −0.86 1.08 −17.26 0.86
3 1.13·10−2 0.94 −89.31 −19.22 0.94 −2.87·10−3 −0.97 90.17 −25.27 0.97
4 −1.22·10−2 0.98 89.27 −18.95 0.98 −6.6·10−3 −0.95 −90.41 −21.48 0.95

On the other hand, some of the TGI polarimeters show a low enough phase-error to be used with the 

complete sequence of phase states. An example of these polarimeters with low phase-error is shown in 

Figure 6, where the upper part (a) shows the detected signals after the phase-adjustment process, 

exciting the polarimeter with a 100% x-axis polarized signal, and the lower part (b) shows the detected 

signals when using a 100% y-axis polarized signal and the previously achieved phase adjustment.  

 
(a) 

 
(b) 

Figure 6. Second polarimeter example: Detected signals resulting from the  

phase-adjustment (a) and measurement (b) processes. 

The parameters calculated from the signals of Figure 6 are presented in Table 5. In this case the 

detector presenting the highest phase error is the number 4 but it is considered low enough to measure 

polarization, as the polarimeter still has to be calibrated to correct the remaining systematic errors. 
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Table 5. Parameters calculated from the detected signals shown in Figure 6 (Phase in Deg. 

and ISO in dB). 

Detector Ux Qx Phasex ISOx Ix Uy Qy Phasey ISOy Iy 

1 3.71·10−3 0.94 0.23 −23.9 0.94 6.73·10−3 −0.92 179.58 −21.33 0.92

2 4.61·10−3 0.95 −179.73 −23.25 0.95 4.43·10−2 −0.93 −0.27 −23.19 0.93

3 −1.08·10−3 0.96 −90.07 −29.18 0.96 8.84·10−3 −0.94 89.47 −20.35 0.94

4 2.8·10−2 0.96 91.67 −15.35 0.96 −2·10−2 −0.94 −88.87 −16.68 0.94

In the previous measurements it is possible to see a polarization percentage different from 100%  

(I parameters should be equal to 1) when the excitation signal is 100% polarized and the instrumental 

offsets have been previously corrected. An external error source as one small part of unpolarized signal 

due to the free-space length between the noise source horn and the polarimeter horn (see Figure 2b) 

could be the reason for that. In the following we will consider 3% of the input signal to be unpolarized. 

In such a case, we should have measured the same offset level in the four detectors but the detected 

signals shows different offset values. The reason for that will be considered in the following section. 

4. Systematic Errors Characterization 

In this section, a simplified method for the polarimeter systematic-error characterization is 

presented. The method is based on the implementation of a polarimeter system-level parametric model 

in an electrical simulator and the optimization of such parameter values in order to fit the previous 

measurement results. The parameters represent the main amplitude and phase errors that can appear in 

some parts of the polarimeter, mainly owing to fabrication tolerances. In this work, ADS software 

from Agilent Technologies has been used to implement, simulate, and optimize the model parameters. 

A calibration method has been developed in parallel to this work by the QUIJOTE collaboration to 

cancel the systematic errors coming from the PSM. The method is based on fitting the error of each 

detected signal by means of the analysis of four equivalent phase states, derived from all sixteen. As 

the method presented here is more related to static systematic errors, both techniques may be 

considered as complementary.  

4.1. Polarimeter Parametric Model 

A simplified diagram of the system-level parametric model is shown in Figure 7. Eight parameters 

have been added (marked blue in Figure 7) to the system-level model in order to fit the imperfections 

achieved in the polarimeter measurements.  

 

Figure 7. Simplified diagram of the polarimeter parametric model. 
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Two parameters ‘Att’ and ‘Att2’ have been added to characterize the gain errors of the polarimeter. 

These errors can be produced by gain differences of the amplification stages (“Att”) but also by the 

poor isolation of the wave-guide power splitters (“Att2”), as these kinds of circuits have an ideal 

isolation between outputs of 6 dB. The branches of the 90-deg Phase-Shifter in the CDM do not 

present a gain-error parameter because this element is designed to have good matching and low 

insertion loss. Another two parameters, “Phs” and “Phs2”, characterize the phase errors in the 

polarimeter branches provided by the PSM and the 90-deg Phase-Shifter. Four more parameters, 

“GB”, “PB”, “GB2”, and “PB2”, characterize the gain- and phase-imbalance errors in the first and the 

second 180º hybrids. The reported model does not take into account either nonlinear effects or external 

error sources such as the unpolarized part of the input signal previously cited. The non-linearities are 

avoided by inserting a low enough input power to the polarimeter model, whereas the external error 

sources are modeled by adding a 3% of unpolarized input noise to the detected signals. 

When the aforementioned eight parameters are equal to zero, the parametric model is assumed to be 

ideal. In order to test this assumption, Table 6 shows the model simulation results using four different 

linearly polarized excitation signals with polarization angles of 0° (EY = 0, I = Q, U = 0), 45° (EY = EX,  

I = U, Q = 0), 90° (EX = 0, I = −Q, U = 0), and 135° (EY = −EX, I = −U, Q = 0). The parameters defined 

by Equation17 (ISO in dB), 18 (Phase in Degrees), and 19 (Pol_Perc in %) corresponding to each 

detector and excitation signal are reported in Table 6. It is rather obvious that the achieved values 

represent an ideal case that could not be found in real measurements.  

Table 6. Ideal parametric model simulation results using four excitation signals with 

polarization angles of 0°, 45°, 90°, and 135°. 

Pol. Angle Pol_Perc1 ISO1 Phase1 Pol_Perc2 ISO2 Phase2 

0° 100.00 −60.7 5·10−5 100.00 −60.6 −180 
45° 100.00 −58.4 −90 100.00 −58.4 90 
90° 100.00 −60.7 −180 100.00 −60.7 5·10−5 

135° 100.00 −65.8 90 100.00 −65.8 −90 

Pol. Angle Pol_Perc3 ISO3 Phase3 Pol_Perc4 ISO4 Phase4 

0° 100.00 −122.2 −90 100.00 −122.3 90 
45° 100.00 −62.2 −180 100.00 −62.2 3·10−5 
90° 100.00 −121.4 90 100.00 −122.4 −90 

135° 100.00 −62.2 −3·10−5 100.00 −62.2 180 

4.2. Simulation Examples Based on Measurement Results  

Two previous measurement examples have been used to illustrate the technique: The first 

measurement example is that reported in Figure 5a, where a polarimeter case is presented in which a 

horizontally polarized excitation signal gave rise to a much higher phase-error for the detectors 3 and 4 

than for the detectors 1 and 2. The second example is that reported in Figure 6a, which is another 

polarimeter case in which the phase error is much lower than in the previous one when the excitation is 

a horizontally polarized excitation signal. The parametric model has been optimized to fit the Phase 

and Pol_Perc values of the detected signals in both cases. The values achieved by the optimized model 

present an almost negligible error (lower than 0.001%) when compared with that of Tables 3 and 5 
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(left). Figure 8 shows the detected signals achieved from the optimization of the parametric model in 

both situations.  

 
(a) 

 
(b) 

Figure 8. Optimized parametric model simulation results. (a) Fit of the situation in  

Figure 5a; (b) Fit of the situation in Figure 6a. 

The model fits both situations very well by means of the model parameters of Table 7.  

Table 7. Model parameters fitting the measurement results in Figure 5a. 

Parameter Value (Figure 8a) Value (Figure 8b)  

Att (dB) 1.80 0.75  
Att2 (dB) 1.00 0.90  
GB (dB) −0.54 0.29  

GB2 (dB) −0.19 0.32  
Phs (°) 0.98 −0.25  

Phs2 (°) −8.27 −0.55  
PB (°) −0.37 −0.07  

PB2 (°) −0.49 0.89  

The optimization process is not very time-consuming because the offset of the detected signals 

(Pol_Perc) is mainly determined by the four gain-error-related parameters (“Att”, “Att2”, “GB”, and 

“GB2”), while the phase is mainly determined by the four phase-error-related parameters (“Phs”, 

“Phs2”, “PB”, and “PB2”). 

An examination of the parameter values in Table 7 would seem to show that the offsets are 

produced mainly by the gain difference between the branches of the polarimeter (parameters “Att” and 

“Att2”), while the phase errors of detectors 3 and 4 in Figure 8a can be attributed to the 90° Phase 

Shifter (the parameter “Phs2” shows an error of –8.3°) which cannot be corrected by using the PA 

component. On the other hand, as can be also observed in Table 7, the phase-errors are much lower 

(<1°) in Figure 8b than in the previous case, thus providing much higher isolation values (see Table 5), 

while gain-errors lower than 1 dB can be attributed to the poor isolation of the wave-guide power splitters.  
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5. Conclusions 

Preliminary polarization measurements in the laboratory and a simplified systematic-error analysis 

methodology for the QUIJOTE TGI have been described. The TGI polarimeters can obtain the Stokes 

parameters of an incoming wide-band noise-like linearly polarized signal by means of a real-time 

measurement and phase-adjustment method. Each polarimeter provides four detected waveforms 

allowing the independent calculation of the Stokes parameters simultaneously. Two different 

measurement examples, one showing a higher instrumental error than the other, have been reported to 

show how it is possible to achieve Q/U isolation values of around −20 dB, equivalent to a phase error 

lower than 0.5° which is considered to be small enough to assure the quality of scientific data. A 

simplified systematic-error characterization technique, based on the implementation of a polarimeter 

parametric model, has been presented. The method reported here provides information about the 

possible error sources, in both amplitude and phase. The gain errors can be attributed to poor isolation 

conditions, whereas the phase errors are mainly due to tolerances in the fabrication of every 

component of the polarimeter. This methodology focuses on static systematic errors, so it can be 

considered as complementary to calibration techniques more related to dynamic errors coming from 

the PSM. 
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