
Sensors 2015, 15, 21350-21376; doi:10.3390/s150921350
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Efficient, Decentralized Detection of Qualitative Spatial Events
in a Dynamic Scalar Field
Myeong-Hun Jeong 1,* and Matt Duckham 2,*

1 CyberGIS Center for Advanced Digital and Spatial Studies,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

2 School of Mathematical and Geospatial Sciences, RMIT University, Melbourne,
Victoria 3000, Australia

* Authors to whom correspondence should be addressed; E-Mails: mhjeong@illinois.edu (M.-H.J.);
matt@duckham.org (M.D.).

Academic Editor: Leonhard M. Reindl

Received: 25 June 2015 / Accepted: 20 August 2015 / Published: 28 August 2015

Abstract: This paper describes an efficient, decentralized algorithm to monitor qualitative
spatial events in a dynamic scalar field. The events of interest involve changes to the critical
points (i.e., peak, pits and passes) and edges of the surface network derived from the field.
Four fundamental types of event (appearance, disappearance, movement and switch) are
defined. Our algorithm is designed to rely purely on qualitative information about the
neighborhoods of nodes in the sensor network and does not require information about nodes’
coordinate positions. Experimental investigations confirm that our algorithm is efficient,
with O(n) overall communication complexity (where n is the number of nodes in the sensor
network), an even load balance and low operational latency. The accuracy of event detection
is comparable to established centralized algorithms for the identification of critical points of
a surface network. Our algorithm is relevant to a broad range of environmental monitoring
applications of sensor networks.

Keywords: geosensor networks; decentralized spatial computing; surface networks; critical
points; coordinate-free algorithm; spatial event detection; environmental monitoring

Sensors 2015, 15 21351

1. Introduction

Our geographic world is highly dynamic, and consequently, monitoring change over space is of
considerable interest in many scientific communities. Geosensor networks have a particularly important
role in environmental monitoring [1]. These wireless networks of sensor-enabled computers embedded
in the geographic environment can help with capturing information about change and even responding
to events. This paper is concerned specifically with qualitative spatial events connected to the critical
points (peaks, pits and passes) of a monitored dynamic scalar field, such as a temperature, humidity, soil
moisture or pollution field.

Critical points in a scalar field are points with zero slope: peaks, pits and passes [2]. Critical points
can be connected by critical edges (e.g., ridges connecting peaks and passes; channels connecting
passes and pits). The combination of critical points and edges forms a surface network, also known
as a Morse–Smale complex [3,4]. These intuitive network structures capture the essential features of
complex surfaces.

Applications of geosensor networks to monitoring events in dynamic scalar fields must negotiate
the unique resource constraints of geosensor networks. Limited resources favor algorithms that can
operate in-network without centralized control by minimizing communications. Further, energy resource
constraints may prevent positioning (e.g., as might be captured using GPS) or positioning systems
may be unavailable (e.g., dense vegetation area). In addition, the limited granularity of geosensor
networks imposes restrictions on the capability to infer information about surface networks and, so,
events occurring on a surface network.

Based on these limitations, recent research has yielded decentralized algorithms that are capable of
identifying critical points and edges in a static field monitored by a geosensor network [5–7]. However,
to date, this work has not addressed the problem of efficiently and accurately identifying events occurring
on monitored surface networks. Building on this previous research, this paper: (1) provides a rigorous
definition of the fundamental events that can occur on surface networks; and (2) develops and tests a
decentralized and coordinate-free algorithm to capture those events efficiently.

Section 2 begins by examining in more detail the strengths and limitations of previous research on
monitoring qualitative events in a dynamic field. The formal model of a geosensor network and the
extended definitions of critical points are defined in Section 3, leading to the design of a decentralized
algorithm for identifying events at critical points in a dynamic scalar field (Section 4). Section 5 presents
an experimental evaluation of our algorithm in terms of its the efficiency and accuracy using simulation.
The results confirm the efficiency and effectiveness of the approach, discussed in Section 6. The paper
concludes with a summary and suggestions for future work in Section 7.

2. Background

Events are defined as salient changes in state. An important question in this study is then: what events
can occur on a dynamic scalar field monitored by a geosensor network? In short, what changes in state
are salient for surface networks?

One of the most frequently-cited works relevant to this question is [8]. The authors of [8] present a
formal analysis of the evolution of Reeb graphs on S3 for time-varying data. The approach is based on

Sensors 2015, 15 21352

Jacobi sets [9], which delineate the paths that critical points take over time. A more empirical approach
was taken by the author of [10], who identified primitive events occurring on surface networks and
analyzed changes in retail activities based on these primitive events on surface networks. Both of these
approaches defined primitive events as the appearance and disappearance of critical points and “switch”
where the connectivity of the network edges changes. The author of [10] additionally defined as events
the movement of critical points.

Although these works do identify salient changes to surface networks, in practice, none is directly
applicable to computation within a geosensor network. The approach of [8] relies on Jacobi sets, based,
in turn, on smooth, continuous functions. Such functions are known not to be suited to real-world
data [11,12], such as the discrete observations derived from a geosensor network. The analysis of [10]
relies on centralized computation and interpolation based on the geometry of the surface, which conflicts
with our requirements for a decentralized and coordinate-free computing environment.

Broadening the search, an alternative to investigating events in surface networks is to look instead
at events in regions and their boundaries. Surface networks partition a scalar field into regions. Each
region contains those locations in the “catchment” of a unique peak and pit combination. As a scalar
field evolves, these regions change and evolve. This paper focuses on the evolution of catchments to
monitor events occurring on surface networks, because the catchments can be used as spatial structures
to collect global information about the entire system in a geosensor network.

Analysis of the geometry (such as the volume or centroid) of regions [13–15] leads to identifying
appearance, disappearance, merging and splitting as four primitive events that can occur in regions. The
authors of [16,17] also arrive at these four primitive events, using the topology of Reeb graphs to track
the evolution (sequences of events) of burning regions. Closely related, the authors of [18] use contour
trees along with geometric information about the volumes of regions to monitor essentially the same
four events in turbulent vortex structures. The analysis of [19,20] of primitive events, involving simple,
connected polygons, yields two further event types: expansion and contraction. Although the specific
terms used to name these six events vary across papers, others have similarly arrived at these six events,
including a range of applications in disciplines, such as meteorology [21,22], and tracking the evolution
of social groups [23,24].

In terms of surface networks, however, distinctions between the events’ splitting and appearance
and, by symmetry, the events’ merging and disappearance are not meaningful. It is purely a matter of
interpretation whether a new peak, say, “split” from a pre-existing peak or independently sprang into
existence (“appeared”). Thus, in the context of surface networks, this previous work suggests up to four
primitive events: merging/disappearance or splitting/appearance of critical points and expansion and
contraction of the regions associated with those critical points.

Other approaches are also possible. Unlike [19,20], the authors of [25] also consider disconnected
regions (i.e., consisting of more than one simple polygon) to yield a more discerning framework
consisting of nine different events, additionally defining movement, as well as distinguishing two types
of merging and of splitting based on the geometric characteristics of the regions. The authors of [26]
provide the pure topological events: appearance, disappearance and two types of merging and splitting,
distinguishing merging and splitting involving regions with holes and without holes. However, in the
case of scalar fields in the plane, it is not possible for a surface network to partition the space into

Sensors 2015, 15 21353

regions with holes (although this is a possibility in surface networks in other embedding spaces, such as
a torus).

In summary, the key events relevant to surface networks appear to be: appearance (or splitting),
disappearance (or merging) and movement of critical points; and switching of the edges connecting
critical points. However, none of the approaches encountered are directly applicable to our decentralized
and coordinate-free computing environment. With the exception of [26], none of the approaches
described above are decentralized. However, as we have seen, the authors of [26] include several events
for regions that are not directly relevant to surface networks. Further, most of the approaches above
rely on geometric information about the surface and, so, are ultimately reliant on access to coordinate
information about the location of critical points and their associated regions.

This paper does, however, substantially revise and extend our previous work in [7]. Our previous work
defines and evaluates a decentralized and coordinate-free algorithm to identify critical points and surface
networks in a static field. Based on the extended definitions of discrete surface networks, this paper
not only defines basic spatial events occurring on surface networks, but also provides a decentralized
algorithm to detect these events in a dynamic field.

3. Model

Based on our review of the existing literature relevant to events on surface networks, we will
now proceed with the design of an algorithm capable of detecting our four primitive surface network
events: appearance, disappearance, movement and switch. The algorithm is amenable to decentralized
computation and capable of operating within the constraints of the limited spatial granularity of a
sensor network.

3.1. Algorithm Preliminaries

The formal model of a geosensor network in this paper follows the approach of [27]. A geosensor
network is modeled as a undirected graphG = (V,E), where V is the set of sensor nodes andE ⊆ V ×V
is the set of direct, one-hop communication links between the neighboring nodes. The set of neighboring
nodes is represented as a function nbr : V → 2V , where nbr(v) = {v′|v, v′ ∈ E}. Each node has
a unique identity, modeled as a function id : V → N. Each node also has the ability to sense its
changing environment, modeled using the sense function, sense : V × T → R. For example,
sense(v1, t5) = 16 ◦C indicates that node v1 sensed a value of 16 ◦C at time t5. Note that although we
allow time-varying sensed data, we assume that the structure of the communication graph and location
of the nodes are static.

Using this foundational model of a geosensor network, the algorithm definitions in subsequent
sections follow the decentralized algorithms design and specification style of [27,28]. In brief, there
are four key components of decentralized algorithms: restrictions, system events, actions and system
states. Restrictions concern the assumptions made about the environments in which an algorithm will
operate. For example, there are no restrictions in terms of the structure of the communication networks
in our algorithm. We do not require spatial information, such as coordinate information. However, we
assume our sensor networks are static and the communications are reliable (see Algorithm 1, Line 1).

Sensors 2015, 15 21354

Algorithm 1 Update gradient vectors.

1: Restrictions: Geosensor network, G = (V,E); sensor function sense : V × T → R; communication
neighborhood nbr : V → 2V ; identifier function id : V → N; reliable communication.

2: State transition system: 〈{IDLE, PEAK, PITX}, {(IDLE, PEAK)), (IDLE, PITX)}〉
3: Local variables: the last sensing value, sl, initialized empty; list of upstream neighbors, Nu, initialized empty;

list of downstream neighbors, Nd, initialized empty; an ascent vector, av, initialized empty; the last ascent
vector, avl, initialized empty; a strong peak id, pkid, initialized empty; a last peak id, pkidl, initialized empty;
a strong pit id, ptid, initialized empty; neighbors’ peak identifiers, Pkcell, initialized empty; neighbors’ pit
identifiers, Ptcell, initialized empty; a weak peak’s ascent bridge, wpkav, initialized empty;

IDLE, PEAK, PITX

4: When ˚sense changes
5: set sl := sense - -Save the last sensed value

6: broadcast (upd8, i̊d, ˚sense, pkid, ptid)

IDLE

7: Receiving (upd8, i, s, cpk, cpt)
8: update Nu and Nd - -Based on s value

9: update Pkcell and Ptcell
10: if |Nu| > 0 and |Nd| > 0 then
11: set av := max(Nu) - -Likewise for descent vector

12: if pkid 6= av’s peak identifier then
13: set pkid := av’s peak identifier
14: broadcast (udsf, i̊d, pkid, ptid, “channel”)
15: if |Nu| = 0 then - -Likewise for Nd

16: set avl := av and set av := ∅
17: if |wpkav| > 0 then
18: set avl := wpkav and set wpkav := ∅
19: Receiving (udsf, i, npk, npt, sf)
20: if sf = “channel” then
21: update Pkcell - -Update a neighbor’s peak identifier

22: if i = av and npk 6= pkid then
23: set pkid := npk

24: broadcast (udsf, i̊d, pkid, ptid, “channel”)

System events define the external stimuli that nodes can respond to, such as receiving a message
from another node or sensing a change to a monitored environmental variable (see Algorithm 1, Line 4
or 7). When a system event occurs, a node will react by initiating an atomic, terminating sequence of
operations, called an action (see Algorithm 1, Line 6). System states allow nodes to respond to the same
events with different actions based on the effects of previous system events and actions (see Algorithm 1,
Line 3 or 6).

Finally, in our algorithms, the over-dot notation (˚sense) is used to refer to the current node’s
knowledge of the sense function. (i.e., ˚sense equals sense(v) where node v ∈ V). This notation helps

Sensors 2015, 15 21355

maintain a clear distinction between each individual node’s local knowledge and the global state of
the network.

3.2. Discrete Surface Networks

This section explains the definitions of critical points for the finite spatial granularity of the discrete
point data that are generated by a geosensor network. These definitions will be used in the following
Section 4 for the algorithm explanation.

The ascent (descent) vector of a node is defined as the unique directed edge from that node to its
one-hop neighbor with the highest (lowest) sensed value of all neighbors. A “strong peak” is defined as
a node v, such that: (a) all neighbors of v have a lower sensed value than v; and (b) the ascent vectors
of all neighbors of v point to v. Conversely, a “weak peak” satisfies Condition a, but does not satisfy
Condition b. For example, a weak peak in Figure 1 has communication links with four neighboring
nodes. These nodes’ sensed values are lower than that of the weak peak. However, one of its neighboring
nodes’ ascent vectors does not point to the weak peak.

In addition, a weak peak can be connected to a strong peak via an ascent bridge. An ascent bridge
is an edge from a weak peak v to a neighboring node whose ascent vector points away from v (or
symmetrically for a weak pit, strong pit and descent bridge). These basic structures are illustrated in
Figure 1.

Strong peak

Weak peak

Ascent vector

100

20

80

60

40

Ascent bridge

Communication link

Figure 1. Identification of a strong and a weak peak, ascent vectors and an ascent bridge
(Contour lines describe a scalar field showing the difference in elevation between consecutive
contour lines. The sensed values can be estimated using a contour map).

Using this information, it is then possible to design decentralized algorithms to identify for each node
the (strong) peak and pit associated with that node (i.e., found by following a chain of ascent/descent
vectors from that node). In effect, this will partition the sensor network into regions (“catchment areas”).

Further, a “pass-edge” is defined as a pair of adjacent nodes that are each associated with different
peaks and pits. Examples of pass-edges are shown in Figure 2. Two thick black lines are pass-edges
for which associated peaks and pits are different (i.e., two ascent and descent vectors between a pair of
adjacent nodes indicate different peaks and pits).

Sensors 2015, 15 21356

100

90

70

90

80

70

80

Strong peak

Representative

pass

Pass-edge

Ascent vector

Descent vector

Figure 2. Representative pass (Contour lines describe a scalar field showing the difference
in elevation between consecutive contour lines. The sensed values can be estimated using a
contour map.)

Due to network granularity, there may be multiple candidate pass-edges for the same peak/pit
pairs. Multiple pass-edges were grouped together as a pass-cluster. Moving to a dynamic scenario,
however, it becomes highly inefficient to continually monitor events occurring on a group of pass-edges.
Therefore, in this paper, we add a further definition of the representative pass amongst a pass-cluster.
For example, let R be the set of pass edges that connect two specified pairs of peaks and pits in the
surface network. Further, let pe_incident(v) denote the number of pass edges in R incident with a
node v. A representative pass is chosen to be the unique node r, such that there exists no v with
pe_incident(v) > pe_incident(r) (i.e., no other node v is incident with a greater number of pass edges);
and for any v where pe_incident(v) = pe_incident(r), then sense(r) > sense(v).

A representative pass is at the “center” of the multiple pass-edges, somewhat analogous to the centroid
of multiple edges. In Figure 2, the filled-square symbol indicates a representative pass, because this
node has two pass-edges for the the same peak/pit pairs. Focusing on a representative pass, rather than
a potentially large set of pass-edges, it becomes easier and more efficient to monitor events occurring
on passes.

It is possible that two representative passes occur as one-hop neighbors, akin to a monkey saddle
in a continuous surface. In practice, such monkey saddles do occur in our sensor networks, but due
to network granularity effects, rather than being a true reflection of the topography of the underlying
surface. In other words, monkey saddles typically occur as a result of adverse network connectivity
leading to certain spatially nearby nodes not being one-hop network neighbors. Thus, in our algorithms,
we also include procedures for coordination amongst neighboring representative passes to account for
such granularity effects. In these cases, we select a single representative pass (termed a “strong pass”)
from amongst the group of neighboring representative passes, in a similar fashion to that used to identify
a representative pass from amongst neighboring pass edges.

In addition to a monkey saddle, it is important to note that degenerate critical points can occur due to
the same values. Such a plateau is mainly generated by the discrete quantization while extracting surface
networks. The authors in [4,29] deal with degenerate critical points by using perturbation. However, real

Sensors 2015, 15 21357

data from geosensor networks are unlikely to contain identical sensed values. This paper assumes that
there are no plateaus between one-hop neighbor nodes.

4. Algorithm

As argued in Section 2, there are four primitive events occurring on surface networks: appearance,
disappearance, movement and switch. Previous approaches to monitoring such events (e.g., [8,10])
are based on centralized computation and require geometric information. In keeping with the resource
constraints imposed by sensor networks, in this paper, we develop a decentralized algorithm that can
monitor surface events without coordinate information. For the ease of explanation, we present first the
monitoring of events on peaks and pits and then the monitoring of events on passes.

4.1. Monitoring Events Occurring on Peaks and Pits

This section examines the design of a decentralized algorithm for monitoring events occurring on
peaks and pits. The following subsection addresses the problem of monitoring events on passes.

The network is initialized by decentrally identifying strong peaks and pits. In brief, each node
broadcasts its sensed value. Nodes can then locally determine their ascent and descent vectors and
whether they are a peak or pit. Flooding of a single initialization message from each identified peak and
pit can then be used to enable every node in the network to be informed of its unique (strong) pit and
peak, as well as discern apart weak and strong peaks and build gradient (ascent and descent) bridges.
The initialization is linear in the number of nodes in the network, requiring 3|V | + m messages, where
m� |V |.

The result of initialization is to partition the nodes into regions. Nodes in each region are
associated with a unique pair of peak and pit identifiers. These regions are called stable/unstable Morse
complexes [30] (Figure 3).

Peaks

Pits

Passes

(a) Stable Morse complexes

Peaks

Pits

Passes

(b) Unstable Morse complexes

Figure 3. Stable/Unstable Morse complexes. This figure is adapted from [30].

Stable/unstable Morse complexes can be regarded as catchment areas. As the dynamic field evolves,
our algorithm operates by inspecting these catchment areas for changes that indicate events occurring on
the surface network. For example, the appearance and disappearance of peaks and pits can be detected
by monitoring the changes occurring in those critical points’ catchment areas. If one catchment area

Sensors 2015, 15 21358

is divided into two between consecutive time steps, this indicates that a new peak has appeared on the
surface network. Conversely, if two catchment areas are merged into one between consecutive time step,
this indicates that one of the peaks has disappeared from the surface network.

Based on catchment areas, it is now possible to specify a decentralized spatial algorithm to monitor
all of the events occurring on peaks and pits. For the ease of explanation, this part of the algorithm is
split into four components (Algorithms 1–4) based on the types of events occurring. In the sequel, we
also only discuss the case for peaks; identification of events for pits occurs in a symmetric fashion.

4.1.1. Algorithm 1: Update Gradient Vectors

Algorithm 1 responds to changes in the dynamic field. Each node monitors locally any changes in its
sensed value. When a change is detected, a node broadcasts an update message (upd8) to its neighbors
(Algorithm 1, Line 6). Based on the neighbors’ sensed values, the neighbors may, in turn, update their
ascent and/or descent vectors. If a node needs to update its peak identifier (pkid) following a change
in its ascent vector, it must then initiate a cascade of notifications about this change to its neighbors
(Algorithm 1, Lines 12–14). Detecting changes in gradient vectors in this way provides the basis for all
higher level monitoring of the events occurring on critical points (Algorithm 1, Lines 19–24).

4.1.2. Algorithm 2: Monitor Peak Movement

Using Algorithm 2, peak movement is deduced from changes to the nodes’ gradient vectors. A node
that transitions from state PEAK (a strong peak) to state IDLE (a non-peak) indicates that a peak has
moved. Such transitions are detected in Algorithm 2. In summary:

1. A node in a PEAK state that detects a new ascent vector (a higher neighbor) sends a wipk message
to its ascent neighbor and transitions to an IDLE state (Algorithm 2, Lines 34–40).

2. A wipk message is forwarded along the ascent vector until it reaches a peak (Algorithm 2, Lines
9 and 12).

3. The peak receiving an wipk message evaluates whether it is a strong or a weak peak
(Algorithm 2, Line 7). If it is a strong peak, this node transitions to a PEAK state
(Algorithm 2, Line 27). If not, the node unicasts the wipk message via its ascent bridge
(Algorithm 2, Line 29) and the algorithm continues from Step 2 above.

Sensors 2015, 15 21359

Algorithm 2 Monitoring a peak movement.

1: Fragment extend: Algorithm 1
2: Local variables: the flag for receiving wipk messages, bpk, initialized false; neighbors adjacent to a potential

peak, Tcells, initialized empty;

IDLE

3: Receiving (wipk, ps, i, ppk)
4: if pkid = ppk then
5: if |Nu| = 0 then
6: set bpk := true
7: broadcast (etcl, i̊d) - -To identify a strong peak

8: else
9: send (wipk, ps, i̊d, pkid) to av or wpkav

10: else
11: if |Nu| > 0 then
12: send (wipk, ps, i̊d, pkid) to av or wpkav
13: Receiving (etcl, i)
14: if åv = i then
15: send (cetc, i̊d, true , pkid, ˚sense) to a node i

16: else
17: send (cetc, i̊d, false , pkid, ˚sense) to a node i

18: Receiving (cetc, i, bflag, npk, ns)
19: if bflag = false then
20: set wpkav := {i, npk, ns} - -Set ascent bridge

21: if i /∈ Tcells then
22: Tcells:= Tcells ∪ {i}
23: if |Tcells| = |Nd| then
24: if |Nu| = 0 then
25: if (|av| > 0 and |wpkav| = 0) or (|av| = 0 and |wpkav| = 0) then - -A strong peak

26: set av := ∅; set bpk := false; set Tcells := ∅
27: become PEAK

28: if |wpkav| > 0 then - -A weak peak

29: send (wipk, ps, i̊d, pkid) to wpkav
30: else
31: send (wipk, ps, i̊d, pkid) to av or wpkav
PEAK

32: Receiving (upd8, i, s, cpk, cpt)
33: update Nu, Nd, Pkcell, and Ptcell
34: if |Nu| > 0 then
35: set av := max(Nu)

36: if pkid 6= av’s peak identifier then
37: set pkid := av’s peak identifier
38: broadcast (udsf, i̊d, pkid, ptid, “channel”)
39: send (wipk, i̊d, i̊d, pkid) to av
40: become IDLE

Sensors 2015, 15 21360

4.1.3. Algorithm 3: Monitor Peak Disappearance

It is similarly straightforward to detect peak disappearance (Algorithm 3). When a PEAK node
transitions to an IDLE state, it forwards a wipk message along its ascent vector (see Algorithm 2).
If this wipk message reaches a node that has a different peak identifier, that node can then infer that
the peak represented by the node that initiated the wipk message has disappeared. Algorithm 3 can be
summarized as follows:

1. When a wipk message reaches a PEAK node, the node checks if the peak identifier contained in
that message matches its own peak identifier. If not, this event triggers the PEAK node to return a
rwpk message back down the ascent vector to the origin of the wipk message (Algorithm 3, Line
5 or Line 24).

2. When the origin of a wipk message subsequently receives a rwpk message, it confirms a peak
disappearance. The node then broadcasts swpkmessages that trigger the update of peak identifiers
(Algorithm 3, Line 12) in nodes below it in the surface.

Algorithm 3 Monitoring a peak disappearance.

1: Fragment extend: Algorithm 1, 2

IDLE

2: Receiving (wipk, ps, i, ppk)
3: if pkid 6= ppk then
4: if |Nu| = 0 then
5: send (rwpk, ps, i̊d, pkid, ppk) to i

6: Receiving (rwpk, ps, i, ppk, ppkl)
7: if i̊d = ps and pkid = ppk then
8: A peak identifier has been already changed because of udsf messages.
9: if i̊d = ps then

10: if pkid 6= ppk then
11: set pkid := ppk - -Peak disappearance

12: broadcast (swpk, “disappearance”, i̊d, pkid, ppkl)
13: update Pkcell - -Update neighbors’ peak identifier

14: else
15: send (rwpk, ps, i̊d, ppk, ppkl) to a node sent wipk message
16: Receiving (swpk, e, i, ppk, ppkl)
17: if e = “disappearance” then
18: if pkid = ppkl then
19: set pkid := ppk - -Set new peak id

20: broadcast (swpk, “disappearance", i̊d, pkid, ppkl)
21: update Pkcell

PEAK

22: Receiving (wipk, ps, i, ppk)
23: if pkid 6= ppk then
24: send (rwpk, ps, i̊d, pkid, ppk) to i

Sensors 2015, 15 21361

Interestingly, when a node that was previously a peak receives a rwpk message, it may have already
changed its peak identifier: udsf messages may change that node’s peak identifier before a rwpk

message is returned to it (Algorithm 3, Line 8). In this case, this message simply confirms that a
peak disappeared.

4.1.4. Algorithm 4: Monitor Peak Appearance

Lastly, Algorithm 4 presents a mechanism to monitor the appearance of peaks. As is common
in decentralized algorithm design, we make no assumptions in our algorithm about network
synchronization (such as message ordering or bounded communication delays). Combined with the
lack of centralized control inherent in decentralized algorithms, this lack of coordination makes it
more challenging to monitor a peak appearance, when compared to events such as peak movement or
disappearance. When monitoring peak movement or disappearance, the node that was previously a peak
can assist in the event detection (i.e., by sending a wipk message). However, there are no such triggers
for inferring peak appearance. Each node could locally deduce whether it is a peak by comparison of its
sensed value with those of its neighbors. However, the approach proves impractical, because delays to
upd8messages from neighbors lead to numerous “false alarms”. The lack of synchronization frequently
leads a node incorrectly inferring that it is a peak based only on partial information about its neighbors.
Furthermore, without assuming bounded communication delays, there are no guarantees as to how long
each node must wait for update messages from its neighbors. Therefore, a different approach is taken to
infer peak appearance in Algorithm 4.

1. If a node detects pit movement, it broadcasts wnpk messages in order to infer peak appearance.
(Algorithm 4, Line 5).

2. When a node receives a wnpk message from a descent neighbor (i.e., via a descent vector, dv), it
delivers a wnpk message to its ascent neighbor (i.e., via an ascent vector, av). By following each
node’s ascent vector, this message reaches a peak (Algorithm 4, Line 10).

3. If a node receives a wnpk message from a downhill node with the same pit identifier (but not a
descent vector), this node broadcasts wnpk messages to its neighbors to trigger a wnpk message
to peaks. These nodes usually exist on boundaries where two catchment areas meet (Algorithm 4,
Line 12).

4. If a node with the highest value among neighbors takes a wnpk message in an IDLE state, it will
first check whether it is a strong peak or a weak peak (Algorithm 4, Line 20). If it is a strong
peak, this node will broadcast swpk messages to create a new catchment area (i.e., a new peak
appearance; Algorithm 4, Line 35).

5. If a node receives a swpk message from an ascent neighbor, it will update its peak identifier that
is indicated in the swpk message. It then broadcast an swpk message in order to trigger the
construction of the new catchment area (Algorithm 4, Line 43).

Sensors 2015, 15 21362

Algorithm 4 Monitoring a peak appearance.

1: Fragment extend: Algorithm 1, 2, 3
2: Local variables: the flag for receiving wnpk messages, bnpk, initialized false;

IDLE

3: Receiving (cebc, i, bflag, npt, ns)
4: if A pit movement is confirmed then
5: broadcast (wnpk, ptid, i̊d, false)
6: Receiving (wnpk, npt, i, flag)
7: if |Nu| > 0 and bnpk = false then
8: if flag = false then
9: if (|dv| > 0 and i = dv) or (|wptdv| > 0 and i = wptdv) then

10: send (wnpk, ptid, i̊d, false) to av or wpkav
11: else
12: broadcast (wnpk, ptid, i̊d, true)
13: set bnpk := true

14: else
15: if i ∈ Nd and ptid = npt then
16: send (wnpk, ptid, i̊d, false) to av or wpkav
17: set bnpk := true

18: if |Nu| = 0 and bnpk = false and bpk = false then
19: set bnpk := true; set Tcells := ∅
20: broadcast (ispk, i̊d)
21: Receiving (ispk, i)
22: if åv = i then
23: send (rspk, i̊d, true , pkid, ˚sense) to a node i

24: else
25: send (rspk, i̊d, false , pkid, ˚sense) to a node i

26: Receiving (rspk, i, bflag, npk, ns)
27: if bflag = false then
28: set wpkav := {i, npk, ns}
29: if i /∈ Tcells then
30: Tcells:= Tcells ∪ {i}
31: if |Tcells| = |Nd| then
32: if |Nu| = 0 and bpk = false then
33: if (|av| > 0 and |wpkav| = 0) or (|av| = 0 and |wpkav| = 0) then - -A strong peak

34: set av := ∅; set bpk := false; set Tcells := ∅ ; set pkid := i̊d
35: broadcast (swpk, “appearance”, i̊d, pkid, ppkl)
36: become PEAK - -Peak appearance

37: if |wpkav| > 0 then - -A weak peak

38: A weak peak appearance
39: Receiving (swpk, e, i, ppk, ppkl)
40: if e = “appearance” then
41: if pkid = ppkl and av = i then
42: set pkid := ppk

43: broadcast (swpk, “appearance”, i̊d, pkid, ppkl)

Sensors 2015, 15 21363

4.1.5. Summary

Based on Algorithms 1–4, Figure 4 summarizes the mechanisms for initializing and monitoring peak
movement and appearance events (with associated pass appearance) over three consecutive time steps.
Figure 4a shows the initial identification of a peak in the field. The ascent vectors of all of the nodes
flow into the single peak. Next, as the scalar field evolves at t1, a different node becomes a peak. Its
peak identifier, however, remains unchanged (see Algorithm 2). A dramatic change of the scalar field
leads to the appearance of a peak in Figure 4c. The previous catchment area at t1 is divided into two
catchment areas at t2. The ascent vectors of all of the nodes partition the network into two groups (see
Algorithm 4). The appearance of a new peak also entails the appearance of a new pass in Figure 4d.
The appearance (disappearance) of passes is dependent on the appearance and disappearance of
peaks/pits [10]. Passes cannot appear independently of peaks and pits. This fact forms the basis of
our pass monitoring mechanism, explained in the following section.

100

60

90
80

70

(a) The initial field at t = 0

100

60

90

80

70

Strong peak

Representative

pass

Pass-edge

Ascent vector

Descent vector

(b) A peak movement at t = 1

100
80

90

70
60

50

90

80

70

60

50

(c) A peak appearance at t = 2

100
80

90

70
60

50

90

80

70

60

50

(d) A pass appearance at t = 2

Figure 4. Monitoring events occurring on critical points between two consecutive time steps.

4.2. Monitoring Events Occurring on Passes

Peak (pit) appearance and disappearance events lead to the detection of pass appearance and
disappearance events. As illustrated in Figure 4, the appearance and disappearance of a pass is entirely
dependent on the appearance and disappearance of peaks or pits. When a peak disappears (Algorithm 3,
Line 16) or appears (Algorithm 4, Line 39), the affected node will update its peak identifier and inform its

Sensors 2015, 15 21364

neighbors of the change. Each node can also update its pit identifier using a similar pattern for pit events.
By broadcasting those events, using for example swpk messages, nodes can recognize whether they are
involved in pass-edges. For example, assume one of two peaks connected by a pass disappears between
consecutive time steps. If there is a representative pass between two peaks, this node is no longer a
pass because one of the associated peaks has disappeared. A representative pass cannot preserve the
pass-edges property (i.e., two different peaks and two different pits). Thus, it is possible to infer a pass
disappearance event after receiving a swpk message.

By contrast, pass movement and switch (the special topological event that occurs when the identities
change of the two peaks and two pits associated with a pass) may occur without any events occurring
on the pass’ associated peaks or pits. For example, in Figure 5, a pass moves and switches between two
consecutive time steps, even though no events occur on the associated peaks (i.e., no peak appearance,
movement or disappearance).

100

90

70

60

90

80

70

60

80

60
70 80

(a) The initial field at t = 0

100

90

70

60

90

80

70

60

80

60
70 80

Strong peak

Representative

pass

Pass-edge

Ascent vector

Descent vector

(b) A pass switch at t = 1

Figure 5. Switch event.

Algorithm 5 highlights the main features of pass switch and movement monitoring. When a pass-edge
node receives notification of a sensed-value or peak-identifier change from a neighbor (Algorithm 1,
Line 19), this system event triggers a refresh of the pass-cluster and representative pass. If there is a
change of members in a pass-cluster in addition to a change in the representative pass, the pass-edge node
broadcasts a uppc message to its neighbors. This message reconciles the pass-cluster and representative
pass of neighbors that are all associated with the same peaks and pits. For example, when a representative
pass node becomes a regular node, it sends a wirp message to monitor events occurring on new passes
(Algorithm 5, Line 7). If a new representative node receives a wirp message, it can infer what event
occurred on its associated pass, such as movement or switch (Algorithm 5, Line 12). If the associated
peaks and pits are different, a switch event has occurred. Conversely, if the associated peaks and pits are
the same, a pass movement event is confirmed.

Sensors 2015, 15 21365

Algorithm 5 Monitoring events occurring on passes.

1: Fragment extend: Algorithm 1, 2, 3, 4
2: Local variables: list of passes, Passes, initialized empty; list of pass cluster, Passcluster, initialized empty;

list of a representative pass, Repass, initialized empty; list of a last representative pass, Repassel, initialized
empty;

IDLE

3: Receiving (uppc, i, Npasscluster)
4: if Passes have the same associated peaks (pits) then
5: update Passcluster and Repass
6: if Repass = ∅ and Repassel 6= ∅ then
7: send (wirp, i̊d, Passcluster) to a node i

8: if Passcluster 6= Npasscluster then
9: broadcast (uppc, i̊d, Passcluster)

10: Receiving (wirp, i, Nrepass) - -Infer pass events

11: if this node is a representative pass then
12: infer events occurring on a pass
13: else
14: deliver a wirp message to a representative pass.

4.3. Scalability

During the ongoing monitoring, sensed-value changes at a node trigger an upd8 message to
neighbors. This message may in turn trigger a finite number of further messages for monitoring events
occurring on the surface network (i.e., udsf, wipk, cetc, etcl, cebc, wnpk, ispk, rspk, swpk,
uppc or wirp). However, as surface events are expected to be relatively rare, in comparison to changes
in the state of the field, such messages are expected to have a much smaller effect on scalability. In
other words, the worst case is that all surface events occur simultaneously. In reality, it is rare that this
happens. All messages for monitoring events therefore are not necessary at each time step. Overall, it
is to be expected that between any two time steps, the algorithm will generate approximately |V | + k

messages, where k is the number of messages for monitoring events occurring on surface networks. The
exact number k will depend strongly on the specific details of the types of changes occurring, although
given that the sparsity of events is expected to be much smaller than |V |. As a result, the overall
communication complexity of the algorithm is expected to be linear in the number of nodes, O(n).
However, due to the dependence on the events that occur, this expectation must be tested experimentally,
as in the following section.

5. Experiments

The algorithm described in the previous section was evaluated with respect to four key features
(overall scalability, latency, load balancing and accuracy). In terms of accuracy, this paper compared
the proposed algorithm’s results with the results obtained from two centralized algorithms for surface
network derivation (i.e., [29,31]).

Sensors 2015, 15 21366

5.1. Experimental Setup

The algorithm for monitoring spatial events occurring on surface networks was implemented within
the agent-based simulation system, NetLogo [32]. A randomized scalar field was generated and evolved
continuously in the NetLogo system. The randomized field was constructed from kernel density
smoothing applied to randomly-moving particles. The approach allowed the generation of evolving
randomized surfaces across a range of surface roughness levels.

By varying the kernel density smoothing parameters, surfaces with varying degrees of surface
roughness were generated. For the ease of comparison, the surface roughness was classified at four
levels. Level 1 surfaces had, on average, 6 critical points; Level 2, on average, 8 critical points; Level 3,
on average, 14 critical points; Level 4, on average, 26 critical points. There are no special thresholds to
differentiate the surface roughness. This classification is based on the computational complexity.

Each generated surface was allowed to evolve for ten simulation time steps, inclusive of the initial
step. Geosensor networks were also simulated at five sizes, ranging from 1000–16,000 nodes. The
network was connected by a unit disk graph (UDG), and node locations in the network were randomly
distributed. The level of network connectivity (i.e., average node degree) was kept constant to ensure
comparability across the different network sizes.

The total number of simulations therefore was 4 surface levels × 5 network sizes × 10 replications
× 10 (surface evolution scenarios) = 2000. The performance of the algorithm was documented for each
simulation scenario.

5.2. Overall Scalability

The efficiency of the algorithm was evaluated with regards to overall scalability. There were five
different network sizes (i.e., 1000, 2000, 4000, 8000 and 16,000 nodes). As the network size increased,
the number of messages sent was measured. A strong linear relationship between the network size and
the number of messages sent was observed, as shown in Figure 6. A linear regression over the different
surface roughness levels indicated that each node generated between 18.09 and 20.12 messages over
the simulation, R2 ≥ 0.99 in all cases. The close fit to a linear regression is in accordance with our
expectation of overall O(n) scalability (see Section 4.3).

Next, we explored the variability in the number of messages generated by the algorithm during
ongoing changes. At each evolution time step, the number of messages required to monitor any events
that occurred was investigated. Figure 7 presents the number of messages generated by spatial events at
each evolution time step for the network, 4000 and 8000 nodes.

A mixed-factorial ANOVA test was used to evaluate the significance of any differences in messages
generated due to surface roughness levels, evolution time steps and interaction of surface roughness
levels and evolution time steps. Accordingly, there are three null hypothesis:

H1 There is no main effect of surface levels considered separately.
H2 There is no main effect of evolution time steps considered separately.
H3 There is no interaction of surface levels and evolution time steps considered together.

Sensors 2015, 15 21367

0e+00

1e+05

2e+05

3e+05

4e+05

0 4000 8000 12000 16000

Network size

#
 M

e
s
s
a
g

e
 s

e
n

t
Level 1

Level 2

Level 3

Level 4

Figure 6. Overall scalability for monitoring events (averaged over 10 randomized networks
and 10 consecutive time steps in each evolution).

Time steps when events occur.

#
 M

e
s
s
a

g
e

s
 s

e
n

t

4000

6000

8000

10000

12000

t1 t2 t3 t4 t5 t6 t7 t8 t9

Level 1

t1 t2 t3 t4 t5 t6 t7 t8 t9

Level 2

Level 3

4000

6000

8000

10000

12000

Level 4

(a) 4000 nodes

Time steps when events occur.

#
 M

e
s
s
a

g
e

s
 s

e
n

t

10000

15000

20000

t1 t2 t3 t4 t5 t6 t7 t8 t9

Level 1

t1 t2 t3 t4 t5 t6 t7 t8 t9

Level 2

Level 3

10000

15000

20000

Level 4

(b) 8000 nodes

Figure 7. Number of messages generated by spatial events at each evolution step: dots are
deemed to be outliers.

The ANOVA test revealed that there were significant differences in the messages generated
between the different surface levels at the 95% confidence level (i.e., rejection of H1). For example,
F (3, 36) = 12.41, p < 0.05, η2G = 0.26 for 4000 nodes and F (3, 36) = 4.24, p = 0.011, η2G = 0.14

for 8000 nodes. η2G (generalized eta-squared measure) indicates the effect size: the practical degree of

Sensors 2015, 15 21368

difference between groups [33]. For 4000 nodes, the effect size is large, and for 8000 nodes, the effect
size is medium. Thus, the effect between surface levels is meaningful, both statistically and practically.

The post hoc comparisons (using the Tukey honestly significant difference [34]) indicated that there
were no significant differences between Level 1 and 2 surfaces (p = 0.198) or between Level 3 and 4
surfaces (p = 0.106) for 8000 nodes and Level 1 and 2 surfaces (p = 0.717) for 4000 nodes. However,
there were significant differences between all other pairs of surface levels (p < 0.05). There was however
no significant difference between each evolution time step (no evidence to reject H2) and no significant
interaction between surface levels and evolution time steps (no evidence to reject H3). Other network
sizes exhibited the same trends (i.e., significant differences in messages generated between surface
roughness levels and no significant differences between evolution time steps or interactions between
surface levels and evolution time steps).

5.3. Latency

The operational latency of our algorithm is the time delay between an event occurring and that event
being detected. Even an efficient algorithm may suffer from long latencies. Understanding operational
latency can give a picture of an algorithm’s practical usability and associated efficiency tradeoffs.

Figure 8 presents the results of an experiment measuring the latency of the algorithm. Latency was
measured during each evolution time step over the five different network sizes and four different surface
roughness levels. Ten randomized replications were conducted at each surface level.

There is broadly a trend of increasing latency with both network size and surface roughness. However,
that trend is not clear. A simple power regression reveals only moderate correlation between latency and
network size (i.e., 0.448 ≤ R2 ≤ 0.559). Further, non-parametric tests confirmed the initial inference
that latency is not strongly associated with the network size.

0

200

400

600

800

0 4000 8000 12000 16000

Network size

L
a

te
n

c
y

 (
ti

c
k

s
)

Level1

Level2

Level3

Level4

Figure 8. Latency (averaged over 10 randomized networks and 10 consecutive evolution).

Sensors 2015, 15 21369

In fact, latency is more closely related to the types of events resulting from network asynchronicity.
As this paper makes no assumptions about message ordering nor about communication delays, messages
are assumed to be reliably delivered in a finite amount of time. Such minimal assumptions help to
increase the robustness of decentralized algorithms. However, when decentralized spatial algorithms
monitor events in a dynamic field, asynchronous algorithms have difficulty in coordinating nodes in
terms of data consistency and efficiency. For example, Figure 9 illustrates one such problem of network
asynchronicity. Node a is a peak at time t1. At time t2, this peak moves to node c. In order to monitor
this peak movement, node a should send a wipk message via its ascent vector. Unfortunately, due to
asynchronous communication, a peak movement event can be misidentified as a peak disappearance and
a new peak appearance event. For example, assume at time t2 the ascent vector of node a points to d
as soon as receiving information from node d. In that case, a may send the message to node d before
receiving all of the necessary information from its neighbors to correctly update its ascent vector (to
point to e). In that case, node a will detect a peak disappearance event and node c will detect a new
peak appearance. These misidentified events cause the replacement of peak identifiers and can result in
longer latency.

Peak

Ascent vector

100
80

90

70
60

50

90

80

70

60

50

e

a

b

c

d

Figure 9. Example asynchronous update problem. The node a was previously a peak.

5.4. Load Balance

Load balance is a vital factor in network longevity. Resource-constrained geosensor networks are
vulnerable to uneven load balance, causing holes in network coverage.

As already mentioned, initialization requires a ping handshake message and at least two further
messages, requiring 3|V | + m messages, where m messages are required for identifying the critical
points, m� |V |. During ongoing monitoring, each node must send at least one message for updating its
sensed value and additional messages for monitoring events, requiring |V |+ k at each evolution, where
k � |V |. In this study, each generated surface evolved for ten simulation time steps (i.e., initialization
and nine ongoing monitoring). Thus, each node is expected to require approximately 12|V | + m + 9k

over our entire simulation. It is expected that uneven load balance is more likely to be associated with
rougher surfaces.

Sensors 2015, 15 21370

Figure 10 presents the load balance for 4000 nodes. While a considerable number of nodes sent
fewer than 30 messages, a few nodes transmitted more than 250 messages, 267 in the worst case.
One-way ANOVA was used to analyze the difference in the proportion of nodes with a load of less than
30 messages between the four surface levels. The test revealed that there was a difference, significant
at the 95% level (F (3, 36) = 11.83, p < 0.05, η2G = 0.49), between the roughest (Level 4) surface and
the other surfaces (Levels 1–3). However, no significant differences were found among Level 1, 2 and 3
surfaces. Thus, there is evidence that the roughest surfaces lead to significantly different load balances.
However, the algorithm is relatively tolerant to moderate changes in surface roughness levels, which
lead to no significant change in load balance. The same results were obtained for all of the different
network sizes.

Level 1

Level 2

Level 3

Level 4

0

500

1000

1500

2000

2500

3000

3500

4000

0<n<= 30 30<n<= 60 60<n<= 90 90<n<= 120 120<n<=300

3837.8

148.1
9 2.2 2.9

3836.1

145
11.2 5.5 2.2

3737

216.3
29.8 12.8 4.1

3603.6

332.9

43.5 12.5 7.5

F
re

q
u

e
n

c
y

Load (number of message sent)

Figure 10. Load balance for communication messages (averaged over 10 networks of
4000 nodes and 10 consecutive evolution).

5.5. Accuracy

An efficient algorithm is only useful if it can accurately identify the events occurring. The accuracy
of the algorithm was measured using standard information retrieval measures: positive predictive value
(PPV, also called precision), recall and F1-score [35,36].

To provide a comparison in assessing accuracy, two standard centralized algorithms [29,31] were
combined to generate the ground truth for each simulated surface. Each algorithm has its advantages and
disadvantages. The algorithm of [29] can identify critical points using the logical simple comparison
of neighbors. It is, however, well known that this local approach is sensitive to minor, small-scale
variations in the surface (see [31]). Such minor variations can produce spurious critical points. In order
to minimize spurious critical points, [31] models a surface using a quadratic equation. Morphometric
parameters derived from the quadratic coefficients, such as slope or maximum and minimum convexity,
can then be used to identify critical points. This method uses variable kernel size (window size) to
identify critical points. Even though this feature has a positive effect on the identification of critical
points at various scales, there are no guidelines on the ideal size of the kernels for the identification of
critical points. Thus, the critical points identified by the two approaches can be inconsistent. Therefore,
in this paper, the algorithm of [29] was firstly used to identify critical points, and the morphometric

Sensors 2015, 15 21371

characterization [31] was combined to exclude spurious critical points for the best possible classification
of surface networks.

Further, edge effects tended to lead to poor results for all algorithms at the boundary of the
network (critical points can be falsely identified due to discontinuity at the boundary of the geosensor
network). Consequently, nodes within one-hop average communication distance of those boundaries
were connected to a “virtual” pit to remove edge effects. This approach was applied consistently to all
different network sizes and across all tests.

In terms of the F1-score for the identification of critical points, the F1-score increases as the network
size increases. The detection of peaks and pits tends to perform better than passes. This is expected, as
the identification of passes is based on that of associated peaks and pits. Thus, pass identification is more
difficult in a decentralized algorithm.

It should be noted, however, that based on the F1-score, the algorithm occasionally performed better
at monitoring events on passes than on peaks and pits, as shown in Table 1. This is because the F1-score
calculated for the identification of passes already reflected the effect of the identification of peaks (pits).
When the F1-score for monitoring events occurring on passes was computed, passes identified by the
algorithm were only considered. In terms of the F1-score for monitoring events on passes, unidentified
passes were not included in order to avoid double-counting errors.

Table 1. F1-score for monitoring events occurring on peaks and passes on a Level 4 surface

Network sizes 1000 2000 4000 8000 16,000

Peak 0.77 0.86 0.89 0.93 0.94
Pass 0.84 0.91 0.90 0.88 0.91

Recall

P
P

V

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1000
2000
4000
8000
16000

(a) Monitoring events on peaks

Recall

P
P

V

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1000
2000
4000
8000
16000

(b) Monitoring events on passes

Figure 11. Positive predictive value (PPV)-recall curves for network sizes of 1000–16,000
nodes on a Level 4 surface.

The F1-score provides a global view of the performance of the algorithm. However, it cannot provide
further details of the inverse relationship between PPV and recall. Figure 11 examines in more detail
the trade-off between PPV and recall, using PPV-Recall curves for the Level 4 surface, ranging from

Sensors 2015, 15 21372

1000–16,000 node network sizes. These results indicate that at the highest levels of recall, all of the
events achieve similar, relatively high levels of PPV (typically > 0.6). By contrast, the highest levels
of PPV are dependent on network size, with larger networks being capable of reaching higher levels of
PPV. This implies that due to the networks’ coarse granularity, the algorithm cannot guarantee that all
true events are detected, although most detected events are correct.

Hypothesis testing confirmed that this apparent effect was statistically significant. The null
hypothesis, that there is no effect of network size upon the F1-score for monitoring events at peaks
on the level 4 surfaces, was rejected (Kruskal-Wallis test, p < 2.2e − 16 significant at the 95% level).
More dense network sizes achieved better performance in terms of monitoring events occurring on peaks.
This pattern of increased performance was repeated for all surface levels.

6. Discussion

The results of the experiments on overall scalability confirmed that the algorithm is in practice
scalable, with overall O(n) communication complexity. The experimental results indicated a good fit,
with R2 ≥ 0.99 in all cases. The results also indicate a significant effect of surface roughness, as
might be expected, with rougher surfaces leading to greater numbers of messages generated and, to a
lesser extent, to greater latency. We can conclude that the algorithm can always be relied on to perform
efficiently, even though efficiency is expected to decrease for increasingly rough monitored surfaces.

The latency of the algorithm appears primarily to be related to the type of events occurring. For
example, if a peak disappears, nodes that have an out-of-date peak identifier must exchange their
peak identifier for the new one. This swapping can lead to a long latency compared to movement
or switch events of existing critical points and edges. The problem is exacerbated by the assumption
of an asynchronous network (Section 5.3). An efficient synchronous network (e.g., with bounded
communication delays) is beneficial for data consistency and efficiency [37,38] and, in our case, could
help improve latency.

The third evaluation criterion was load balance. While a substantial number of nodes transmit fewer
than 30 messages over the entire simulation (10 time steps), a small number of nodes sent more than
200 messages in that period. These high-load nodes were frequently located at a pass-cluster. Nodes
at the pass-cluster may sometimes need to repeatedly update their pass-cluster members and their
representative (or strong) pass. Future work should improve the algorithm by looking specifically at
improved mechanisms to reduce the updates required at pass-clusters.

The accuracy of the identification of critical points is high, comparable to that of centralized
algorithms. The results demonstrate that an increased network size is associated with improved accuracy,
as might be expected due to increased sensor detail about the surface. In the case of larger networks,
the F1-score for event detection reached over 0.95; but even in the worst cases of the smallest networks,
F1-scores remained about 0.6. In terms of key future work, it is interesting to investigate how the
algorithm behaves toward the presence of noise. Our related work [39] already investigated the
robustness of the algorithm to the inaccuracy of sensors in a static field. However, the robustness of
the algorithm should be further investigated for a dynamic field.

Sensors 2015, 15 21373

7. Conclusions

This paper has presented a decentralized algorithm that can efficiently and accurately identify events
occurring on a surface network. The surface network is derived from a scalar field, monitored by a
geosensor network without requiring any coordinate localization. Our approach to event detection is
to first focus on the changes occurring in catchment areas. Changes to these areas are the basis for
monitoring the appearance, disappearance and movement of peaks and pits. In turn, the appearance
and disappearance events at peaks and pits are used as the basis for the detection of appearance and
disappearance events at passes. Finally, the fourth event type, switch (where the edges of the surface
network change even though no changes may occur on the associated peaks and pits) are captured by
monitoring each node’s ascent/descent vectors.

The approach presented in this paper has wide applications to environmental monitoring. Even though
this paper focuses on empirical evaluations, the algorithm proposed might be implemented and tested in a
real sensor network as a result of advanced, more economical technology, such as thousands or millions
of nodes. For example, a wildfire risk management system might be required to monitor the highest
risk areas, not just simply through arbitrary thresholds, but by tracking the appearance, disappearance
and movement of high temperature hotspots or the local fuel moisture minimum. These changes can be
efficiently and intuitively summarized as qualitative events occurring on surface networks, with, in turn,
important events and changes reported back to wildfire monitoring decision makers and systems.

Acknowledgments

Matt Duckham’s research is supported under the Australian Research Council’s Discovery Projects
(Project Number DP12010072) and Linkage Projects funding schemes (Project Number LP120200584).

Author Contributions

Myeong-Hun Jeong designed, implemented and analyzed the algorithm. He also prepared the
manuscript. Matt Duckham supervised the whole process and revised the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Nittel, S. A Survey of Geosensor Networks: Advances in Dynamic Environmental Monitoring.
Sensors 2009, 9, 5664–5678.

2. Rana, S. Topological Data Structures for Surfaces; John Wiley & Sons, Ltd.: Chichester,
UK, 2004.

3. Pfaltz, J.L. Surface Networks. Geograph. Anal. 1976, 8, 77–93.
4. Edelsbrunner, H.; Harer, J.; Zomorodian, A. Hierarchical Morse Smale Complexes for Piecewise

Linear 2 Manifolds. Discret. Comput. Geom. 2003, 30, 87–107.

Sensors 2015, 15 21374

5. Sarkar, R.; Zhu, X.; Gao, J.; Guibas, L.J.; Mitchell, J.S. Iso-Contour Queries and Gradient Descent
with Guaranteed Delivery in Sensor Networks. In Proceedings of the 27th IEEE Conference on
Computer Communications (INFOCOM), Phoenix, AZ, USA, 13–18 April 2008; pp. 960–967.

6. Zhu, X.; Sarkar, R.; Gao, J. Topological Data Processing for Distributed Sensor Networks
with Morse-Smale Decomposition. In Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), Rio de Janeiro, Brazil, 19–25 April 2009; pp. 2911–2915.

7. Jeong, M.-H.; Duckham, M.; Miller, H.; Kealy, A.; Peisker, A. Decentralized and coordinate-free
computation of critical points and surface networks in a discretized scalar field. Int. J. Geograph.
Inf. Sci. 2014, 28, 1–21.

8. Edelsbrunner, H.; Harer, J.; Mascarenhas, A.; Pascucci, V.; Snoeyink, J. Time-varying Reeb graphs
for continuous space–time data. Comput. Geom. 2008, 41, 149–166.

9. Edelsbrunner, H.; Harer, J. Jacobi Sets of Multiple Morse Functions. In Foundations of
Computational Mathematics, Minneapolis; Cambridge University Press: London, UK, 2002;
pp. 37–57.

10. Sadahiro, Y. Analysis of surface changes using primitive events. Int. J. Geograph. Inf. Sci. 2001,
15, 523–538.

11. Szymczak, A. Subdomain Aware Contour Trees and Contour Evolution in Time-Dependent Scalar
Fields. In Proceedings of the International Conference on Shape Modeling and Applications,
Genova, Italy, 13–17 June 2005, pp. 136–144.

12. Mascarenhas, A.; Snoeyink, J. Isocontour Based Visualization of Time-Varying Scalar Fields.
In Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data
Exploration; Springer: Berlin Heidelberg, Germany, 2009; pp. 41–68.

13. Samtaney, R.; Silver, D.; Zabusky, N.; Cao, J. Visualizing features and tracking their evolution.
Computer 1994, 27, 20–27.

14. Reinders, F.; Post, F.H.; Spoelder, H.J. Visualization of time-dependent data with feature tracking
and event detection. Vis. Comput. 2001, 17, 55–71.

15. Ji, G.; Shen, H.W.; Wenger, R. Volume Tracking Using Higher Dimensional Isosurfacing. In
Proceedings of the IEEE Visualization (VIS 2003), Washington, DC, USA, 19–24 October 2003;
pp. 209–216.

16. Bremer, P.T.; Weber, G.H.; Pascucci, V.; Day, M.; Bell, J.B. Analyzing and tracking burning
structures in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. Graph. 2010,
16, 248–260.

17. Weber, G.; Bremer, P.T.; Day, M.; Bell, J.; Pascucci, V. Feature Tracking Using Reeb Graphs.
In Topological Methods in Data Analysis and Visualization; Pascucci, V., Tricoche, X.,
Hagen, H., Tierny, J., Eds.; Mathematics and Visualization, Springer: Berlin Heidelberg, Germany,
2011; pp. 241–253.

18. Sohn, B.S.; Bajaj, C. Time-varying contour topology. IEEE Trans. Vis. Comput. Graph. 2006,
12, 14–25.

Sensors 2015, 15 21375

19. Galton, A. Continuous Change in Spatial Regions. In Proceedings of the International Conference
COSIT ’97 on Spatial Information Theory: A Theoretical Basis for GIS, Laurel Highlands, PA,
USA, 15–18 October 1997; Hirtle, S.C., Frank, A.U., Eds.; Springer: Berlin/Heidelberg, Germany,
1997; pp. 1–13.

20. Sadahiro, Y.; Umemura, M. A computational approach for the analysis of changes in polygon
distributions. J. Geograph. Syst. 2001, 3, 137–154.

21. Silver, D.; Wang, X. Tracking Scalar Features in Unstructured Data Sets. In Proceedings of the
Visualization’98, Research Triangle Park, NC, USA, 24 October 1998; pp. 79–86.

22. Bothwell, J.; Yuan, M. A Kinematics-based GIS Methodology to Represent and Analyze
Spatiotemporal Patterns of Precipitation Change. In Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (GIS ’11), Chicago, IL,
USA, 1–4 November 2011 ACM: New York, NY, USA, 2011; pp. 152–161.

23. Palla, G.; Barabási, A.L.; Vicsek, T. Quantifying social group evolution. Nature 2007, 446,
664–667.

24. Greene, D.; Doyle, D.; Cunningham, P. Tracking the Evolution of Communities in Dynamic Social
Networks. In Proceedings of the 2010 International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), Odense, Denmark, 9–11 August 2010; pp. 176–183.

25. Robertson, C.; Nelson, T.A.; Boots, B.; Wulder, M.A. STAMP: Spatial-temporal analysis of
moving polygons. J. Geograph. Syst. 2007, 9, 207–227.

26. Jiang, J.; Worboys, M. Event-based topology for dynamic planar areal objects. Int. J. Geograph.
Inf. Sci. 2009, 23, 33–60.

27. Duckham, M. Decentralized Spatial Computing: Foundations of Geosensor Networks; Springer:
Berlin, Germany, 2013.

28. Santoro, N. Design and Analysis of Distributed Algorithms; John Wiley & Sons, Inc.: Hoboken,
NJ, USA, 2007.

29. Takahashi, S.; Ikeda, T.; Shinagawa, Y.; Kunii, T.L.; Ueda, M. Algorithms for Extracting Correct
Critical Points and Constructing Topological Graphs from Discrete Geographical Elevation Data.
Comput. Graph. Forum 1995, 14, 181–192.

30. Danovaro, E.; de Floriani, L.; Papaleo, L.; Vitali, M. A Multi-Resolution Representation for Terrain
Morphology. In Proceedings of the 4th International Conference on Geographic Information
Science, Münster, Germany, 20–23 September 2006; Raubal, M., Miller, H., Frank, A., Goodchild,
M., Eds.; Lecture Notes in Computer Science; Springer: Berlin Heidelberg, Germany, 2006;
Volume 4197, pp. 33–46.

31. Wood, J. The Geomorphological Characterisation of Digital Elevation Models. Ph.D. Thesis,
University of Leicester, Leicester, UK, March 1996.

32. Wilensky, U. NetLogo, 1999. Available online: http://ccl.northwestern.edu/netlogo/ (accessed on
1 June 2015).

33. Bakeman, R. Recommended effect size statistics for repeated measures designs. Behav. Res.
Methods 2005, 37, 379–384.

34. Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R; Sage: London, UK, 2012.

Sensors 2015, 15 21376

35. Buckland, M.; Gey, F. The relationship between Recall and Precision. J. Am. Soc. Inf. Sci. 1994,
45, 12–19.

36. Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with
Implications for Evaluation. In Advances in Information Retrieval; Losada, D., Fernández-Luna, J.,
Eds.; Lecture Notes in Computer Science; Springer: Berlin Heidelberg, Germany, 2005;
Volume 3408, pp. 345–359.

37. Sundararaman, B.; Buy, U.; Kshemkalyani, A.D. Clock synchronization for wireless sensor
networks: A survey. Ad Hoc Netw. 2005, 3, 281–323.

38. Werner-Allen, G.; Tewari, G.; Patel, A.; Welsh, M.; Nagpal, R. Firefly-Inspired Sensor Network
Synchronicity with Realistic Radio Effects. In Proceedings of the 3rd International Conference
on Embedded Networked Sensor Systems, San Diego, CA, USA, 2–4 November 2005; ACM:
New York, NY, USA, 2005; pp. 142–153.

39. Jeong, M.-H. Qualitative Characteristics of Fields Monitored by a Resource-Constrained Geosensor
Network. Ph.D. Thesis, The University of Melbourne, Melbourne, Australia, June 2014.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Background
	Model
	Algorithm Preliminaries
	Discrete Surface Networks

	Algorithm
	Monitoring Events Occurring on Peaks and Pits
	Algorithm 1: Update Gradient Vectors
	Algorithm 2: Monitor Peak Movement
	Algorithm 3: Monitor Peak Disappearance
	Algorithm 4: Monitor Peak Appearance
	Summary

	Monitoring Events Occurring on Passes
	Scalability

	Experiments
	Experimental Setup
	Overall Scalability
	Latency
	Load Balance
	Accuracy

	Discussion
	Conclusions

