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Abstract: Time synchronization is essential for node localization, target tracking, data 

fusion, and various other Wireless Sensor Network (WSN) applications. To improve the 

estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we 

propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter 

time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a 

state-space equation with a linear substructure, state variables are divided into linear and 

non-linear variables by the RB particle filter algorithm. These two variables can be 

estimated using Kalman filter and particle filter, respectively, which improves the 

computational efficiency more so than if only the particle filter was used. In addition, the 

DPM model is used to describe the distribution of non-deterministic delays and to 

automatically adjust the number of Gaussian mixture model components based on the 

observational data. This improves the estimation accuracy of clock offset and skew, which 

allows achieving the time synchronization. The time synchronization performance of this 

algorithm is also validated by computer simulations and experimental measurements. The 

results show that the proposed algorithm has a higher time synchronization precision than 

traditional time synchronization algorithms. 
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1. Introduction 

Wireless Sensor Networks (WSNs) have broad applications in environmental monitoring, military 

reconnaissance, health care, and other fields [1–3]. Time synchronization is an important step in 

WSNs, which makes all nodes to coordinate operations in complex sensing tasks [4]. In order to deal 

with the effects of crystal oscillator frequency deviation and the relative motion between nodes, a 

random delay modeling and synchronous tracking technology are introduced to improve the accuracy 

of time synchronization in WSNs, which will benefit the subsequent applications, such as the node 

location and tracking applications [5–7]. 

Traditional synchronization technologies, such as Network Time Protocol (NTP) or Global 

Positioning System (GPS) [8,9], is not suitable for WSNs due to their size, cost, and impact on energy 

consumption. Therefore, many synchronization protocols for WSNs, such as Reference Broadcast 

Synchronization protocol (RBS) [10], Flooding Time Synchronization Protocol (FTSP) [11], Timing-Sync 

Protocol for Sensor Networks (TPSN) [12], and Delay Measurement Time Synchronization protocol 

(DMTS) [13], have been proposed in recent years. Among these protocols, TPSN shows a higher 

synchronization accuracy and better scalability as the delay is estimated using a two-way information 

exchange technique. However, non-deterministic delays cause difficulties in continuous clock offset and 

skew estimation during two-way timing message exchanges, which increase the computational burden of 

the time synchronization algorithm. 
Currently, there are two main methods to solve non-deterministic delays in TPSN—selecting the 

appropriate delay distribution and calculating the adaptive delay distribution. In the first method, the 

symmetric exponential Maximum Likelihood (SEML) algorithm or the symmetric Gaussian Maximum 

Likelihood (SGML) algorithm [14–16] estimates clock offset by using Maximum Likelihood 

Estimation (MLE) in the hypothesis of symmetric exponential or Gaussian delay distributions, 

respectively. Chaudhari, Serpedin, et al. [17] introduced two unbiased estimation methods of clock 

offset: Best Linear Unbiased Estimation using Order Statistics (BLUS-OS) and Minimum Variance 

Unbiased Estimation (MVUE). Subsequently, they proved that the unbiased estimation of clock offset also 

coincides with MLE in the hypothesis of symmetric exponential delays. Obviously, when the application 

conditions are constantly changing, the clock offset and skew estimation in the determining delay 

distribution will lack the adaptability. In the second method, the Gaussian Mixture Model (GMM) is often 

used to estimate the unknown delay distribution; therefore, the estimation results of clock offset can 

adaptively adjust according to the change in the application conditions. Kim Lee, et al. [18,19] proposed 

estimation algorithms of clock offset based on Gaussian Mixture Kalman Particle Filter (GMKPF),  

and [20] introduced Iterative Gaussian Mixture Kalman Particle Filter (IGMKPF) in the estimation of clock 

offset, which improves the robustness of estimation results in arbitrary delay distributions. However, the 

predetermined number of Gaussian models weakens the flexibility of the delay distribution estimation, and 

affects the accuracy of time synchronization. 
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To solve the lack of the adaptive regulation method in modeling the delay distribution based on 

GMM, we conducted work on two fronts. First, we improve estimation accuracy of delay distributions 

based on the non-parametric Bayesian model. Next, we reduce the amount of computation in tracking 

non-Gaussian clock offset and skew based on the Rao-Blackwellised particle filter (RBPF). In order to 

overcome the limitations of the Gaussian mixture model, the Dirichlet process mixture (DPM) model 

is used to estimate the delay distribution, which can adjust the number of Gaussian models 

automatically based on the observational data. Subsequently, the DPM-based Rao-Blackwellised 

particle filter (DPM-RBPF) algorithm is proposed [21,22], where the system model is divided into 
linear and non-linear parts—it uses the particle filter and the Kalman filter to estimate the non-linear 

and the linear parts, respectively. Hence, the DPM-RBPF algorithm can efficiently track clock offset 

and skew in the non-Gaussian dynamic model. Time synchronization is achieved by improving the 

efficiency and accuracy of the continuous clock offset and skew estimation process. 

The rest of this paper is organized as follows. In Section 2, the DPM-RBPF algorithm is stated in 
detail—it includes the two-way timing message exchange model, the DPM model description of the 

observation noise, and the RBPF algorithm. In Section 3, we compare the proposed algorithm with the 

other algorithms, and verify time synchronization performance of our algorithm. In Section 4, we draw 

conclusions and look ahead to the development direction of this research. 

2. RBPF Time Synchronization Algorithm Based on the DPM Model  

The time synchronization is the continuous clock offset and skew estimation, but it is crucial to deal 

with non-deterministic delay and packet loss. Therefore, this paper proposes a DPM-RBPF algorithm, 

which introduces a DPM model description of the observation noise and RBPF algorithm based on 

two-way timing message exchange. Consequently, the clock offset and skew tracking is achieved with 

the improved computational efficiency and accuracy. 

2.1. State-Space Equation of Two-Way Timing Message Exchange 

The two-way timing message exchange method is commonly employed in time synchronization. 

The specific exchange process of this method is illustrated in Figure 1. 
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Figure 1. Two-way timing message exchange. 
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In Figure 1, the kth time set of message departure and arrival 1, 2, 3, 4,{ , , , }k k k kT T T T  can be obtained by 

two-way timing message exchange. ,A kφ  represents clock offset of Node A’s clock relative to Node 

B’s clock at time 1,kT  in the kth exchange process. ,B kφ  represents clock skew, , 0B kφ =  implies that 

Node A and Node B have the same clock frequency. d  is the fixed transmission delay between Node 
A and Node B. kR  and kM  are the non-deterministic network delays from Node A to Node B and 

from Node B to Node A, respectively.  

Given the above exchange model, the time difference between the uplink and the downlink 

transmission can be represented as follows: 

2, 1, , ,

4, 3, , , 4, 1, ,

( )

( ) ( 1)( )
k k k k B k A k

k k k k B k B k k k A k

U T T d R

V T T d M T T

φ φ
φ φ φ

= − = + ⋅ +
= − = + ⋅ − − − −

 (1)

The observation model can be derived from Equation (1) as follows: 

, 4, 1, , , 4, 1,2 ( ) ( ) ( )k k k A k k k B k k k B k k kz U V T T R M T Tφ φ φ= − = + − ⋅ + − ⋅ − −  (2)

If the clock skew cannot be ignored (i.e., , 0B kφ ≠ ), then the clock offset continue to change with 

time, as shown in Figure 1. Therefore, the clock offset and skew should be continuously estimated to 

improve the accuracy and reliability of synchronization. Here, we adopt the constant clock skew model 

as follows. 

, , 1 , 1A k B k A ktφ φ φ− −= Δ ⋅ +  (3)

where tΔ  is the time interval of two-way timing message exchange, i.e., 1, 1, 1k kt T T −Δ = − . 

By considering the clock offset ,A kφ  and clock skew ,B kφ  as a state variable , ,[ ]T
k A k B kx φ φ= , the 

state-space equation of two-way timing message exchange model is described as follows: 

1 1

4, 1,

1

0 1

2

k k k

k k k k k

t
x x v

z T T x n

− −

Δ 
= ⋅ + 
 
 = − ⋅ + 

 (4)

where 1kv −  is the Gaussian state noise with zero mean and covariance Q , which reflects the effects of 

environmental temperature, crystal ageing, power supply voltage fluctuation, etc. 

, 4, 1,( ) ( )k k k B k k kn R M T Tφ= − ⋅ − −  is the unknown distribution observation noise.  

If the clock skew can be ignored (i.e., , 0B kφ = ), the initial clock offset is the only parameter to be 

estimated. Assuming the clock offset as the state variables, the state-space equation of the two-way 

timing message exchange can be described as follows [18]: 

1 1

2
k k k

k k k

x x v

z x n
− −= +

= +
 (5)

where 1, 4,k k kn T T= −  is the observation noise.  

2.2. Observation Noise DPM Model 

For the unknown observation noise, the DPM model [23] is used to estimate its probability density 

function. The DPM model, as a non-parametric Bayesian model, has been widely used in the 
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probability density estimation, data clustering [24], which can flexibly adjust model parameters and the 

component number. The graphical model of DPM model is shown in Figure 2. 

 

πα lc ln
L

mθ
M

0G

 

Figure 2. Dirichlet process mixture model. 

In Figure 2, the observation noise ln  obeys the likelihood function F  with the indicator lc  and the 

parameter set 1{ , , , , }m Mθ θ θ=θ   , where mθ  is the parameter of the mth component posterior based 

on the prior 0G  with the parameter 0θ . The parameter indicator lc  is obtained from a multinomial 

distribution π  with a symmetric Dirichlet prior. Therefore, the formula of the hierarchical structure is 

expressed as follows: 

( ) ( ) ~ | ; θ ; ~ (π); π ~ α / , ,α /
l ll l c c m m ln F n G c Mul Dir M Mθ =    (6)

where α  is the concentration parameter of the Dirichlet distribution. K  is the dimensional number of 

Dirichlet distribution. M  is the number of the posterior component. 
In this work, the likelihood function ( )F ⋅  is selected to be the Gaussian distribution, and the 

conjugate prior 0G  is described as the product of a Gaussian distribution and an inverse chi-squared 

distribution: 2 2 1 2 2
0 0 0 0 0 0(μ,σ | θ ) (μ |μ ,σ λ ) (σ | σ , )G ν−= ⋅  , where 2

0 0 0 0 0θ ={μ ,λ ,σ , }ν . 0μ  and 0λ  are 

the mean and the scale parameter of the Gaussian distribution  , respectively. 2
0σ  and 0ν  are the 

variance and the degree of freedom of the inverse chi-squared distribution 1− , respectively. Therefore, 

the posterior distribution is also a normal inverse chi-squared distribution. If the observation noise set 

1 2{ , , , }
m

m m m
Ln n n=n   is received, where all mL  observation noise have the indicator lc m= , the mth 

component posterior is expressed as following: 

( ) ( )
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 (7)

If the observation noise ln  is randomly selected, the indicator lc  and the parameter of the 

component posterior 2θ ={μ ,λ ,σ , }m m m m mν  can be updated. Following the Chinese restaurant scheme of 

the Dirichlet process [21], the mth component posterior is formulated as follows: 

,

( | , ,α,θ ) ( | ,α) ( | ,θ )

( α 1)    if   has been appeared 
( | ,α)

α ( α 1)    if  is new                   

l l k m l l k l m
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l l
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− −

−
−

= ∝ = =
+ −

= =  + −

c c

c
 (8)
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where the indicator set l−c  is defined as 1 1 1{ , , , , , }l l Lc c c c− +  . L  denotes the number of indicators. 

,l mL−  is the number of the indicator, which is equal to m  in the indicator set l−c . 

The likelihood function ( | ,θ )k l mp n c m=  is calculated as follows: 

( ) ( )
( )

2
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(9)

where 0 0λ μm mS sum= + , msum  represents the sum of observation noise, whose indicator is equal to m .  

After the iterative update of the indicator and the parameter of the component posterior, the 
concentration parameterα is also sampled from the posterior distribution. Assume ~ ( , )Gamma a bα , a 

gamma prior with shape 0a >  and scale 0b > . In this paper, we adopt the auxiliary variable method for 

samplingα . By defining auxiliary variables w  and s , where w  is a variable with continuous values in 
[0,1], and s  is a binary {0,1} variable, the component posterior ( , , )p w s mα  is expressed as [25]: 

( ) ( )α log1α , , α b wa m sp w s m e− −− + −∝  (10)

which is a gamma distribution with parameters a m s+ −  and logb w− . m ( 1)m >  is the number of 

normal components in the mixture model, after given α , the w , s  and m  may be sampled from the 

following distribution is given by: 
α 1( α) (1 )

( α) ( α)

( α, ) ( , )α (α) (α )

L

s

m

p w w w

p s L

p m L s L m L

−∝ −

∝

∝ Γ Γ +

 (11)

where w  and s  obey beta and binomial distributions, respectively. The ( , )s L m  and ( )Γ ⋅  are unsigned 

Stirling numbers of the first kind and gamma function, respectively. The number of normal 

components m can be calculate based on the concentration parameter α and the number of 

observations L , it means that the DPM model can flexibly adjust the number of gaussian components 

using the observation data. 

2.3. State Tracking Based on DPM-RBFPF 

For the non-Gaussian observation noise in the state-space equation of clock offset or skew, the 

DPM-RBPF algorithm is used for time synchronization. The DPM model is used to describe the 

observation noise. RBPF is used to track clock offset or skew. RBPF is widely used in visual tracking, 

simultaneous localization and mapping (SLAM), and other fields [26,27]. It divides the state variables 

into linear and non-linear parts based on the Rao-Blackwell statistical theory, and improves the 

computational efficiency of the particle filter by integrating the Kalman filter. 

As shown in Equation (4), by exchanging the times information between Node A and B for L  times, 
we get the entire observation data 2, 3, 1, 4,k k k k kz T T T T= + − − . The clock offset and skew defined as the 

state variables kx , and the indicator of the model component kc  is defined as the hidden variable. 
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According to Bayes’ theorem, the posterior probability density function 1: 1: 1( , , , , )k k k kp x c z xα −θ  for the 

unknown variables [ , ]k kx c  can be decomposed into the linear section 1( , , , )k k k kp x c z x −θ  and the  

non-linear section 1( , , , )k k kp c z xα −θ  shown as follows: 

1: 1: 1 1 1( , α, , , ) ( , , , ) ( α, , , )k k k k k k k k k k kp x c z x p x c z x p c z x− − −= ⋅θ θ θ  (12)

Thus, the estimation of the unknown variables is divided into the estimation of the linear and  

non-linear variables independently through the marginalization of the probability density function. The 

Kalman filter is used to estimate the linear variable, and the particle filter is used to calculate the  
non-linear variable. Since the variable dimension of 1( | α, , , )k k kp c z x −θ  is less than the variable 

dimension of 1( , α, , , )k k k kp x c z x −θ , the DPM-RBPF algorithm needs fewer particles than the standard 

particle filter, which can effectively improve the computational efficiency of this algorithm [28]. The 

following section describes linear and non-linear estimation, respectively. 
The posterior probability density of the non-linear hidden variable kc  can be approximated by a set 

of random particles with certain importance weight, such that the posterior 1( | α, , , )k k kp c z x −θ  can be 

approximated as follows: 

( )1 1
( | α, , , ) δ

N i i
k k k k k ki

p c z x w c c− =
= ⋅ −θ  (13)

where i
kc  is the thi  particles with the importance weight i

kw , δ( )⋅  is the Dirac delta function. N  is the 

number of particles. 
Initially, the particle i

kc  is sampled according to the Equation (8), and its importance weight i
kw  is 

calculated using the sequential Monte Carlo sampling as follows: 

1 1 1 1
1

1

( , , , ) ( , , )
1, 2, ,

( , , )
k k k k k k ki i

k k
k k k

p z c z x p c z x
w w i N

q c z x
− − − −

−
−

⋅
= =

θ θ

θ
  (14)

In order to simplify the calculation of the importance weight i
kw , the proposal distribution 

1( , , )k k kq c z x −θ  is usually chosen to be equal to the conditional posterior 1 1( , , )k k kp c z x− −θ . Hence, the 

importance weight can be updated by using the formula 1 1 1( , , , )i i
k k k k k kw w p z c z x− − −= θ . In a specific 

implementation process, the particles need to be re-sampled to prevent the degradation of particles, 

according to the weighting coefficient. 
After the nonlinear hidden variable kc  is sampled using the PF method, the linear state variable kx  

is calculated by the Kalman filter method. For each particle i
kc , we can recursively calculate the state 

variable i
kx  and the variance i

kP  by using a Kalman filter as shown below: 

( ) ( )1 1, KF , , , ,i i i i i
k k k k k kx P c x P z− −= θ  (15)

Therefore, the posterior probability density function 1( , , , )k k k kp x c z x −θ  is approximately expressed 

by using a mixture of densities shown as follows: 

( )1 1
( , , , ) δ

N i i
k k k k k k ki

p x c z x w x x− =
= ⋅ −θ  (16)

Finally, the minimum mean squared error (MMSE) estimation of linear state variable and noise 

covariance matrix can be written as follows: 
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( )( )
1

T

1

ˆ

ˆ ˆ ˆ

N i i
k k ki

N i i i i
k k k k k k ki

x w x

P w P x x x x

=

=

=

 = + − −  




 (17)

2.4. Algorithmic Process  

We propose the DPM-RBPF algorithm to improve the accuracy and efficiency of continuous clock 

offset and skew estimation in TPSN. It includes three key steps. First, the state-space equation is 

initialized and the DPM model is trained based on the approximate observation noise in Equation (5). 

Next, the particles of the indicator are re-sampled based on the updated weights. Furthermore, the 

DPM model is continuously retrained based on the new obtained observations and state values. Finally, 

the particles of the state variable are calculated using the Kalman filter and the state variable is 

estimated to complete time synchronization between two nodes. The process of DPM-RBPF algorithm 

is listed as shown below in Algorithm 1: 

Algorithm 1. DPM-RBPF algorithm. 

Step (1) Initialize the DPM model and the state-space equation. 

• Set the concentration parameter α  and the base distribution 0G . According to the approximate 

observation noise data set, the DPM model is trained using Equations (7)–(11).  
• Set the initial state variable 0ˆ ˆMLx x= . 

• Sample the N initial particles of the model component indicator from DPM model. 

• Initialize the importance weight of particles uniformly. 

Step (2) Resample the particles and update the DPM model. 

• Calculate and normalize the importance weights using Equation (14). 
• Generate a new set of particles 1{ }i N

k ic =  with the corresponding importance weights 1{ }i N
k iw =  using the 

resampling method. 

• DPM model is updated based on the observations and estimated state variables in a time interval.  

Step (3) Estimate the state variable. 

• According to Equation (15), the state variables of all particles are updated. According to the  

Equation (17), the state variables are calculated.  

• If the online calculation is not complete, return to Step (2). 

3. The Performance and the Analysis 

In this section, the estimation accuracy and computational efficiency of the DPM-RBPF algorithm 

are compared with the Maximum Likelihood Estimation (MLE) [15,16], the Advanced Self-Correcting 

Time Synchronization (ASCTS) [29] and the Iterative Gaussian Mixture Kalman Particle Filter 

(IGMKPF) algorithm [20]. The performance of the proposed algorithm is verified via computer 

simulations and experimental measurements, and the influence of the number of observations, particles, 

and other parameters is analyzed in detail. Unless otherwise specified in the following experiments, it 
is assumed that the variance Q  of state noise is equal to 41e− , the number of the indicator particles is 
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set to 500, and the concentration parameter α  is followed by gamma prior with the shape 1a =  and the 

scale 1b = . 

3.1. Simulations’ Comparison 

Assuming that the non-deterministic delay model obeys Gaussian distribution and Laplace 

distribution, time synchronization results of MLE, ASCTS, IGMKPF and DPM-RBPF algorithm are 

compared. For the Gaussian distribution experiment, the parameters are set as follows: the  
non-deterministic delay kR  and kM  are assumed to follow the Gaussian distribution with zero mean 

and 0.01 variance. The initial value of the state 0x̂  is set to 0.001. The average results of 30 trials of the 

three algorithms are shown in Figure 3a. The vertical coordinate is the mean square error (MSE), 

which is used to evaluate the performance of the clock offset and skew estimation. The horizontal 

coordinate is the number of two-way timing message exchanges. Each experiment was performed 30 

times two-way timing message exchange to track the clock offset and skew. In the experiment of 
Laplace distribution, the parameters are set as follows: kR  and kM  are assumed to follow the Laplace 

distribution with zero location parameter and 0.01 scale parameter. The other settings are identical to 

the experiment of Gaussian distribution. The average results are shown in Figure 3b. 
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Figure 3. (a) MSE of clock offset estimators for symmetrical Gaussian delay; (b) MSE of 

clock offset estimators for symmetrical exponential delay. 

As shown in Figure 3, with an increase in the number of observations, there is a gradual reduction 

in MSE. A smaller MSE implies that there is a higher precision of time synchronization. Comparing 

the four algorithms—MLE, ASCTS, IGMKPF and DPM-RBPF—DPM-RBPF is better than MLE, 

ASCTS and IGMKPF in MSE of the clock offset estimation. This indicates that the DPM model 

describes the observation noise more accurately. The hypothetical observation noise distribution model 
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used by MLE is probably different from the actual observation noise distribution model. Therefore, the 

performance of MLE is worse than the other two algorithms, which implement an adaptive observation 

noise model. 

Gaussian distribution and Laplace distribution are symmetrical, but the delay noise is often 

asymmetric. As a result, the performances of the algorithms are compared under conditions of 

asymmetric delay noise, and the computational efficiency of DPM-RBPF and IGMKPF are tested. 
Assuming the non-deterministic delay model obeys an asymmetric distribution, kR  is the Gaussian 

distribution with zero mean and 0.01 variance, and kM  is the exponential distribution with 0.01 rate 

parameter. Figure 4a shows the comparison of the estimation results of different algorithms. Since the 

hypothetical noise distribution is inconsistent with the actual noise distribution, the performance of 

MLE under conditions of symmetrical Gaussian distribution or symmetrical exponential distribution 

(Laplace distribution) becomes worse. The performance of DPM-RBPF remains superior to the four 

comparative algorithms. Figure 4b shows the number of particles needed by DPM-RBPF, DPM-PF 

and IGMKPF under different MSE. For the same MSE, DPM-RBPF requires fewer particles than 

DPM-PF and IGMKPF. The calculation extent of DPM-RBPF is less than the other algorithms to 

achieve the same accuracy. This means that the RBPF can improve the computational efficiency. 
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Figure 4. (a) MSE of clock offset estimators for mixing of a Gaussian and an exponential; 

(b) The relationship between the number of particles and MSE.  

3.2. Parameters’ Analysis 

The impact of the relevant parameters on the DPM-RBPF algorithm is discussed in this section. 

Since sensor nodes are energy-constrained, the number of the time message exchanges between the 

nodes is limited, and the number of particles for the RBPF algorithm is also limited. In order to 

minimize energy consumption for a given synchronization accuracy, we evaluate the impart of the 

number of observations and the number of particles on the DPM-RBPF algorithm. 
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3.2.1. Relationship Analysis between the Number of Observations and MSE 

Figure 5a shows the relationship between the number of observations L  and the MSE of the clock 

offset when the numbers of particles are 100, 200, 300, 400, and 500, respectively. As can be seen 

from the figure, with fewer particles (N = 100 or N = 200), MSE only changes slightly with an increase 

in the number of observations. In other words, when the number of particles is too small, the  

DPM-RBPF algorithm cannot fully exploit the time information of observations. However, when the 

number of particles is greater than 300, we find that the MSE becomes smaller with an increase in the 

number observations. In order to guarantee that MSE is less than -57e , and to minimize energy 

consumption of nodes, we select 20L =  and 400N ≥ . 
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Figure 5. (a) The relationship between the Number of Observations and MSE; (b) The 

relationship between the Number of Particles and MSE. 

3.2.2. Relationship Analysis between the Number of Particles and MSE 

Figure 5b shows the relationship of the number of RB particle filter and the MSE when the number 

of observations is 10, 15, 20, and 25, respectively. From the figure, we can see that when the number 

of observations is constant, MSE increases as the number of particles reduces, and vice versa. The two 

curves 20L =  and 25L =  substantially coincide and MSE is similar. When the number of particles is 

larger than 600, MSE stabilizes. Considering synchronization accuracy and energy consumption 

comprehensively, we finally select 20L =  and 500N = . 

3.3. Experimental Measurement 

To evaluate the time synchronization performance, we set up a testing system with four mobile 

nodes based on Arduino Uno boards, as shown in Figure 6. Arduino Uno is a microcontroller board 

based on the ATmega328 processor with 16 MHz crystal clock oscillator. The on-chip memory 
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includes 32 KB of flash memory, 1 KB of EEPROM and 2 KB of SRAM. All Arduino Uno configured 

with CC3000 WiFi Shield establish the communication links to each other through a wireless router. 

The program of the proposed DPM-RBPF algorithm is running on the control computer with a  

2.27 GHz CPU and 16 GB RAM.  

 

Figure 6. The experimental platform with four nodes (Arduino Uno board). 

According to the two-way timing message exchange method, the control computer periodically 

sends the timestamps packet to four mobile nodes. When the mobile node receives a timestamps 

packet, it would read the clock at the time of receiving and sending the timestamps packet. These 

clocks are calibrated based on the clock offset in the timestamps packet, and fill back the timestamps 

packet. Then, the timestamps packet was immediately sent back to the control computer for the next 

clock skew tracking. The format of timestamps packet is {T0,k,T1,k,T2,k,T3,k,T4,k}, which includes the 

clock offset T0,k, the computer clock T1,k and T4,k at time of receiving and sending the timestamps 

packet, and the node clock T2,k and T3,k at the time of receiving and sending timestamps packet, where 

k is the number of two-way timing message exchanges. If there is no clock offset calibration (It means 

the T0,k in timestamp packet is set to 0), the clock in timestamps packet from k0 to k0 + 3 times is 

shown in the left section of Table 1. Due to the existence of the clock offset and skew between the 

control computer and the mobile node, T1,k, T4,k and T2,k , T3,k have a significant difference. If there is a 

clock offset calibration, as shown in the right section of Table 1, the clock values from T1,k to T4,k 

continue to increase, which is consistent with the chronological laws of the timestamps packet exchange.  

Table 1. The comparison between no calibration and calibration (time interval 2 s). 

k 
No calibration Calibration (µs) 

T0,k T1,k T2,k T3,k T4,k T0,k T1,k T2,k T3,k T4,k 

k0 0 118,104,732 100,814,673 100,816,003 118,225,238 277,031 118,104,732 118,161,017 118,162,347 118,225,238 

k0 + 1 0 120,234,711 102,616,610 102,617,649 120,306,343 275,900 120,234,711 120,238,854 120,239,893 120,306,343 

k0 + 2 0 122,324,748 104,408,959 104,410,527 122,395,988 307,936 122,324,748 122,339,139 122,340,707 122,395,988 

k0 + 3 0 124,414,626 106,189,262 106,190,567 124,564,677 314,981 124,414,626 124,434,423 124,435,728 124,564,677 

Using the build test system, the clock synchronization performances of ASCTS and DPM-RBPF 

algorithm were compared. The tracking curves of the clock offset and skew of four mobile nodes are 

shown in Figure 7. There is a certain clock offset and skew to every mobile node at the start time. 
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Through tracking the clock offset and skew, the clock offset gradually moves towards zero, which 

means the clock synchronization can be achieved. Compared with ASCTS, DPM-RBPF can quickly 

complete the clock synchronization, which calibrates the clock offset at 20, 22, 25, 39 steps, 

respectively, to four mobile nodes. The tracking curves of DPM-RBPF algorithm show a small 

fluctuation. This means that the proposed method has better tracking performance. 
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Figure 7. Tracking curves of ASCTS and DPM-RBPF (time interval 5 s). (a) Node A;  

(b) Node B; (c) Node C; (d) Node D. 

Quantitative analysis of time synchronization is shown in Table 2. The mean and standard deviation 

of clock offset and skew in the steady state are listed. Since the observation noise is randomly 

distributed with nonzero mean, the estimation of clock offset in steady state has certain bias. This bias 

can usually be counteracted by system calibration. The standard deviation (STD) in Table 2 shows less 

tracking fluctuation in DPM-RBPF than ASCTS, which means that the time synchronization 

performance of DPM-RBPF is superior to ASCTS’s. 
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Table 2. Quantitative analysis of time synchronization in steady state (time interval 5 s).  

 
Node A Node B Node C Node D 

MEAN STD MEAN STD MEAN STD MEAN STD 

ASCTS θA(µs) −53.9 408.4 −33.5 313.7 −25.4 552.3 18.3 319.5 
ASCTS θB(Hz) −0.99 0.004 −0.101 0.003 −0.99 0.004 −0.99 0.003 

DPM-RBPF θA(µs) 16.1 288.8 160.2 211.5 151.3 379.3 36.4 260.5 
DPM-RBPF θB(Hz) −0.10 0.002 −0.099 0.002 −0.99 0.001 −0.99 0.002 

In order to reveal the effect of the DPM model updated in the experiment, different observation 

intervals LΔ  are selected. It means the DPM model is updated after obtaining a different number of 

observation noises, which are calculated based on the observations and the estimated state variables. 

When two different time intervals 10 and 20 are selected, the tracking curves of the clock offset and 

skew on node A are shown in Figure 8. 
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Figure 8. Tracking curves for different intervals (time interval 5 s). 

As shown in Figure 8, since the update of the observation noise model is inconsistent, the tracking 

curves appear different within the 10–40 observation point range. Despite ignoring the clock skew in 

the initialization of the observation noise model, the tracking curves soon become identical after more 

than 40 points. It means that the updating DPM model can better adapt to environmental change and 

the DPM model is able to describe the unknown observation noise, which ensures the accurate tracking 

of clock offset and skew. 

4. Conclusions 

In this paper, we propose a novel time synchronization algorithm, DPM-RBPF, to improve the 

accuracy and efficiency of continuous clock offset and skew estimation in a dynamic sensor network. 

In the proposed algorithm, a unified state-space equation is constructed to track the clock offset and 

skew, and a DPM model is used to describe the distribution of observation noise, which can flexibly 

adjust the number of Gaussian components to enhance the adaptability of the observation noise model. 

In addition, simulation experiments indicate the advantages of the proposed algorithm in terms of 
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estimation precision and computational efficiency compared with the other algorithms—such as 

SGML, SEML, ASCTS and IGMKPF algorithms. We also discuss the parameters’ selection process of 

the proposed algorithm. The results of computer simulations and test systems demonstrate that the 

proposed algorithm outperforms other algorithms in time synchronization accuracy. 
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