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Abstract: In this paper, a three-component decomposition algorithm is proposed for 

processing compact polarimetric SAR images. By using the correspondence between the 

covariance matrix and the Stokes vector, three-component scattering models for CTLR and 

DCP modes are established. The explicit expression of decomposition results is then 

derived by setting the contribution of volume scattering as a free parameter. The degree of 

depolarization is taken as the upper bound of the free parameter, for the constraint that the 

weighting factor of each scattering component should be nonnegative. Several methods are 

investigated to estimate the free parameter suitable for decomposition. The feasibility of 

this algorithm is validated by AIRSAR data over San Francisco and RADARSAT-2 data 

over Flevoland. 
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1. Introduction 

Compact polarimetric (CP) synthetic aperture radar (SAR) has been widely investigated over recent 

years. Compared with fully polarimetric (FP) SAR, CP SAR transmits only one polarization, thus 

avoiding the problems caused by high pulse repetition frequency (PRF), such as a low swath coverage, 

high data storage requirement and complicated system design. Several investigations demonstrate that 

CP SAR have the potential for a variety of remote sensing applications, such as soil moisture 

measurement [1], ship detection, oil spill identification [2,3], and vegetation height estimation [4]. 

According to the combination of polarization states, three typical CP SAR modes have been 

proposed, namely: π/4, circular transmission while linear reception (CTLR) and dual circular 

polarization (DCP). As the quantity of polarimetric information acquired by CP SAR is only half that 

of FP SAR, CP research has focused mainly on the extraction of scattering characterizations with 

similar finesse to that derived from FP systems [5].  

Decomposition is an effective way to analyze the scattering data from a target. For CP SAR, several 

widely used decomposition methods have been proposed and improved, such as pseudo FP 

construction [6–8] and CP entropy/alpha decomposition [9–11]. In the paper [12] of Rui Guo et al., in 

2014, a three-component decomposition for a CP configuration is derived from a series of algebraic 

calculations, without reconstructing the pseudo FP information. Another school of thought is based on 

Stokes vector (SV), which is completely constructed from CP data. By using the polarization degree 

and relative phase calculated from SV, Raney et al. proposed the m   decomposition [13,14]. Cloude 

extended this idea to a compact decomposition theory in SV form [15].  

In this paper, we focus on a three-component decomposition based on SV under the CTLR and DCP 

modes. We first establish the three-component model from the relationship between the covariance 

matrix and SV. To solve the underdetermined equations for CP decomposition, the contribution of volume 

scattering is taken as a free parameter, thus giving a complete set of solutions in an explicit format. 

According to the constraint that all weighting factors should be nonnegative, the depolarization degree is 

taken as the upper bound of volume scattering contribution. To validate the effectiveness of this algorithm, 

San Francisco data from AIRSAR and Flevoland data from RADARSAT-2 are used for testing. 

Section 2 introduces the three-component model of SV. Section 3 and Section 4 present the 

deduction of decomposition for CTLR mode and DCP mode respectively. Section 5 compares this 

algorithm with Cloude CP and m   decompositions. Section 6 discusses methods to estimate the 

volume scattering contribution. Section 7 demonstrates the decomposition performance using real 

remote sensing data. Conclusions and future work are drawn in section 8. 

2. Three-Component Model 

Three stages are taken in turn to relate SV to decomposition theory: to begin with, we establish a 

three-component model of FP covariance matrix; this model is then transformed into the coherency 

matrix; finally the model is expressed by the SV under the CTLR and DCP modes respectively. 
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2.1. Three-Component Model of FP Covariance Matrix 

The scattering characteristics of polarimetric SAR images can be evaluated by the second-order 

statistics of scattering matrix. Here we firstly focus on the covariance matrix  

FP H

L LC k k  (1)  

where  stands for the ensemble average in the data processing,  
H

 means transposition and 

conjugation, and subscript L states for lexicographic scattering vector. For monostatic FP SAR, the 

scattering vector Lk  is defined as [16] 

2
T

L HH HV VVk S S S 
 

 (2)  

In three-component decomposition theory, the covariance matrix is modeled as the contribution of 

three scattering mechanisms: volume, double-bounce, and surface scatterings. According to [17], the 

three-component model of FP covariance matrix is given by 

2 2

* *

1 0 1 3 0 0

0 2 3 0 0 0 0 0 0 0

1 3 0 1 0 1 0 1

FP

v d sC f f f

   

 

    
    

      
         

 (3)  

where 
vf
 
, 

df  and 
sf  are weighting factors of each component.  

2.2. Transforming Covariance Matrix to Coherency Matrix 

The coherency matrix of monostatic FP SAR is based on the Pauli vector 

H

p pT k k  (4)  

where the Pauli vector is defined as 

 
1

2
2

T

p HH VV HH VV HVk S S S S S    (5)  

The relation between the covariance matrix and the coherency matrix is then derived from  

Equations (2) and (5) 
FP TT UC U  

(6)  

where  

1 0 1
1

1 0 1
2

0 2 0

U

 
 

  
 
 

 (7)  

According to Equations (3) and (6), we obtain the three-component model of the coherency matrix 

2 2

2 2

2 0 0 | | 1 | | 1 0
2 1

0 1 0 | | 1 | | 1 0
3 2

0 0 1 0 0 0

v dT f f

     

     

 

 

       
  

         
     

 (8) 
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2 2

2 2

| | 1 | | 1 0
1

| | 1 | | 1 0
2

0 0 0

sf

     

     

 

 

      
 

       
 
   

2.3. Mapping Coherency Matrix to Output SV under CTLR Mode 

For CTLR mode, assuming the transmitted polarization is right hand circular, the normalized 

polarization of the transmitted wave is [16] 

11

2

CTLR

tE
j

 
  

 
 (9)  

Correspondingly, the SV of the transmitted wave is given by 

 1 0 0 1
TCTLR

tg    (10)  

The SV of the scattered wave is related to that of the incident wave by Mueller matrix 

CTLR CTLR

s tg Mg  (11)  

The Mueller matrix can be expressed by Huynen parameters as [18,19] 

0 0

0

0

0 0

A B C H F

C A B E G
M

H E A B D

F G D A B

 
 


 
 
 

    

 (12)  

Therefore, the SV of the scattered wave is written as 

0 0 0

1

2

3 0 0

CTLR

s

g A B F

g C G
g

g H D

g A B F

    
   


    
   
   

     

 (13)  

Notice that the coherency matrix can also be expressed by Huynen parameters as [18,19] 

11 12 13 0

12 22 23 0

13 23 33 0

2t t t A C jD H jG

T t t t C jD B B E jF

t t t H jG E jF B B



 

    
   

    
   
        

 (14)  

Using Equations (13) and (14), the SV of the scattered wave is related to the coherency matrix 

11 22 33 23
0

1 12 13

2 13 12

3
11 22 33 23

1
( ) Im( )

2

Re( ) Im( )

Re( ) Im( )

1
( ) Im( )

2

CTLR

s

t t t t
g

g t t
g

g t t

g
t t t t

 
    

  
   

   
  
      
  

 (15)  

The three-component model based on SV under the CTLR mode is derived from  

Equations (8) and (15) as 
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2 2
0

2 2
1

2

3

2 | | 1 | | 1

0 | | 1 | | 1

0 ( ) ( )

0

CTLR

s v d s

g

g
g f f f

g j j

g

 

 

   

   

 

 

       
      

          
        
      
         

 (16)  

2.4. Mapping Coherency Matrix to Output SV under DCP Mode 

For the DCP mode, we also assume the transmitted polarization as the right hand circular. The 

scattering vector in this case is 

1/ 2 / 2 1/ 2

/ 2 1/ 2 / 2

HH HVRRDCP

s

VH VVLR

S SE j
E

S SE j j

      
       

          

 (17)  

We can now obtain the relationship between the scattering vector under the DCP mode and that 

under the CTLR mode 

1/ 2 / 2

/ 2 1/ 2

HRRRDCP

s

VRLR

EE j
E

EE j

    
      

     

 (18)  

In this paper, we define the SV of the scattered wave under the DCP mode as 

2 2

0 | | | |DCP

s RR LRg E E     (19)  

2 2

1 | | | |DCP

s RR LRg E E   

 

(20)  

2 2ReDCP

s RR LRg E E  

 

(21)  

3 2ImDCP

s RR LRg E E   

 

(22)  

For simplicity of expression, the SV elements under DCP mode are also rewritten as 
0g , 

1g , 
2g  and 

3g . From Equation (18), the following relationships are obtained as 

2 2

0 0 0| | | |DCP CTLR

s HR VR sg g E E g     

 

(23)  

1 1 32ImDCP CTLR

s HR VR sg g E E g     

 

(24)  

2 2 22ReDCP CTLR

s HR VR sg g E E g    

 

(25)  

2 2

3 3 1| | | |DCP CTLR

s HR VR sg g E E g       

 

(26)  

Therefore, by exchanging the first and third elements in the SV under the CTLR mode, we derive 

the SV under the DCP mode 

11 22 33 23
0 0

0 0
11 22 33 23

13 12

12 13

1
( ) Im( )

2

1
( ) Im( )

2

Re( ) Im( )

Re( ) Im( )

DCP

s

t t t t
A B F

A B F
t t t tg

H D

t tG C

t t

 
     

  
          

  
      
   

 

(27)  

The three-component model based on SV under the DCP mode is derived as 
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2 2
0

1

2

2 2
3

| | 12 | | 1

0

( )0 ( )

0 | | 11

DCP

s v d s

g

g
g f f f

jg j

g

 

   

   



 

 

      
                   
       
      

        
 

(28)  

3. Explicit Expressions of Three-component Decomposition for CTLR Mode 

Essentially, the three-component decomposition of SV for CP SAR implies solving underdetermined 

equations. From Equation (16), there are only four constraint equations, while the number of 

unknowns is seven. According to Freeman and Durden’s algorithm [17], the number of unknowns can 

be reduced to five by setting 1    or 1  , however, one free parameter still remains. In this paper, 

we take the volume scattering component as the free parameter. 

Setting 2 vx f  and substituting it into Equation (16), we obtain the Rest Scattering Model (RSM) 

with double-bounce and surface scattering components as 

2 2
0

2 2
1

2

3

| | 1 | | 1

| | 1 | | 1

( ) ( )
d s

g x

g
f f

g j j

g

 

 

   

   

 

 

       
    

       
      
    
        

 

(29)  

According to Freeman and Durden’s algorithm, we fix 1    or 1   according to the sign of 

Re( )d sf f  . From Equation (29), 
d sf f   is obtained as 

 3 20.5d sf f g jg    

 

(30)  

Because both 2g  and 3g  are real, we have 

   3Re( )d ssign f f sign g   

 

(31)  

3.1. Calculation of Unknowns When 
3 0g   

According to the discussion above,   is fixed as −1 when 
3 0g   , and Equation (29) becomes 

2
0

2
1

2

3

2 | | 1

0 | | 1

0 ( )

2

d S

g x

g
f f

g j

g





 

 





     
    

     
     
    
     

 

(32)  

To eliminate df  and 
sf , take the ratio to give  

1 2

0 3

1

1

g jg

g g x





 


  

 

(33)  

Thus   is given by 

1 0 3 2

1 0 3 2

g g g x jg

g g g x jg


   

    

 

(34)  

df  and 
sf  are derived by substituting Equation (34) into Equation (32) 
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2 2

0 3 0 3 1 2

0 3

( )( )

4( )
d

g g x g g x g g
f

g g x

     


 

 

(35)  

2 2

1 0 3 2

0 3

( )

4( )
s

g g g x g
f

g g x

   


   (36)  

Now we concern the value range of x. With the constraint that all weighting factors are nonnegative, 

x must satisfy the following inequalities 

0 3

2 2

0 3 0 3 1 2

0

( )( ) 0

x g g

g g x g g x g g

  


      
 

(37)  

The second inequality in Equation (37) is quadratic 

2 2 2 2 2

0 0 1 2 32 ( ) 0x g x g g g g     
 (38)  

and the corresponding value range for x is 

1 2( , ) ( , )x x  
 (39)  

where 

2 2 2

1 0 1 2 3x g g g g   
 (40)  

2 2 2

2 0 1 2 3x g g g g   
 

(41)  

Because x cannot be larger than 0 3g g  according to the first inequality in Equation (37), the value 

in 
2( , )x   is not acceptable. Based on the analysis above, the value range of  x is given by 

max[0, ]x x
 (42)  

 max 0 3 1,x Min g g x 
 (43)  

It is easy to show that 
1 0 3x g g  , and thus Equation (42) is rewritten as 

1[0, ]x x
 (44)  

The contribution of each scattering mechanism is estimated with elements of the SV 

vP x
 (45)  

2 2
2 0 3 0 3 1 2

0 3

( )( )
(| | 1)

2( )
d d

g g x g g x g g
P f

g g x


     
  

   (46)  

2 2 2
2 0 3 1 2

0 3

( )
(| | 1)

2( )
s s

g g x g g
P f

g g x


   
  

   (47)  

It is easy to verify 

0v d sP P P g  
 (48)  
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3.2. Calculation of Unknowns When 
3 0g   

When 
3 0g  ,   is fixed as 1, and Equation (16) becomes 

2
0

2
1

2

3

2| | 1

0| | 1

0( )

2

d S

g x

g
f f

g j

g





 

 





      
    

     
    
    

      

 (49)  

With a similar method, contributions of each scattering mechanism are obtained as 

vP x
 (50)  

2 2 2
2 0 3 1 2

0 3

( )
(| | 1)

2( )
d d

g g x g g
P f

g g x


   
  

   (51)  

2 2
2 0 3 0 3 1 2

0 3

( )( )
(| | 1)

2( )
s s

g g x g g x g g
P f

g g x


     
  

   (52)  

where 

1[0, ]x x
 (53)  

It is interesting to notice that 

 1 0 1x g m 
 (54)  

where 
2 2 2

1 2 3

0

g g g
m

g

 
  denotes the polarization degree.  

4. Explicit Expressions of Three-component Decomposition for DCP Mode 

Setting 2 vx f  and substituting into Equation (28), we obtain the RSM with double-bounce and 

surface scattering components as 

2 2
0

1

2

2 2
3

| | 1 | | 1

( ) ( )

| | 1 | | 1

d s

g x

g
f f

g j j

g

 

   

   

 

 

 

       
    
         

      
    
        

 (55)  

Based on Freeman and Durden’s assumption, we fix 1    or 1   according to the sign of 

Re( )d sf f  . From (55), we have 

   1Re( )d ssign f f sign g   
 (56)  

4.1. Calculation of Unknowns When 
1 0g   

As in the discussion above,   is fixed as −1 when 
1 0g  . Using a method similar to that developed 

in Section 3, we derive contributions of each scattering mechanism 

vP x
 (57)  
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0 1 0 1 3 2

0 1

( )( )

2( )
d

g g x g g x g g
P

g g x

     


   (58)  

2 2 2

0 1 3 2

0 1

( )

2( )
s

g g x g g
P

g g x

   


   (59)  

where
 

1[0, ]x x
 (60)  

4.2. Calculation of Unknowns When 
1 0g   

When 
1 0g  ,   is fixed as 1, and

 

contributions of each scattering mechanism are obtained as

 vP x
 (61)  

2 2 2

0 1 3 2

0 1

( )

2( )
d

g g x g g
P

g g x

   


   (62)  

2 2

0 1 0 1 3 2

0 1

( )( )

2( )
s

g g x g g x g g
P

g g x

     


   (63)  

where
 

1[0, ]x x
 (64)  

5. Comparison with Cloude CP and m   Decompositions 

This section compares the proposed algorithm with other two SV based decompositions. For 

simplicity, only the CTLR mode is taken for analysis. 

5.1. Cloude CP Decomposition 

According to [15], for a general rank-1 symmetric scattering mechanism, the SV of the scattering 

wave under the CTLR mode can be written as 

 1 sin 2 cos sin 2 sin cos2
2

TCTLR s
s s s s

m
g      

 (65)  

where s  and   are scattering parameters, which can be estimated by the SV elements 

2 2

1 21

3

1
tan

2
s

g g

g
 

 
 
 
 

 (66)  

1 2

1

tan
g

g
 

 (67)  

The decomposition proposed by Cloude etc. is given as following equations  

2 2 2

0 0 1 2 3(1 )vP g m g g g g     
 

(68)  
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2 2 2

0 1 2 3 3

1 1
(1 cos2 ) ( )

2 2
d sP g m g g g g     

 (69)  

2 2 2

0 1 2 3 3

1 1
(1 cos2 ) ( )

2 2
s sP g m g g g g     

 (70)  

Here the depolarized component is regarded as the contribution of volume scattering. 
dP  and 

sP  are 

estimated from the polarized component and 3g . 

5.2. m   Decomposition  

In the m   decomposition [13,14], the contribution of volume scattering is also estimated as the 

depolarized component, while the relative phase   is taken as the factor to split the polarized 

component into dP  and sP  

1 3

2

tan
g

g
   
  

 
 (71)  

2 2 2

0 0 1 2 3(1 )vP g m g g g g     
 

(72)  

2 2 2

1 2 32 2 2

0 1 2 3 3
2 2

2 3

1 1
(1 sin )

2 2
d

g g g
P g m g g g g

g g


  
      
  

 (73)  

2 2 2

1 2 32 2 2

0 1 2 3 3
2 2

2 3

1 1
(1 sin )

2 2
s

g g g
P g m g g g g

g g


  
      
  

 (74)  

5.3. Difference Analysis 

Different from the above two methods, the decomposition proposed in this paper takes the 

depolarized component as the upper bound of volume scattering contribution. Three conclusions are 

obtained from Equations (44)–(47) and (50)–(54): 

(a) In our case, we consider volume scattering can be less than the depolarized component  

that [13–15] used 

(b) Besides the volume scattering, the combined effect of double-bounce and surface scatterings 

also contributes to depolarization 

(c) When the depolarized component is only caused by volume scattering i.e., x = x1 this algorithm 

degrades to a two-component decomposition. 

6. Value Estimation of x 

The difficult part of our algorithm is to estimate the value of the unknown parameter x. Based on the 

analysis above, three preliminary methods for value estimation are proposed: 

(a) Assuming the depolarization is only caused by the volume scattering 

2 2 2

1 0 1 2 3x x g g g g      (75)  
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As mentioned in Section 5.3, one of dP  and sP  would be null in this case. Thus the decomposition 

now becomes two components (volume scattering and ground scattering), in which the ground 

scattering component switches between double-bounce and surface scattering.  

(b) Considering the fact that the combined effect of double-bounce and surface scatterings also 

contributes to depolarization, we define  

 1 1 , 0 1x px p Span m p       (76)  

where p is defined as the volume scattering factor. Method (a) is the special case when p = 1, while the 

suitable value of p should be selected according to the quality of decomposition. In the next section, 

two typical polarimetric SAR data sets are taken to analyze the decomposition quality under different 

values of p. The result shows that some pixels in urban areas also have a considerable depolarized 

component, and they can be well distinguished from vegetation areas when 0.5 0.8p  . It indicates 

that the volume scattering component contributes to the main part of depolarization, but not all. Since 

this interval is wide and the performance is robust, it seems that  0.5,0.8p  could be suggested for 

other CP data.  

(c) Reconstructing 
2

HVS  from CP data, the value of x is then derived as 

 2

1min 4 ,HVx S x  (77)  

To satisfy the nonnegative requirement, here we use the depolarized component as the threshold to 

curb the overestimation of volume scattering contribution. The precision of reconstruction depends on 

the coincidence rate of remote sensing data to the reflection symmetrical hypothesis and empirical 

formulas. For the reconstruction algorithm proposed by Souyris [6] and Nord [7], the empirical 

formula is given by 

2

2 2

| | 1 | |

| | | |

HV

HH VV

S r

S S N

  


    
 (78)  

where 

2 2| | | |

HH VV

HH VV

S S
r

S S

 


  
 (79)  

The value of N is 4 in Souyris’ formula. Differently, Nord estimated N as 

 2

2

| |

| | |

HH VV

HV

S S
N

S

  


 
 (80)  

Souyris’ empirical formula is suitable to the model of volume scattering, however it does not fit the 

other two scattering models. To avoid this problem, the formula is modified as 

2

2 2 2

| | 1 | |

( | | | | 2 | | ) 16 / 3

HV
v

HH VV HV

S r
w

S S S

  


      
 (81)  

where vw  is the weighting of volume scattering component 
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v d s

P
w

P P P


 
 (82)  

Correspondingly, the estimation of 2| |HVS   becomes 

2

0

1 | |
| |

8 / 3
HV v

r
S w g


   (83)  

Based on the analysis above, the major steps to reconstruct 2| |HVS   are given as follows: 

Denoting 2| |HVX S  , the upper bound of depolarized component is taken as the initial condition 

(0) 1 / 4X x , 
(0) 1x x  (84)  

(0)vP , 
(0)dP , 

(0)sP  and 
v(0)w  are obtained from the decomposition algorithm given in Section 3 and 4. 

Then a recursive process is set up as: 

3 2 ( )

( 1)

0 1 ( ) 0 1 ( )

( )

( )( )

k

k

k k

g jg X
r

g g X g g X


  


   
 

(85)  

( 1)

( 1) v( ) 0

1 | |

8 / 3

k

k k

r
X w g








 

(86)  

 ( 1) ( 1) 1min 4 ,k kx X x 

 

(87)  

( 1)v kP 
, 

( 1)d kP 
, 

( 1)s kP 
 and 

( 1)v kw 
 are derived from the decomposition algorithm, with 

( 1)kx 
 as the 

volume scattering component. 

7. Performance Demonstration 

The feasibility of the proposed decomposition algorithm is tested with two data sets acquired by the 

NASA/JPL AIRSAR system and RADARSAT-2 respectively. 

To analyze the performance of CP decomposition, FP decomposition results are taken as the 

standard. Since original Freeman–Durden decomposition in FP mode may cause negative components, 

an improved decomposition algorithm proposed in [20] is used to process FP data. 

The quality of CP decomposition is measured by the classification conformity degree of CP mode 

compared to FP mode. Three types of statistics are considered for measurement: 

(a) Conformity degree to FP mode for each class (CDC)  

(b) Averaged conformity degree for the whole image (ADI) 

(c) Proportion of each class in the image (PCI) 

CDC and ADI are obtained from the classification confusion matrix. Taking the AIRSAR data over 

San Francisco for example, by comparing the classification conformity between decompositions under 

FP mode and CTLR mode when p = 0.65, the confusion matrix is shown in Table 1. 
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Table 1. Classification confusion matrix.  

 Volume Double Surface 

Volume 78.61% 20.37% 1.02% 

Double 24.21% 75.76% 0.03% 

Surface 8.75% 0.37% 90.89% 

CDC consists of the diagonal elements (78.61%, 75.76% and 90.89%). Correspondingly, ADI is 

calculated as the averaged value of the three elements in CDC:  

 78.61% 75.76% 90.89% 3 81.75%ADI      

PCI indicates the quality of CP decomposition from another aspect, as shown in Table 2.  

Table 2. Comparison by Proportion of Each Class in the image (PCI). 

Decomposition 
PCI 

Volume Double Surface 

FP 22.30% 33.24% 44.46% 

CTLR (p = 1) 51.33% 11.10% 37.57% 

CTLR (p = 0.65) 29.47% 29.89% 40.64% 

In comparison, the PCI when p = 0.65 is more similar to that under FP mode, which indicates a 

better decomposition performance than the case when p = 1. 

Since ADI is a single value which is convenient to quantify the performance of CP decomposition, 

we take it as the major criterion for measurement. Besides that, CDC and PCI are also regarded as 

supplementary criteria.  

7.1. AIRSAR Data over San Francisco 

The image over San Francisco was acquired by AIRSAR at L-band, with the image size of  

900 × 1024. This region contains three typical terrain types: vegetation areas, man-made structures and 

the sea. Figure 1a shows the pseudo color image of the decomposition result under the FP mode.  

In Figure 1a, the three colors red, green and blue correspond to dP , vP  and sP  respectively. 

Classifying each pixel with the largest component, the results are shown in Figure 1b. 

The SVs for each pixel under the three CP modes are built from FP data, and then the algorithm 

described in Section 3 and 4 is adopted for decomposition. As mentioned in Section 6, the value 

estimation of volume scattering component is critical for our decomposition algorithm. To get an 

initial impression, we first assume that the depolarization is only caused by the volume scattering i.e., 

p = 1 in Equation (76), the corresponding decomposition results are shown in Figure 2. 

It is obvious to observe that a certain number of double-bounce scatters are misclassified as volume 

scatters when p = 1. In order to select a value of x suitable for decomposition, we calculate ADI under 

different values of p, as shown in Figure 3. 
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(a)     (b) 

Figure 1. Three-component decomposition under fully polarimetric (FP) mode (the original 

data is smoothed by a 7 × 7 pixel window): (a) pseudo color image and (b) classification.  

  

(a)     (b) 

Figure 2. Three-component decomposition under circular transmission while linear 

reception (CTLR) mode when p = 1 (the original data is smoothed by a 7 × 7 pixel 

window): (a) pseudo color image and (b) classification. 

 

Figure 3. Averaged conformity degree for the whole image (ADI) under different values of p. 
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Of the values for p tested, a satisfactory ADI can be obtained when 0.5 0.8p  , and a maximum is 

reached when p = 0.65, as shown in Figure 4.  

  

(a)     (b) 

Figure 4. Three-component decomposition under CTLR mode when p = 0.65 (the original 

data is smoothed by a 7 × 7 pixel window): (a) pseudo color image and (b) classification.  

Reconstructing 2

HVS  with the algorithm proposed in Section 6, the corresponding decomposition 

results are given in Figure 5. 

  

(a)     (b) 

Figure 5. Three-component decomposition under CTLR mode after reconstruction (the 

original data is smoothed by a 7 × 7 pixel window): (a) pseudo color image and  

(b) classification.  

We also process the data with Cloude CP and m   decompositions, as shown in Figures 6 and 7. 

The corresponding numerical comparisons are given in Tables 3 and 4. 
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(a)     (b) 

Figure 6. Three-component decomposition using Cloude compact polarimetric (CP) 

decomposition (the original data is smoothed by a 7 × 7 pixel window): (a) pseudo color 

image and (b) classification.  

  

(a)     (b) 

Figure 7. Three-component decomposition using m   decomposotion (the original data is 

smoothed by a 7 × 7 pixel window): (a) pseudo color image and (b) classification.  

Table 3. Comparison by Conformity Degree to FP Mode for Each Class (CDC) and 

Averaged Conformity Degree for the Whole Image (ADI). 

Decomposition 
CDC 

ADI 
Volume Double Surface 

CTLR (p = 1) 98.56% 32.33% 84.49% 71.79% 

CTLR (p = 0.65) 78.61% 75.76% 90.89% 81.75% 

CTLR(Reconstruction, us) 76.88% 68.26% 94.71% 79.95% 

CTLR(Reconstruction, Nord) 57.94% 86.51% 87.88% 77.44% 

CTLR (Cloude etc.) 99.03% 26.85% 83.48% 69.79% 

CTLR ( m  ) 98.85% 29.03% 84.00% 70.63% 

DCP (p = 1) 98.35% 31.66% 85.54% 71.85% 

DCP (p = 0.65) 76.31% 74.43% 91.18% 80.64% 

DCP(Reconstruction, us) 80.56% 64.82% 94.36% 79.91% 

DCP (Reconstruction, Nord) 62.30% 84.56% 87.29% 78.05% 
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Table 4. Comparison by Proportion of each Class in the Image (PCI). 

Decomposition 
PCI 

Volume Double Surface 

FP 22.30% 33.24% 44.46% 

CTLR (p = 1) 51.33% 11.10% 37.57% 

CTLR (p = 0.65) 29.47% 29.89% 40.64% 

CTLR(Reconstruction, us) 26.46% 29.86% 43.69% 

CTLR(Reconstruction, Nord) 22.30% 38.07% 39.63% 

CTLR (Cloude etc.) 53.74% 9.15% 37.11% 

CTLR( m  ) 52.73% 9.92% 37.35% 

DCP (p = 1) 51.05% 10.90% 38.05% 

DCP (p = 0.65) 29.30% 29.93% 40.86% 

DCP(Reconstruction, us) 24.68% 32.00% 43.31% 

DCP (Reconstruction, Nord) 24.33% 36.33% 39.34% 

7.2. RADARSAT-2 Data over Flevoland 

The image over Flevoland was acquired by RADARSAT-2 at C-band, with the image size of  

1513 × 1009. This region contains four major terrain types: forests, man-made structures, the lake and 

farms. Figure 8 shows the decomposition result under the FP mode by using the improved  

Freeman-Durden decomposition algorithm.  

Covariance matrixes under CP modes are calculated from the FP data, and then decomposed with 

the proposed algorithm. We first test the decomposition performance when the value of p is taken as 1, 

as presented in Figure 9. Similar to Figure 2, the volume scattering component is overestimated in this 

case. Calculating ADI under different values of p, results are depicted in Figure 10.  

Similar to the last demonstration, a satisfactory ADI can be obtained when 0.5 0.8p  , and a 

maximum is reached when p = 0.65, as shown in Figure 11. Decomposition results after reconstruction 

are given in Figure 12. We also process the data with Cloude CP and m   decompositions, as shown 

in Figures 13 and 14. The corresponding numerical comparisons are given in Tables 5 and 6. 

  

(a)     (b) 

Figure 8. Three-component decomposition under FP mode (the original data is smoothed 

by a 7 × 7 pixel window): (a) pseudo color image and (b) classification.  
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(a)     (b) 

Figure 9. Three-component decomposition under FP mode when p = 1 (the original data is 

smoothed by a 7 × 7 pixel window): (a) pseudo color image and (b) classification.  

 

Figure 10. ADI under different values of p. 

  

(a)     (b) 

Figure 11. Three-component decomposition under CTLR mode when p = 0.65  

(The original data is smoothed by a 7 × 7 pixel window): (a) pseudo color image and  

(b) classification.  
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(a)    (b) 

Figure 12. Three-component decomposition after reconstruction (the original data is 

smoothed by a 7 × 7 pixel window). (a) Pseudo color image; (b) Classification.  

   

(a)    (b) 

Figure 13. Three-component decomposition using Cloude CP decomposition (the original 

data is smoothed by a 7 × 7 pixel window): (a) pseudo color image and (b) classification.  

  

(a)    (b) 

Figure 14. Three-component decomposition using m   decomposition (The original data 

is smoothed by a 7 × 7 pixel window). (a) pseudo color image and (b) Classification.  
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Table 5. Comparison by CDC and ADI. 

Decomposition 
CDC 

ADI 
Volume Double Surface 

CTLR (p = 1) 97.26% 72.68 66.42% 75.85% 

CTLR (p = 0.65) 74.69% 90.96% 89.68% 85.11% 

CTLR(Reconstruction, us) 87.93% 72.22% 85.96% 82.04% 

CTLR (Reconstruction, Nord) 83.82% 80.15% 71.49% 78.49% 

CTLR (Cloude etc.) 98.70% 57.18% 62.31% 72.73% 

CTLR ( m  ) 98.30% 66.45% 64.18% 76.31% 

DCP (p = 1) 97.60% 71.79% 64.97% 74.94% 

DCP (p = 0.65) 77.86% 90.51% 89.30% 85.89% 

DCP(Reconstruction, us) 91.62% 71.14% 82.88% 81.88% 

DCP (Reconstruction, Nord) 83.85% 84.75% 73.56% 80.72% 

Table 6. Comparison by PCI. 

Decomposition 
PCI 

Volume Double Surface 

FP 49.79% 4.54% 45.67% 

CTLR (p = 1) 64.56% 4.29% 31.15% 

CTLR (p = 0.65) 41.57% 9.17% 49.26% 

CTLR(Reconstruction, us) 45.58% 4.83% 49.59% 

CTLR (Reconstruction, Nord) 54.76% 8.73% 36.51% 

CTLR (Cloude etc.) 68.12% 3.06% 28.82% 

CTLR( m  ) 66.57% 3.63% 29.80% 

DCP (p = 1) 65.41% 4.23% 30.36% 

DCP (p = 0.65) 43.32% 8.84% 47.84% 

DCP(Reconstruction, us) 48.84% 4.55% 46.61% 

DCP (Reconstruction, Nord) 53.90% 8.56% 37.54% 

8. Conclusions 

This paper formulates a three-component decomposition algorithm for CTLR and DCP modes 

based on SV, the explicit expressions of decomposition results are derived based on setting the volume 

scattering component as a free parameter within a series of algebraic calculations. Different from 

Cloude CP and m   decompositions, this algorithm considers that the combined effect of  

double-bounce and surface and scatterings may also contribute to depolarization, thus taking the 

depolarized component as the upper bound of volume scattering, rather than the volume scattering 

component itself.  

Two typical polarimetric SAR data sets are used to demonstrate the feasibility of the proposed 

decomposition algorithm. If the whole depolarization is taken as volume scattering component, the 

performance of the proposed algorithm is similar to that of Cloude CP and m   decompositions. An 

obvious improvement can be achieved if 0.5 0.8p  . Since this interval is broad and decomposition 

performance is robust, it seems that  0.5,0.8p  could also be considered for other CP data. What is 

more, a modified 2

HVS  reconstruction algorithm is investigated. Considering the fact that 2

HVS  is 
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mainly contributed by volume scattering component, the famous Souyris formula is extended to a new 

version. A good decomposition result could also be obtained by estimating the volume scattering 

component from 2

HVS  reconstruction, with the depolarization as the upper bound. 

Two studies are suggested for future work: one is to extend this algorithm to a four-component 

decomposition for CP SAR, and the other is to improve the accuracy of reconstruction by using 

different empirical formulae in different areas. 
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