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Abstract: Knowledge of dynamic environments expires over time. Thus, using static maps of
the environment for decision making is problematic, especially in emergency situations, such as
evacuations. This paper suggests a fading memory model for mapping dynamic environments:
a mechanism to put less trust on older knowledge in decision making. The model has been assessed
by simulating indoor evacuations, adopting and comparing various strategies in decision making.
Results suggest that fading memory generally improves this decision making.
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1. Introduction

The decision making of agents travelling in search of target destinations in a dynamic environment
is a common research topic. The agents may be evacuees trying to find their way out of a building in
the event of an emergency, or service robots moving towards a destination in an indoor environment
with roaming kids and movable furniture, or robots collaboratively exploring unfamiliar terrain, or
vehicles travelling on road networks with crossing pedestrians. The challenge for decision making is
that such environments change all of the time. While learned and accumulated spatial knowledge may
be trustworthy for decision making in (sufficiently) static environments, in dynamic environments, the
past experience of the environment may form out-of-date knowledge. How to fulfil the wayfinding
tasks of agents with potentially outdated knowledge is the research question addressed in this paper.

To date, the predominant evacuation strategies still rely on static signs, e.g., stationary exit signs [1]
or you-are-here maps, which are of low efficiency [2] and are often perceived as confusing and unclear,
especially when people are stressed or panicked [3]. Reliable shortest route planning in a dynamic
environment is possible with a centralized, real-time sensing system that creates situation-aware
pictures for each agent. However, such a centralized service will in most cases not exist due to the
lack (or damage) of the required sensing and communication infrastructure. In this situation, robots
traditionally fall back to autonomous and exploratory wayfinding operations. For humans, only
recently decentralized collaborative wayfinding has been suggested [4]. Other research addressed this
question mainly from the agents’ perspective. They deem the task as a Markov decision process or
variations of it [5] and facilitate mission fulfilment by adapting and reacting to the uncertainty with
strategies like multi-agent reinforcement learning, distributed learning algorithms [6,7].

Not much research can be found addressing the reliable shortest path problem from the
perspective of a representation of the dynamics in the environment. Only from an economic perspective,
Krek [8] has studied the impact of out-of-date data on decision making. In other research, the impact
of the prediction of future states on decision making has been studied; results demonstrated a high
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sensitivity for the validity of the extrapolation [9,10]. The current paper, in contrast, suggests a novel
approach: a map with fading memory by adding the temporal dimension to the acquired spatial
knowledge. The paper presents an experiment to test the performance of shortest route planning
considering the age of information in memory, putting less trust in older spatial knowledge and reports
the results.

Fading memory devalues spatial knowledge with time, trusting recent explorations more than
older ones. The hypothesis of this paper is that fading memory is beneficial for agents’ decision making
in a dynamic environment. If this hypothesis is true, it has implications for all kinds of spatial analysis,
but it also brings up questions of ethics: a service deliberately devaluing information that may in
particular cases actually still be true is a service that accepts to produce in these cases suboptimal
decisions [11] in favour of on average better decisions.

The remainder of this paper is organized as follows: Section 2 presents the related literature.
In Section 3, a conceptual model for fading memory is described. Section 4 outlines the implementation
of the simulation experiment, and in Section 5, results are presented and discussed. Finally, Section 6
concludes the work of this paper and proposes future work.

2. Related Work

Emergencies in indoor environment, such as fire, gas leaks and earthquakes, threaten occupants’
life and impact the evacuation routes by their own dynamics. As buildings are getting more complex,
the risk attached to evacuation for occupants is increasing [12]. Time is critical for a successful
evacuation; a delay of a few minutes may significantly increase the number of deaths [13]. Looking for
effective evacuation strategies has been a long focus of research.

Techniques for indoor navigation have been reviewed by researchers from different perspectives,
for example from locating the user, planning a path, representing the environment and interacting
with the user perspective [14], from a context-aware perspective [15] or from a fire safety and human
behaviour perspective [16].

Evacuees can be localized via QR code, radio frequency identification (RFID) [17], landmark
detection [18], WiFi or other indoor localization techniques [19]. In this regard, indoor space is more
complex than outdoor space. Furthermore, indoor space is more constrained by the built structure, is
multi-level and is (mostly) private, with the corresponding access regulations. Effective representations
of complex buildings are well researched. For example, Richter et al. [20] conceptualize indoor space
into three hierarchical dimensions. Liu et al. [21] present a semi-automated method for identifying
elements, such as hallways, elevators and stairways from 2D CAD files and constructing 3D
building networks.

Route planning is the task to find an optimal route navigating a person from a current location to
a destination while minimizing the travel time [22], travel distance or hazard [23,24]. Route planning
in indoor space uses graphs [25] or grids [15] to represent the environment. Most of current navigation
systems use Dijkstra [12,13] or A* algorithms [10]. The data for route planning can be stored and
treated both in a local database [26] or a central database [27,28], which then requires a wireless
connection to communicate the routes to evacuees.

While more complex buildings have been constructed to accommodate rapidly-growing
population, development of emergency evacuation technology is relatively stagnant. Current
evacuation support facilities are mainly limited to stationary exit signs and emergency maps, which
are permanent without provision for ad hoc changes [3].

In recent years, the pervasive use of mobile devices, such as smart phones or tablet PCs, exhibits
largely unexplored potential for more efficient evacuation. Since current emergency management and
evacuation systems do not adapt information to each person, Aedo et al. [29] provide personalized
alerts and evacuation routes to each evacuee. Smart phones are used as a support for escaping,
instead of static signals on walls and doors. Smart phones will interact with the system, sending
their current location and receiving multimodal messages personalized according to the emergency
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situation. In order to achieve a context-aware situation and provide personalized evacuation routes,
Wang et al. [9] propose a framework for centralized evacuation, which combines a sensor system
monitoring the whole environment with the route graph representing all of the possible routes.
Evacuation routes are computed based on the original connectivity of indoor space and the data
sensed in real time. Mobile devices are used for self-localization and visualizing the evacuation
routes. This framework, although reflecting the best current knowledge, does not take into account
that the evacuation routes may later be affected by the dynamics of the event. Even so, simulation
suggests significantly better results than blind exploration. The framework has been improved
by Wang et al. [10] through integrating also the temporal dimension and taking into account the
influence that the dynamics of an event may have on the evacuation routes. A similar integrated
real-time evacuation route planning method for high-rise building fires has been proposed by
Han et al. [30]. Ahn and Han [22] have developed an indoor augmented reality system called RescueMe
that runs on the users’ smart phones to guide people to evacuate from buildings in emergency
situations. The system requires a communication between a smart phone and a cloud server via mobile
social networking infrastructure. However, such centralized systems share a common shortcoming: a
lack or a breakdown of the central infrastructure will lead to a failure of the whole system [31].

Only recently has decentralized evacuation management been studied. Decentralized evacuation
management is scalable and robust to infrastructure failure [3], as well as ubiquitous [4]. Through
agent-based simulations, Richter et al. [4] explore how cooperation and decentralization can improve
the evacuation performance despite the prior knowledge of the agents in situations where central
management or infrastructure has failed or was non-existing. Mobile devices are communicating in a
peer-to-peer manner via short-range radio, and the shortest routes are calculated locally based on what
is known about an environment by an individual at a time. They verify that decentralized evacuation
management is nearly as successful as centralized management and independent from the state of the
sensing and infrastructure in the building. However, without a central server, all local knowledge is
time stamped, while the impact of the disaster on the environment may have outdated this knowledge.

So far, the task of decentralized evacuation route planning considering the uncertainty of
information caused by the dynamics of events has received little attention from researchers.
Recent research by Tan et al. [32] is distinguished from other works by considering not only the
stationary environment during a normal situation, but also the event knowledge of predictable change
in the spatial accessibility. However, the potentially changed spatial accessibility they refer to is caused
by the activation of fire safety facilities, such as the fire rolling shutters during emergency scenarios.
The validity of knowledge for other spatial connectivity due to time elapsed has not been addressed.
To our knowledge the only literature that raises the question of uncertain information regarding
evacuation in decentralized frameworks is by Merkel [3]. However, the uncertainty they refer to is
caused by occasional disconnection of ad hoc networks caused by the movement through the building
and the delay of communication incurred.

In an attempt to address the possibly out-of-date knowledge caused by the dynamics of expanding
events in decentralized evacuation, this paper proposes a fading memory model, which represents
not only the evacuees’ prior knowledge of the floor layout, but also the perceivable information about
dynamic environment changes. System behaviour when introducing fading memory concepts will be
tested via simulations.

3. System Model Formulation

This section introduces the definition of fading memory and describes how it can be applied in
spatial decision making. The running examples are evacuation processes.

3.1. Fading Memory

Route planning for indoor evacuation can be accomplished by calculating the shortest route on
the basis of a route graph G = (V, E), which consists of a set V = {v1, v2, . . . , vK} of vertices and a set
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E = {e1, e2, . . . , eN} of edges, where K is the total number of vertices and N is the total number of
edges. The route graph embedded in R3 draws a map of the walkable connectivity of all subspaces of
the indoor environment. Different ways of deriving these route graphs for indoor environments have
been proposed [33–38].

For centralized evacuation, the conditions of the environment can be sensed in real time by
infrastructure; all of the evacuees share the same up-to-date knowledge maintained by a central
server [39]. When sensing and communication infrastructure becomes unavailable, evacuees acquire
knowledge of the environment through self-exploration, on the one hand, and communication with
others, on the other hand [4]. In this case, the knowledge depends heavily on personal experience and
may vary from person to person, such that each person computes their individual evacuation route
based on their personal knowledge of the environment.

The critical information for route planning is whether a computed path is still passable or not.
For example, an event may block a particular exit door or may have made a certain corridor unsafe.
Independent from the type of event and related safety thresholds, e.g., for temperature, smoke or
oxygen fraction, the passability of an edge in a route graph can be represented by a generic attribute
called state. This attribute shall have two values: blocked and unblocked, where blocked means the space
is unsafe and not passable.

Before an event, all of the edges of the route graph should be unblocked, and this state will be
valid until the event start, which is when the states of some edges switch to being blocked, while
others may follow later. During the evacuation, the state of the edges can be observed in various
ways. In centralized systems, sensors will track passability, while decentralized systems encountering
a blocked passage update the knowledge. Even an encounter with other evacuees can help: an evacuee
can share with the encountering evacuee their individual knowledge of the environment, for example
via short range radio communication on their smartphones (e.g., Bluetooth). A node in the route graph,
representing a sub-space, can also be blocked by an event, but this case can be represented by setting
all of the edges ending in this node as blocked.

3.1.1. Definition

In this paper, the knowledge possessed by an evacuee for route planning is called the route status
map, which consists of a set of triples called memory segments:

Definition 1. A memory segment is an edge attached with an attribute describing its state and an attribute t
describing the specific time when this memory segment has been acquired or has been last updated:

memseg = (e, state, t) (1)

where e denotes an edge of the route graph, state denotes the value of the state associated with that edge and t
denotes the last time this memory segment was updated.

Let Em = {memsegi}; then, the route graph in memory is Gm = (V, Em). Let also tcur denote the
current time. Then, tcur − t indicates the risk that the state of an edge in memory might be out-of-date.
With this, fading memory can be defined as:

Definition 2. A fading memory M f ad = (V, Em)tcur = (V, {(e, state, tcur − t)i}), where i ∈ {1, 2, . . . , N}.

Thus, the fading memory M f ad is an extended version of a route graph G representing the state of
each edge and the age of the information about the state.

A memory collection can be represented by an attribute table for edges storing the attributes of
each edge at time tcur. Table 1 shows an example of an attribute table for edges.
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Table 1. Fading memory attribute table for edges, at an arbitrary time tcur.

Edge State Last Updated Age

e1 state1 t1 tcur − t1
e2 state2 t2 tcur − t2
· · · · · · · · · · · ·
en staten tn tcur − tn

For simplicity, this paper assumes that before the event, people have a complete map of the
environment, i.e., a complete route graph. The fading memory attribute table will therefore cover all of
the edges in the route graph.

During the event, the knowledge of an evacuee can be represented by a fading memory. From the
components of the memory collection, fading memory M f ad can be regarded as a map of the dynamic
environment with three components. The edges compose the spatial components, describing the
original topology of the spaces (before the event) for evacuation route planning. The states compose
the dynamics of the environment, representing the update of the topology of the spaces during the
event. The time composes the temporal components, describing how much the knowledge has been out
of date. Thus, fading memory represents the spatial and temporal features of the updated knowledge
of the dynamic environment.

In particular, if for all of the edges t = tcur, this fading memory is a real-time memory, which reflects
the real-time conditions of the environment.

Definition 3. A real-time memory consists of fading memory segments that are valid (sensed) at the current
time, denoted by Mreal .

Mreal = (V, {(e, state, 0)i}) (2)

where i ∈ {1, 2, . . . , N}.

For decentralized evacuation, real-time memory is never available.

3.1.2. Updating Fading Memory

The dynamic environment can be represented by a global route graph with all of the edge states
sensed in real time (i.e., a real-time memory). The knowledge of any evacuee can be represented by
different local route graphs (or fading memory) possessed by each evacuee. The edge states of local
route graphs coincide with the global route graph before the event. After the event, people share and
update their knowledge in the form of memory segments. The fading memory can be updated in
two ways:

• People acquire updated knowledge of the environment on a physical encounter with a changed
environment. The memory segments acquired before the event or a longer while ago will be
replaced by the memory segments that reflect the new observation of the encountered edges.

• People acquire updated knowledge of the environment on an encounter with fellow evacuees
by exchanging their mutual time-stamped knowledge. Any memory segment that has a more
recent counterpart in the encountered evacuee’s memory will be replaced by this more recent
memory segment.

Evacuees update their local route graphs from their own trajectories when exploring the
environment and from communication with fellow evacuees. These local route graphs are used
by evacuees to plan evacuation paths.
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3.2. Routing with Fading Memory

Fading memory is represented by an attributed graph highlighting not only the connectivity
of the space, but also representing the elapsing time after acquiring that knowledge. Thus, routing
can be a standard k-shortest path problem, labelling edges known to be blocked by infinite costs.
The k alternative paths are then assessed by trusting more the recently acquired knowledge and less
the knowledge that has been explored a longer time ago. Spatial factors, such as the location of the
blocked edges, can also be taken into consideration, for example, by preferring paths that do not not
come near blocked edges.

Threshold-based assessment methods have been used in a number of studies (e.g., to detect
human faces from colour images [40]). To demonstrate how a time-aware routing map can be achieved
with fading memory, an evolving threshold-based method is deployed here exemplarily. This method
can be replaced by any other reasonable method. For demonstration, a sample route graph with
six nodes is illustrated in Figure 1. The original connectivity can be represented by Table 2, where the
cell {vi, vj} = 1 if there is an edge linking vi and vj, else {vi, vj} = 0; i, j ∈ {1, 2, . . . , 6}.

v2 

v1 

v6 

v5 

v4 

v3 

Figure 1. A sample route graph.

Table 2. The connectivity of the sample route graph.

G v1 v2 v3 v4 v5 v6

v1 0 1 1 1 0 1
v2 1 0 1 1 1 0
v3 1 1 0 1 1 1
v4 1 1 1 0 1 1
v5 0 1 1 1 0 1
v6 1 0 1 1 1 0

The states of the edges in the route graph can be represented by Table 3, where the cell {vi, vj}
contains the state for edge {vi, vj}. Before the event, all edges have status u, denoting an unblocked state.

Suppose the event starts at tevent. Since then, an evacuee P1 acquires some additional knowledge,
be it through self-exploration or peer-to-peer knowledge exchange, and updates the corresponding four
segments in his or her memory as in Table 4 (assume tevent < (t1, t2, t3, t4) < tcur). The corresponding
updated route graph is shown in Table 5 (b denotes a blocked state).



Sensors 2016, 16, 112 7 of 20

Table 3. The original states of the sample route graph.

v1 v2 v3 v4 v5 v6

v1 u u u u
v2 u u u u
v3 u u u u u
v4 u u u u u
v5 u u u u
v6 u u u u

Table 4. The attribute table for the fading memory at a time tcur, with four updated memory segments.

Edge State Last Updated Age

{v1, v2} & {v2, v1} blocked t1 tcur − t1
{v1, v3} & {v3, v1} unblocked t2 tcur − t2
{v3, v4} & {v4, v3} unblocked t3 tcur − t3
{v1, v4} & {v4, v1} unblocked t4 tcur − t4
{v1, v6} & {v6, v1} unblocked tevent tcur − tevent
{v2, v3} & {v3, v2} unblocked tevent tcur − tevent
{v2, v4} & {v4, v2} unblocked tevent tcur − tevent
{v2, v5} & {v5, v2} unblocked tevent tcur − tevent
{v3, v5} & {v5, v3} unblocked tevent tcur − tevent
{v3, v6} & {v6, v3} unblocked tevent tcur − tevent
{v4, v5} & {v5, v4} unblocked tevent tcur − tevent
{v4, v6} & {v6, v4} unblocked tevent tcur − tevent
{v5, v6} & {v6, v5} unblocked tevent tcur − tevent

Table 5. The states of the route graph after state propagation from the fading memory.

v1 v2 v3 v4 v5 v6

v1 b u u u
v2 b u u u
v3 u u u u u
v4 u u u u u
v5 u u u u
v6 u u u u

This updated fading memory can be used for route planning. The following steps describe the
process applying an evolving threshold-based route assessment approach:

1 Step 1: Initialize the route graph. Propagate the current states in the fading memory to the route
graph (Table 5).

The next step (2a,b) is optional and introduces a mechanism to avoid edges known to be unblocked
if they are near blocked edges and the knowledge of being unblocked is quite old, i.e., the risk that
they are no longer unblocked is high.

2 Step 2a: Considering the spatial features, label the states of some edges as c (for further checking):
these are the edges that are currently marked as u for unblocked, but are directly connected with one
or more blocked edges.

Table 6 shows the updated state table for the running example: the edge that has a state of blocked
in fading memory is {v1, v2}; thus, all of the edges that end either in v1 or v2 and are currently
unblocked are labelled c.

Step 2b: Considering the temporal features, revise the states of some edges with a threshold. For
all edges that are labelled c, check the age of the knowledge of their states: if the age exceeds a
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threshold (initialled with a predefined threshold denoted by Th), then their states will be revised to
blocked, otherwise their state will be reverted to unblocked.

In the running example, suppose tevent = 0, tcur = 40, Th = 20, and t1, t2, t3 and t4 have some value
between tevent and tcur. Then, the attribute table will look like Table 7. Note how the states of edges
{v1, v4}, {v4, v1}, {v1, v6}, {v6, v1}, {v2, v3}, {v3, v2}, {v2, v4}, {v4, v2}, {v2, v5} and {v5, v2} have
been revised to blocked and {v1, v3}, {v3, v1} have been reverted to unblocked (Table 8).

3 Step 3: Update the route graph and compute the evacuation path. Set the weight for the edges
labelled b as infinity. Set the weight for the edges labelled u by any cost function, for example one
(for routes of the fewest legs) or their actual length (for routes of the shortest distance). Calculate
the shortest path based on the weights of the edges in the route graph.

4 Step 4: Adapt the threshold in case no evacuation path is available due to the potential
overestimation of the severity of the event. If the shortest path calculated from Step 3 contains
blocked edges or edges that have been checked as blocked, adapt the threshold by setting the
threshold with a larger value, and go to Step 2b. If the adaptive threshold exceeds a limitation and
still no passable path can be found, the evacuee is considered as failing in evacuation.

Table 6. The states of the route graph after marking the states that need further checking.

v1 v2 v3 v4 v5 v6

v1 b c c c
v2 b c c c
v3 c c u u u
v4 c c u u u
v5 c u u u
v6 c u u u

Table 7. The attribute table with sample value when tcur = 40.

Edge State Last Updated Age

{v1, v2} & {v2, v1} blocked 10 30
{v1, v3} & {v3, v1} unblocked 25 15
{v3, v4} & {v4, v3} unblocked 30 10
{v1, v4} & {v4, v1} unblocked 15 25
{v1, v6} & {v6, v1} unblocked 0 40
{v2, v3} & {v3, v2} unblocked 0 40
{v2, v4} & {v4, v2} unblocked 0 40
{v2, v5} & {v5, v2} unblocked 0 40
{v3, v5} & {v5, v3} unblocked 0 40
{v3, v6} & {v6, v3} unblocked 0 40
{v4, v5} & {v5, v4} unblocked 0 40
{v4, v6} & {v6, v4} unblocked 0 40
{v5, v6} & {v6, v5} unblocked 0 40

Table 8. The states of the route graph after further checking.

v1 v2 v3 v4 v5 v6

v1 b u b b
v2 b b b b
v3 u b u u u
v4 b b u u u
v5 b u u u
v6 b u u u
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The evolving routing method with fading memory considers the spatial and temporal factors of
the knowledge acquired, considering the age of the spatial knowledge. The out-of-date knowledge can
only be tolerable when no evacuation path is available due to conservatism. Even with the threshold
being adapted in each step, the initial threshold can still affect the route planning by biasing to choose
a path that is a detour, but is deemed to be safer if more than one path is available. The simulation
process can be illustrated with the flow chart in Figure 2.

Th = Th_initial

Apply fading 
memory?

Move for 1 second 
following the path

TrueFalse

False

Escaped?

Succeed

tcur = tcur+1

Failed

False

True

True

Acquire or update 
Knowledge on recent 

physical encounter

Share knowledge with 
fellow evacuees within 
communication range

Shortest path 
available?

Th = Th * 2

Th > Limitation

Label the states of some 
edges for future checking

Revise the state of edges 
with threshold Th

Update route graph and 
compute evacuation path

Shortest path 
available?

Update route graph and 
compute evacuation path

True

False

Communication 
allowed?

True

False

Th = Th_initial

Start

True

False

Figure 2. The process of the evacuation with fading memory.

3.3. A Generic Method

The threshold-based approach above is relatively crude in its consideration of the age of acquired
information. A more generic method to apply fading memory in evacuation management is to use
a two-step method for routing.

In the first step, the states and the age of the acquired knowledge in fading memory will not
be considered. Instead, a standard k-shortest path algorithm is applied, on the static route graph,
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calculating a list of shortest paths. Such k-shortest path algorithms have been studied by many
scholars [41–46]. A classical loopless k-shortest path algorithm is described by Yen [41] and used here.

Only in the second step the fading memory exhibits its influence. The second step assesses the
alternative k shortest paths for their likelihood to be unblocked, trusting more the recently-acquired
knowledge. The assessment of a path can be represented by any suited evaluation function f ade(),
such that f ade(Pathi) ≥ 0, where Pathi is the i-th shortest path (i ≤ k). f ade(Pathi) denotes the trust
that path Pathi is unblocked according to the fading memory and, thus, can be recursively defined:

f ade(Pathi) = min{ f ade(ei
j)} (3)

The selection of a route (e.g., by an evacuee) can then be based on balancing the length of the
route and the trustworthiness of the route. For example, in life-threatening scenarios, one will accept
any detour and choose the route of lowest risk. This consideration also suggests that the evaluation
function itself has to be chosen carefully for particular applications. It may depend on the type of
event (how fast it spreads) or, more generally, on the dynamicity of the environment. The evolving
threshold-based approach above is one example for an evaluation function:

f ade(ei
j) = Th− (tcur − t)j (4)

where Th is the threshold, and a value of f ade < 0 is considered blocked. The threshold Th is first set
with an initial value and then is adaptive to avoid potential overestimation of the severity of the event.

4. Experiments

The concept of fading memory has been implemented in an agent-based simulation of
an emergency event and consecutive evacuation. The experiment has been designed to test and
compare the success rates of evacuations with and without fading memory.

The simulation is designed to test the system behaviour when introducing the concept of fading
memory. Thus it suffices to assume that evacuees follow the aforementioned evacuation strategies
during the evacuation, i.e., follow route instructions of their mobile devices that maintain the fading
memory and compute optimal routes. Thus, the simulation does not aim to predict human behaviour,
which also has been considered almost impossible elsewhere [47]. It does also not aim to simulate
a particular event-spreading process, such as a fire in a building [48,49], but could be fed with particular
spreading models.

Events at different levels of speed have been simulated. For each level of speed, 60 different
events are simulated, recorded and recalled when comparing evacuation scenarios, such that each
comparison refers to the same event.

4.1. Event Simulation

For the experiment, a spatially-extended and temporally-varying event has been assumed,
for example a fire breaking out in a building, starting from a single location and continuing to
expand. Events of other characteristics, such as earthquakes that impact at multiple locations at
the same time or bomb explosions that do not expand after going off, will not be covered by this
particular experiment, but could be tested in the same way in differently-designed simulations. At the
beginning of an event, some edges in the route graph will be affected and become blocked. Then, the
event expands, affecting more edges and causing them to be blocked. Because of the continuity of
the event spreading, the effected subspaces in the indoor environment are adjacent and connected
(i.e., not separated by walls).

In order to simulate the event, this paper adopts the concept of sensor graphs described by
Wang et al. [9]. The real-time situation of the environment is assumed to be monitored by a virtual
sensor network that covers the whole area of the indoor environment. The sensor network is generated
by adding an edge between two sensor nodes if their detecting areas are adjacent and connected. Two
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sensor nodes are neighbouring each other if they are connected with an edge. One sensor is set to
be active from the beginning. Then, because of the continuity of the event spreading, the next active
sensor should be a neighboured sensor of the already active one. Thus, an extended process can be
simulated through simulating the state transfer of the sensors. The advantage of modeling the event
independently from the route graph is obvious: the sensors can be distributed equidistantly and can
cover also spaces that are not directly covered by the route graph.

In this paper, a sensor shall have two possible states, normal (denoted by N) and active (denoted
by A). A sensor stays in the normal state when its detecting area is safe and passable and may shift
to active when its detecting area becomes unsound because of the event. Before the event, all sensors
should be in the normal state, then one sensor that covers the area where the event starts shifts to active.
As the event expands, for any neighboured sensor of an active sensor, a state transfer from normal to
active may happen not definitely, but with a certain probability (denoted by p), which depends on
the speed of the event expansion. A larger value of the probability p means a faster expanding event.
In the implemented simulation, every 10 s, the event is updated by selecting the neighboured sensors
of a randomly-picked active sensor and will be set active with a certain probability. This way, 60 events
have been recorded, such that different memory strategies can be applied to the same events.

4.2. Evacuation Strategies

For simplicity, this experiment assumes that all people are acquainted with the environment
before the event: they have complete knowledge of the (static) route graph. In addition, this experiment
assumes that during an event, people acquire knowledge and update their memory applying the two
mechanisms mentioned above:

• People acquire updated knowledge of the environment upon a physical encounter with
a changed environment.

• People acquire updated knowledge of the environment upon an encounter with fellow evacuees
by exchanging their mutual time-stamped knowledge.

Each evacuee computes their own evacuation routes based on their own memory of the
environment. The routes will be adjusted each time when their memory of the environment is updated.
Routes will be computed applying the steps described in Section 3.2. Since the communication channel
may be blocked, considering whether peer-to-peer communication is allowed and whether dynamic
routing with fading memory is applied, strategies that can be applied by evacuees are classified into
four categories:

• FS: apply fading memory for dynamic route planning; communication is allowed so that evacuees
share knowledge.

• CS : not applying fading memory, but communication is allowed.
• FN: the same as FS, except that communication is not allowed, so that knowledge cannot be shared.
• CN: The same as CS, except that communication is not allowed, so that knowledge cannot

be shared.

Although the movement velocity of elderly people, young children or those with some form of
impairment varies, in this experiment, we assume a constant speed of 1.5 m/s. When the fire alarm is
set off, all occupants start to evacuate. If no evacuation path is available for an evacuee, this evacuee
is declared as failing. Depending on the circumstances, such evacuees may survive, e.g., if the fire is
extinguished before it reaches them; however, in the context of this experiment, only the successfully
evacuating agents are counted.

Both the models of event spreading and the evacuation of agents with fading memory have
been implemented and tested in Repast Simphony [50]. The experiment adopts a five-floor office
building as a sample evacuation environment and generates the route graph of this building with
YAMAMOTO [37]. One hundred evacuees are placed at predefined locations when the events start and
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then walk following the path generated from the route graph during evacuation. For comparability,
these evacuees always start at the same locations; only the seed location and (random) spread of the
event varies from simulation to simulation.

5. Results and Discussions

5.1. Experiment 1: Communication Allowed

Experiments test the evacuation performance of the 100 evacuees with FS and CS under
60 emergency events with the initial threshold selected from a list of values: 1, 5, 10, 20, 40, 80,
160, 320. When all of the evacuees reach an exit or have no path left to evacuate, the evacuation process
is considered as completed.

Figure 3 shows that when the threshold is set as one, in most cases (49 cases), the effect of
applying fading memory leads to neither an increase nor a decrease in the quantity of successful
evacuees. However, for the rest of the cases, fading memory outperforms CS in 10 cases, saving
3.2 people more on average per case. CS is better only in one case (Case 9), saving two people more.
When examining the details of Case 9, both of the two people fail because of a sudden change of
the environment. As described in Section 4.1, the event expands in the simulation every 10 s, which
is not a smoothly-changing environment. The two people have first selected a longer path due to
a rigid initial threshold of one, then suddenly failed because the event expanded and blocked the
edges in which the two people were standing. In contrast, for the corresponding CS strategy, the
two people have first chosen a shorter path and just avoided standing in a blocked edge when that
event suddenly expanded.
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Figure 3. Comparison between FS and CS when the initial threshold is one.

Figure 4 compares those event cases where the quantity of people saved by different evacuation
strategies exhibits differences when applying varying initial thresholds for FS. CS maintains the lowest
success in 10 events. Only in two cases (Cases 9 and 20), CS is no longer the lowest one and is not
the highest one either in the number of successful evacuees. Comparing Figures 3 and 4, what can
be observed is that even in one case (Case 9), CS saves two people more, but the advantage of CS
is not maintained when the initial threshold for FS changes. When the initial threshold gets larger
(for example, 40), FS again saves more people.
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Figure 4. Comparison between FS and CS for the event cases where the quantity of people saved by
different evacuation strategies exhibits differences.

Figure 5 shows the average success drawn from the 60 events when applying different evacuation
strategies. Applying fading memory always saves a larger average number of evacuees. When the
initial threshold gets larger, the effect of fading memory decreases.

Evacuation strategies
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Figure 5. The average number of successful evacuees for CS and FS with varying initial thresholds.

5.2. Experiment 2: Communication Not Allowed

Peer-to-peer communication can be achieved by using mobile devices [4]. However, even
short-range communication channels may not exist (e.g., on smartphones with no Bluetooth). In order
to investigate whether applying fading memory is still beneficial independent of any communication
channel, experiments have also tested the performance of FN with varying initial thresholds applied
when peer-to-peer communication is not allowed. Results show a similar pattern in the average number
of successful evacuees (Figure 6). On average, fading memory exhibits an advantage. This advantage
diminishes as the initial threshold increases until approaching a limit at which the performance of the
threshold-based method equals that without applying fading memory. This is reasonable, because
when the initial threshold gets larger, more out-of-date knowledge will be trusted, and in particular,
when the initial threshold exceeds the evacuation time of all evacuees, fading memory degrades not
applying fading memory. Figure 7 compares the event cases where the quantity of people saved by
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different evacuation strategies exhibits differences. Fading memory shows better performance than
CN in 11 events, while only in three cases, a varying initial threshold fails to guarantee saving more
people than CN.
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Figure 6. The average number of successful evacuees for CN and FN with varying initial thresholds.
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Figure 7. Comparison between FN and CN for the event cases where the quantity of people saved by
different evacuation strategies exhibits differences.

5.3. Experiment 3: Sensitivity Test for Event Speed

The probability p of sensor state transfer adopted in the event simulation reflects the speed of the
expansion of an event. In Experiments 1 and 2, a transfer probability of 100% has been adopted, but
this probability p is an arbitrary choice. In order to test whether the simulation result is sensitive to the
selection of this parameter, the previous experiment has been repeated, but the sensors update their
states with probabilities selected from a series of values: 20%, 40%, 60%, 100% and 0%.

Figures 8–11 show that independent of the expansion speed of an event, the quantity of average
success shows a similar pattern. Applying fading memory saves on average more people than without
applying fading memory. With growing thresholds, this advantage diminishes until the success rates
reach the same outcomes as without applying fading memory. Since a high probability p means a faster
expanding event and, thus, less opportunity for evacuating, it is reasonable that when the probability
p in the event simulation is lower (for example 20%), more people have been safely evacuated than
with higher probabilities, whether applying fading memory or not.
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Evacuation strategies when probability value is 20 in percentage.
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Figure 8. The average number of successful evacuees when the probability value of the sensor state transfer
adopted in the event simulation is 20% (F* corresponds to FS and FN; C* corresponds to CS and CN).

Evacuation strategies when probability value is 40 in percentage.
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Figure 9. The average number of successful evacuees when the probability value of the sensor state transfer
adopted in the event simulation is 40% (F* corresponds to FS and FN; C* corresponds to CS and CN).

Evacuation strategies when probability value is 60 in percentage.
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Figure 10. The average number of successful evacuees when the probability value of the sensor state transfer
adopted in the event simulation is 60% (F* corresponds to FS and FN; C* corresponds to CS and CN).



Sensors 2016, 16, 112 16 of 20

Evacuation strategies when probability value is 100 in percentage.
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Figure 11. The average number of successful evacuees when the probability value of the sensor state transfer
adopted in the event simulation is 100% (F* corresponds to FS and FN; C* corresponds to CS and CN).

In particular, when the probability value decreases to zero, the event becomes a static
event, an event that affects some edges in the route graph and does not expand. When the dynamic
event degrades to a static event, the topology and states of the route graph will remain constant. Thus,
all of the knowledge acquired by evacuees will always be valid, represents the real-time circumstance
of the environment and should be completely trusted. For this particular event, applying fading
memory is expected to make no improvements in the number of successful evacuees, but whether it
deteriorates the result needs to be tested. Experiment results for a static event show that exactly the
same number of evacuees will be saved no matter whether fading memory has been applied and no
matter what initial threshold has been applied for the route planning with fading memory (Figure 12).

Evacuation strategies when probability value is 0 in percentage.
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Figure 12. The average number of successful evacuees when the probability value of the sensor state transfer
adopted in the event simulation is 0% (F* corresponds to FS and FN; C* corresponds to CS and CN).

The sensitivity test for different speeds of events indicates that the advantages of fading memory
are maintained across events of all speeds and, in particular, is reliable even for static events.
The dynamic routing method with fading memory is capable of guaranteeing a higher average
of successful evacuees.
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5.4. Experiment 4: Comparison with Real-Time Knowledge

Evacuees acquire and update knowledge through exploration and communication with fellow
evacuees. The knowledge of an evacuee has been represented by a fading memory so far, which
is a local route graph with time-stamped states. Fading memory draws a map of the dynamic
environment and can be applied to achieve an evolving dynamic route planning with spatial and
temporal factors taken into consideration. The fading memory for different evacuees may differ due to
their varying trajectories. As mentioned in Section 3.1.2, the real-time conditions of the environment
can be represented by a real-time memory, which is a global route graph with all states sensed in real
time. In the decentralized evacuation process, the global route graph is always unique and is not
accessible for evacuees. However, in centralized evacuation, the real-time knowledge can be sensed
and computed in a central infrastructure [9]. Based on the real-time information of the environment,
personalized evacuation paths can be computed and sent to each evacuee via mobile devices.

The evacuation results of centralized evacuation planning with real-time knowledge are
a benchmark for decentralized evacuation with fading memory. In order to investigate the gap
between fading memory and a centralized evacuation, this last experiment compares the centralized
evacuation implemented by Wang et al. [9] and evacuations with fading memory. Figure 13 compares
the performance of centralized evacuation and decentralized evacuation with fading memory, both
when knowledge is shared and not shared.

As can be observed from Figure 13, although fading memory is capable of improving evacuation
success in decentralized evacuation, it is not likely to be better than the evacuation performance of
centralized evacuation. From the experiment results, centralized evacuation always saves at least the
same, but sometimes more people than fading memory.

However, in a significant number of cases, fading memory results in saving the same number of
successful evacuees. When examining the details of the results, this is because a number of evacuees
failed to find an evacuation path even at the beginning of an evacuation due to a lack of alternatives;
then, different evacuation strategies make no difference.
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Figure 13. Comparison of the number of successful evacuees between centralized evacuation and
decentralized evacuation with fading memory both when knowledge is shared and not shared.

6. Conclusions

Spatial knowledge of dynamic environments fades in its value for decision making because of the
growing risk that it has become invalid over time. This paper proposes a fading memory model to
represent the knowledge of a dynamic environment and applies it to route planning. Results show
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that this fading memory model can improve the evacuation success rates for expanding events or in
general improve the decisions made in a dynamic environment.

With this evidence at hand, this paper is the first approach to fading memory and a beginning to
the full exploration of the properties and promises of fading memory on decision making in dynamic
environments. The simulation in this paper leaves aside any human behavioural factors, such as
walking speed, visual ability or acting under stress. It also does not consider congestions caused by
evacuee crowds, which should be taken into account in evacuation guidance in practice. Similarly, the
prior knowledge of evacuees has so far been assumed to be complete; however, this is most likely not
the case in real-world situations in complex indoor environments. Thus, studying the evacuation from
an environment with limited (or no) prior knowledge and fading memory is also part of future work.
The experiments in this paper are completed based on a sample building with limited alternatives.
More generic graphs that represent different dynamic environments can also be tested. The density of
evacuees in the experiment is limited, and a higher density of evacuees means that more opportunity
for communication and that more space can be covered by the trajectories of evacuees in a short time;
thus, this may lead to higher efficiency of evacuation. The discontinuity of the event expanding in the
simulation is noise for the simulation results, which can also be improved in future work. Finally, the
assessment model can be refined. For example, a formulation by probabilities of blocked edges can
replace a threshold model more elegantly, and probabilities can be produced according to the type (or
aggressiveness) of the event, say fire spread compared to gas spread.
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