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Abstract: Foot-mounted inertial sensors can be used for indoor pedestrian navigation. In this
paper, to improve the accuracy of pedestrian location, we propose a method using a distance sensor
(LIDAR) in addition to an inertial measurement unit (IMU). The distance sensor is a time of flight
range finder with 30 m measurement range (at 33.33 Hz). Using a distance sensor, walls on corridors
are automatically detected. The detected walls are used to correct the heading of the pedestrian path.
Through experiments, it is shown that the accuracy of the heading is significantly improved using
the proposed algorithm. Furthermore, the system is shown to work robustly in indoor environments
with many doors and passing people.
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1. Introduction

Although the global position system (GPS) is normally used in pedestrian navigation
systems [1,2], alternative techniques are needed for GPS-denied environments such as indoors [3–9],
urban canyons [10,11], underground [12–14], and mountain regions where GPS signals are weak
or unavailable. Two research methods are mainly used in the indoor position estimation [15–20].
The first method is based on an existing network of receivers or transmitters placed at known
locations. This method is known as beacon-based navigation in which position is estimated using
triangulation (or trilateration) method from measured ranges (or angles). The method usually uses
different technologies such as vision, ultrasound or short range radio which are generally named
local positioning systems (LPSs). The survey of LPSs can be found in [15]. The second method
is based on dead reckoning algorithms using sensors installed on a person or an object to locate
them and known as beacon-free navigation. Since there is no environment installation requirement,
this method is preferred in some applications. Several dead reckoning approaches using inertial
measurement unit (IMUs) have been proposed. In [16,21], the position of a person is estimated using
an inertial navigation algorithm (INA). Since its accuracy degrades over time, additional sensors are
often used with IMUs such as a time of arrival based on LPSs [17], received signal strength (RSS)
based on LPSs [16] or distance sensors [18–20].

In [16], persons are accurately located by combining an active RFID technology with an inertial
navigation system in which the received signal strengths obtained from several active RFID tags are
used to aid a foot-mounted IMU based position estimation. This method requires that RFID tags be
installed at the known locations. In [17], the RF 3D location system is applied to improve the accuracy.
RF receivers are preinstalled outside around building and an RF transmitter is attached on a foot.
The position of a foot is computed using time-of-arrival from the transmitter to each receiver. In [18],
the position error from dead reckoning is corrected by deploying ultrasound beacons as landmarks.
Another method is using radar in [19] and distance sensors in [20] to improve the accuracy. Since
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these papers use a floor as the reference plane, the distance sensor gives information on the foot
height. Although there is no installation requirement as the methods in [16–18], the methods in [19,20]
only improve accuracy of the foot height estimation but do not improve accuracy of horizontal
position estimation. Since the foot height is an important information in the gait analysis, the
methods in [19,20] can be used effectively for the gait analysis. However, the horizontal position
(that is, a person’s position) is a key information in the pedestrian navigation. Thus, the methods
in [19,20] are not suitable for pedestrian navigation.

Our method improves the estimation accuracy using a distance sensor in addition to
foot-mounted IMUs. We recognize that an important problem in pedestrian navigation is heading
correction, and we use a vertical plane (such as a wall) as a reference plane to update heading and
position. The proposed system does not require any installation in the environment and any prior
knowledge on environment (such as a map).

2. Overview System

An IMU (Xsens MTi) is attached on the shoe as in Figure 1. The IMU contains three-axis
accelerometers and gyroscopes with 100 Hz sampling frequency. A LIDAR (light detection and
ranging, model LL-905-PIN-01 [22]) is also attached on the shoe and used as a distance sensor. The
distance is obtained by measuring flight time of infrared light with 30 m measurement range and
33.33 Hz sampling frequency. Body coordinate system (BCS) and world coordinate system (WCS)
are used in this paper. The BCS coincides with the IMU coordinate system. The z axis of the WCS
is pointing upward while the x and y axes are chosen arbitrarily. The origin of the WCS is assumed
to be on the floor. The notation [a]w ([a]b) is used to denote that vector a is represented in the world
(body) coordinate system.

Figure 1. IMU and distance sensor on a shoe.

To compute a LIDAR point’s position, parameters of distance sensor such as the position and
pointing direction with respect to BCS are required. In Figure 1, vector [rl ]b ∈ R3 denotes the position
of a distance sensor while unit vector [nl ]b ∈ R3 represents the pointing direction.

The distance sensor parameters ([rl ]b, [nl ]b in Figure 1) can be determined using a ruler and a
protractor. However, it is not easy to get high accurate parameters using this method. Thus, the
parameters are calibrated in the next section.

The main idea of this paper is using vertical planes (such as walls) along a walking path to
update position and heading. For example, if a person is walking on a long straight corridor, we can
use the wall as a reference to update position and heading. The proposed algorithm automatically
detects existence of vertical planes (such as walls) and uses them as references. Thus, no prior map
information is required.
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The detection of vertical planes during walking is explained using an example indoor
environment in Figure 2. Suppose a person is walking along the black colored pedestrian path. While
walking, a foot touches the floor almost periodically. When a foot is on the floor, the velocity of a
foot is zero, and this time interval is called a zero velocity interval (ZVI). At each ZVI i, we compute
LIDAR point Pi based on position and heading estimated using the INA. At ZVI 2, the vertical plane
1 is defined using all LIDAR points between P1 and P2 (including P1 and P2). Now, suppose a person
is at the ZVI 3 and LIDAR point P3 is computed. If P3 is close to the vertical plane 1, it is assumed
that P3 is on the vertical plane 1. Since we know the vertical plane 1 equation and the distance from
the vertical plane 1, we can update position and heading. At ZVI 4, LIDAR point P4 is not near the
vertical plane 1. At this time, vertical plane 1 is not used to update position and heading. At ZVI 5, a
new vertical plane is formed. This process is repeated during walking.

Figure 2. Vertical plane detection using LIDAR.

3. Distance Sensor Calibration

In this section, the sensor unit is handheld while LIDAR is pointing at a floor for the calibration.
The coordinate of a LIDAR point with respect to the WCS is computed as follows:

[b]w = Cw
b [b]b + r = Cw

b ([rl ] + d [nl ]b) + r (1)

where r is the position of IMU with respect to WCS, Cw
b is the rotation matrix from BCS to WCS,

[b]b = [rl ] + d [nl ]b is the position of LIDAR point with respect to BCS and d is the distance from a
distance sensor to LIDAR point. r and Cw

b can be computed from the INA.
We setup the distance sensor and IMU so that [rl ]b = k [nl ]b (see Figure 1). Since [nl ]b is a unit

vector, k is the distance between IMU and the distance sensor. Since k ( 3 cm) is very small compared
with d (1∼5 m), k is measured by a ruler. Figure 3 describes our method to estimate [nl ]b. In the
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calibration process, LIDAR is pointed at a floor with different poses, where the height is measured
with a ruler.

Figure 3. LIDAR calibration (the sensor unit is handheld while LIDAR is pointing at the floor for
the calibration).

Since [rl ]b = k [nl ]b, Equation (1) becomes

[b]w = Cw
b (k + d) [nl ]b + r (2)

Since the floor is flat and horizontal, the height of IMU is identified by[
0 0 1

]
(k + d)Cw

b [nl ]b = −h (3)

where h is the height of the IMU, which is measured by a ruler.
If we repeat the measurement n times with different poses, we have

[
0 0 1

]
(k + d1)Cw

1,b[
0 0 1

]
(k + d2)Cw

2,b
...[

0 0 1
]
(k + dn)Cw

n,b

 [nl ]b =


−h1

−h2
...
−hn

 (4)

[nl ]b is estimated by minimizing the following

‖S1 [nl ]b − S2‖2
2 (5)

where

S1 =



[
0 0 1

]
(k + d1)Cw

1,b[
0 0 1

]
(k + d2)Cw

2,b
...[

0 0 1
]
(k + dn)Cw

n,b

 and S2 =


−h1

−h2
...
−hn
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The analytic solution to the least squares problem is given by

[nl ]b =
(

ST
1 S1

)−1
ST

1 S2

4. Kalman Filter Combining an INA and Compensation Using LIDAR

4.1. Basic INA

In this subsection, a basic INA is given. This basic algorithm is not a new result and is from [23,24].
Let v ∈ R3 and r ∈ R3 denote the velocity and position of IMU with respect to the WCS. Let

C(q) ∈ R3×3 be the direction cosine matrix corresponding to the quaternion [25] q ∈ R4 which
represents the rotation relationship between the BCS and WCS.

The quaternion, velocity and position are related as follows [23]:

q̇ = 1
2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 q

v̇ = C(q)T [a]b
ṙ = v

(6)

where ω is the angular velocity of the BCS with respect to the WCS and [a]b ∈ R3 is the acceleration
in the BCS.

The gyroscope output (yg ∈ R3) and accelerometer output (ya ∈ R3) are given by

yg = ω + vg + bg

ya = [a]b + C(q)[g̃]w + va + ba
(7)

where [g̃]w ∈ R3 is the local gravitational vector in the WCS. bg ∈ R3 and ba ∈ R3 are biases of
gyroscope and accelerometer, respectively.

The numerical integration algorithm to integrate Equation (6) (replacing [a]b by ya − C(q)g̃ and
replacing ω by yg) is given in [26]. Let q̂, r̂ and v̂ be the integrated values.

There are errors in q̂, r̂ and v̂ due to sensor noises, represented by q̄ ∈ R3, r̄ ∈ R3 and v̄ ∈ R3:

q̄ =
[

03×1 I3

]
(q̂∗ ⊗ q)

r̄ = r− r̂
v̄ = v− v̂

(8)

where ⊗ denotes the quaternion multiplication and q∗ is the conjugate quaternion of q. The three
dimensional (instead of four dimensional) error description of the quaternion in Equation (8) is
from [27].

The state of a Kalman filter is defined by

x =


q̄
bg

r̄
v̄
ba

 ∈ R15×1 (9)
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The system equation for the Kalman filter is given by [28]:

ẋ(t) = A(t)x(t) + w(t) (10)

where

A(t) =


[−yg×] − 1

2 I 0 0 0
0 0 0 0 0
0 0 0 I 0

−2C(q̂)T [ya×] 0 0 0 0
0 0 0 0 0

 , w(t) =


− 1

2 vg

wbg
0

−C(q̂)Tva

wba


[a×] ∈ R3×3 is a skew symmetric matrix corresponding to a vector a ∈ R3×1. The noises wbg and wba
represent small variation of biases.

Two measurement equations are used in this paper. The first one is the measurement equation
based on the ZVIs, and the other is the measurement equation using the distance sensor (which is
given in Section 4.2).

When a foot is touching the ground during walking, its velocity must be zero. This leads to
resetting the velocity error in INA. In [29], ZVIs are detected directly using a Doppler velocity sensor.
However, ZVIs can be detected indirectly using zero velocity detection algorithms [30,31].

A simple zero velocity detection algorithm is used in this paper. If the following conditions are
satisfied, the discrete time index k is assumed to belong to ZVIs

‖yg,i‖ ≤ Bg, k− Ng
2 ≤ i ≤ k + Ng

2
‖ya,i − yai−1‖ ≤ Ba, k− Na

2 ≤ i ≤ k + Na
2

(11)

where Ng and Na are integers.
During ZVIs, we have the following zero velocity updating equation:

zv = Hvx + vzero (12)

where
zv = 03×1 − v̂ ∈ R3×1

Hv =
[

03×9 I3 03×3

]

4.2. Proposed Position and Heading Updating Algorithm Using the Distance Sensor

The proposed position and heading updating algorithm is shown in Figure 4. As illustrated
in Figure 2, the basic idea of the proposed algorithm is to use vertical planes as references to update
position and heading. The key issue is when to form a vertical plane and when to abandon an existing
vertical plane. This issue is first discussed. At ZVI i, LIDAR point Pi is given by

[Pi]w = Cw
i,b [bi]b + ri (13)

where Cw
i,b ∈ R3×3 is a rotation matrix from BCS to WCS, and [bi]b ∈ R3 is a LIDAR point with respect

to BCS at ZVI i.
If there is no defined vertical plane, all LIDAR points in one walking step which is identified by

ZVI i − 1 and i (i > 1) are used to define the first vertical plane. All of these points could be on a
vertical plane (such as a wall). On the other hand, it is also possible that these points are not on a
plane. For example, if there is a passing person, some LIDAR points could be from the person. In
addition, it is possible that some points are from a door, which is not on the wall. We first make an
assumption that all LIDAR points are on the same plane and derive the plane equation. After that,
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we verify the same plane assumption in Equation (18). Assume that Pi,j ∈ R3×1(1 ≤ j ≤ N) are
all LIDAR points during the step i-th (N is number of LIDAR points in the step), and (ni, di) are the
vertical plane equation parameters satisfying

nT
i Pi,j = di (14)

The plane equation parameters (ni, di) are computed by minimizing the following:

‖S3
ni
di
− S4‖2

2 (15)

where

S3 =


PT

i,1
PT

i,2
· · ·
PT

i,N

 and S4 =


1
1
· · ·
1



Figure 4. Proposed position and heading updating algorithm using the distance sensor.

The minimizing solution is given by

ni
di

=
(

ST
3 S3

)−1
ST

3 S4 (16)

Since ni is a normal vector, we have

di =
1

‖(ST
3 S3)

−1
ST

3 S4‖

ni = di
(
ST

3 S3
)−1 ST

3 S4

(17)
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Now, we check whether the LIDAR points are from the same vertical plane. If LIDAR points are
near the plane (ni, di) (first and second conditions in Equation (18)) and the plane is vertical (third
condition in Equation (18)), we assume that LIDAR points are from the same vertical plane.

1
N ∑N

j=1 |nT
i Pi,j − di| ≤ αmean

max
(
|nT

i Pi,j − di|
)
≤ αmax

| cos−1 (ni(3))− 900| ≤ αangle

(18)

where αmean, αmax and αangle are threshold parameters. Note that the inclination angle of the plane
equation (ni, di) is given by cos−1 (ni(3)). If Equation (18) is satisfied, the estimated plane (ni, di)

becomes the first defined vertical plane. If Equation (18) is not satisfied, the first vertical plane is
searched in the next step.

Now, we have the vertical plane equation (nk, dk) and the next LIDAR point Pi is obtained. If
this point belongs to the vertical plane, we use the plane equation to update position and heading of a
pedestrian. The LIDAR point Pi is determined to belong to the vertical plane (nk, dk) if the following
is satisfied

|nT
k Pi − dk| ≤ αplane (19)

where αplane is threshold.
If LIDAR point Pi does not satisfy Equation (19), the point Pi could be from an obstacle (such as

passing person or door) or could be from a new wall. For example, LIDAR point Pi in Figure 5a is
from an obstacle (the next LIDAR point Pi+1 satisfies Equation (19)) while the point Pi in Figure 5b,c
is from a new wall ( Pi+1 does not satisfy Equation (19)). In the proposed algorithm, a new vertical
plane is only formed using Equation (17) when Equation (18) is satisfied (Figure 5c).

We are going to derive position and heading updating algorithm using LIDAR point Pi when the
point belongs to the vertical plane (nk, dk). Since Pi is on the plane (nk, dk), we have (see Equation (13))

nT
k

(
CT [bi]b + ri

)
= dk (20)

where C denotes Cb
w(qi). From [32], we have

C (q)T = C (q̂)T + 2C (q̂)T [q̄×] (21)

From Equation (20), we have

nT
k

((
C (q̂i)

T + 2C (q̂i)
T [q̄i×]

)
[bi]b + r̂i + r̄i

)
− dk = 0 (22)

Equation (22) can be rewritten as follows:

nT
k

(
C (q̂i)

T [bi]b + r̂i

)
− dk = 2nT

k C (q̂i)
T [[bi]b×] q̄i − nT

k r̄i (23)

This equation is used as a measurement equation in Kalman filter when Pi belongs to the
vertical plane

zp = Hpx + vp (24)

where vp is a measurement noise and

zp = nT
k

(
C (q̂i)

T [bi]b + r̂i

)
− dk

Hp =
[

2nT
k C (q̂i)

T [[bi]b×] 01×3 −nT
k 01×3 01×3

]
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Figure 5. New vertical plane detection.

5. Experiments and Results

Three experiments are performed to verify the proposed algorithm. In the experiments, an IMU
(Xsens MTi sensor unit) and distance sensor (LIDAR) are attached on the shoe as shown in Figure 6.
Since the algorithm verification is the main purpose of the experiments, the measurement data are
collected and processed in Matlab offline.

The first experiment is walking along a corridor (84 m) with many doors and passing persons
as in Figure 7. The results of the first experiment are shown in Figure 8 (pure INA) and Figure 9
(the proposed algorithm). In the figures, the pedestrian path is drawn in a green color and the
vertical wall plane is expressed by the blue line. If LIDAR points satisfy Equation (19), they are
used for the measurement update in Equation (24). These “updated LIDAR points” are represented
by red “*” symbols. Those points not used for the measurement update are represented by blue “o”
symbols. In Figure 8, the estimated pedestrian path tends to drift over time since there is no updating
in theheading. In Figure 9, the estimated pedestrian walking path is more accurate since the heading
is corrected using the wall information. As can be seen in the zoomed area in Figure 9, the proposed
algorithm is working robustly even with many doors and passing persons.

Figure 6. IMU and LIDAR system for the experiment.
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Figure 7. Corridor with doors and passing persons.

The final position errors after 84 m walking (Figures 8 and 9) are given in Table 1. The root mean
square (RMS) position error of a pure INA is 9.23 m. The proposed method gives a better RMS error
1.54 m.

Figure 8. Pedestrian path using a pure INA.
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Figure 9. Pedestrian path using the proposed method.

Table 1. Final position error comparison in the straight line corridor walking (unit: m).

Experiment Number Position Error (Pure INA) Position Error (Proposed Method)

1 4.38 1.74
2 9.48 1.55
3 10.48 1.54
4 11.61 1.40
5 8.50 1.43

RMS 9.23 1.54

Walking is a complex process which depends a lot on each person’s walking style. To see whether
the proposed method is affected by different walking styles, the proposed method is tested with
five subjects. Each subject is asked to walk 30 m along a corridor three times (thus there are total
15 walking), and the result is shown in Table 2. As can be seen from Table 2, the proposed algorithm
can work well independent of subjects, and the position error mean is significantly reduced from
2.03 m (using pure INA) to 0.42 m (using the proposed method).

The second experiment is about walking around a U shaped (39× 26.5 m) corridor with starting
position (0, 0) and final position (0, 22.26 m). The final position is marked by the red star in Figures 10
and 11. There are four doors which are colored in black. The estimated pedestrian path are shown in
Figure 10 (pure INA) and Figure 11 (the proposed method). In Figure 10, the heading tends to drift
over time since the heading is not corrected as in the Figure 8 case. In Figure 11, we can notice that
the heading is effectively corrected using the wall information.

The RMS position error of a pure INA is 3.88 m. The proposed method gives a better RMS error
0.58 m using the wall information (see Table 3).
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The third experiment is to show that our method can work well with a complex map. In
Figure 12, a person started from room 1 and arrived at room 2 after walking a 60 m corridor. Finally,
the person went around room 2 and came back to the corridor. The red square in Figure 12 is the
starting position, the estimated pedestrian path is shown in the green color and the red star is the
final position. We can see that the vertical plane updating is not used inside rooms 1 and 2 (there is
no updated LIDAR point inside rooms) due to obstacles.

Table 2. Final position error comparison in the corridor walking with different walking style.

Experiment Walking Speed Stride Length Stride Speed Position Error (Pure INA) Position Error (Proposed Method)
Number (km/h) (m) (stride/s) (m) (m)

1 4.14 1.25 0.92 2.04 0.45
2 4.15 1.25 0.92 1.32 0.34
3 4.57 1.25 1.02 2.57 0.52
4 4.59 1.30 0.98 3.21 0.54
5 4.72 1.30 1.01 3.11 0.37
6 5.19 1.50 0.96 2.25 0.43
7 5.43 1.50 1.01 1.67 0.35
8 5.44 1.50 1.01 1.70 0.44
9 5.46 1.50 1.01 2.53 0.52

10 5.53 1.50 1.02 1.22 0.36
11 5.54 1.50 1.03 1.26 0.42
12 5.57 1.50 1.03 2.33 0.37
13 6.06 1.50 1.12 2.58 0.39
14 6.07 1.50 1.12 0.84 0.31
15 6.10 1.50 1.13 1.80 0.51

Mean 2.03 0.42

Figure 10. Pedestrian path in the U shaped corridor using a pure INA.
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Figure 11. Pedestrian path in the U shaped corridor using the proposed method.

Figure 12. Pedestrian with complex path.

Table 3. Final position error comparison in the U shaped corridor walking (unit: m).

Experiment Number Position Error (Pure INA) Position Error (Proposed Method)

1 3.01 0.20
2 5.20 0.64
3 1.94 0.64
4 2.67 0.91
5 5.32 0.13

RMS 3.88 0.58
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6. Discussion

The experiment in Table 3 demonstrates that the proposed algorithm can work well with a
complex walking path. In Figure 12, there are some updated LIDAR points (red “*” symbols) along
the corridor, but there is no updated LIDAR point in room 1 and room 2. This means a pure INA is
applied in room 1 and room 2 where there are many obstacles and short walls. The vertical wall plane
is automatically detected when the pedestrian enters the corridor. Thus, the estimated pedestrian
walking path is more accurate while walking along corridors.

Although Table 2 shows that the proposed method can work well with different walking styles,
the proposed algorithm could be affected by walking styles since the sensor is mounted on a shoe.
The walking style mainly affects the zero velocity detection used in the INA. This paper uses a simple
zero velocity algorithm (see Equation (11)) where its parameters (Ng, Na, Ng and Na) are chosen so
that the algorithm can detect ZVIs for most normal walking styles. These fixed parameters are used
during all experiments. To show the effect of this algorithm, another experiment is done for a subject
who was asked to walk 3.6 m in a straight line with different speeds. An optical marker and an
IMU were attached to his shoe. The IMU was used to detect zero velocity points using zero velocity
algorithm, and the marker is used to track the trajectory of the foot using a ground truth system
(Flex-13 OptiTrack system).

In Figures 13 and 14, the detected zero velocity points are represented in red “*” symbols and
the trajectory of a foot (by an optical tracker) is presented by the blue line. The algorithm can detect
ZVIs for three different speeds.

Figure 13. Trajectory of foot and detected zero velocity points.

Figure 14. z-position of foot and detected zero velocity points.



Sensors 2016, 16, 120 15 of 17

Although the algorithm can detect all occurences of ZVIs, the detected length of ZVI is shorter
than the true length of ZVI due to fixed parameters for all walking speeds. This is the drawback of
the simple zero velocity algorithm.

The experiment data in Table 2 are used to verify the robustness of zero velocity detection and
the result is shown in Table 4. As can be seen in Table 4, there is no missing ZVI detection with
walking speed up to 6 km/h. Thus, our algorithm can work well with different walking styles using
the fixed parameters. However, the last seven pieces of data, which were obtained by asking subjects
to walk as fast as possible, show the drawback of this algorithm. The algorithm with fixed parameters
can not detect ZVIs in very high speed walking. For example, there are 22 ZVIs, but the zero velocity
algorithm only successfully detects four of them in the last data.

The drawback can be solved by using adjustable parameters for zero velocity detection.
For example, the parameters will be adjusted based on the current velocity of the foot. The drawback
also can be solved by directly measuring ground touching intervals (for example, using force sensors).

Table 4. Zero velocity detection with different walking styles.

Stride Speed Walking Speed Stride Length Number Zero Velocity Missing Zero Velocity
(Stride/s) (km/h) (m) Interval (True) Detection

0.92 4.14 1.25 25 0
0.96 5.19 1.50 21 0
0.98 4.59 1.30 24 0
1.01 4.72 1.30 24 0
1.01 5.46 1.50 21 0
1.01 5.44 1.50 21 0
1.01 5.43 1.50 21 0
1.02 4.57 1.25 25 0
1.02 5.53 1.50 21 0
1.03 5.57 1.50 21 0
1.03 5.54 1.50 21 0
1.12 6.06 1.50 21 0
1.12 6.07 1.50 21 0
1.13 6.10 1.50 21 1
1.16 5.96 1.43 22 4
1.17 6.04 1.43 22 8
1.26 6.78 1.50 21 17
1.28 6.94 1.50 21 18
1.32 6.81 1.43 22 19
1.35 6.95 1.43 22 18

7. Conclusions

The proposed method uses vertical planes (such as walls) to improve heading and position
estimation accuracy. The vertical planes are constructed using a distance sensor.

The proposed method is verified through three experiments in a straight corridor, a U shaped
corridor and a complex walking path. Experiment results in Tables 1–3 show that the proposed
method gives a better RMS error compared with a pure INA. Furthermore, the zoomed area in
Figure 9 indicates that the proposed algorithm is working robustly even with many doors and
passing persons.

The paper also shows the drawbacks and solutions of using a simple zero velocity algorithm
through the experiment in discussion section.

Since there are many vertical walls indoors, the proposed algorithm can be used for almost
any indoor environments. Furthermore, the proposed system does not require any installation on
environment and any prior knowledge on environment.

As a future research topic, this paper can be improved by using two distance sensors which point
to different sides (left and right). By using two distance sensors, vertical planes (such as walls) in
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two sides of corridor will be recognized. This could improve our algorithm, especially when one side
loses tracking vertical plane due to obstacles or no wall.

Acknowledgments: This work was supported by National Research Foundation of Korea Grant funded by the
Korean Government (No. 2011-0021978).

Author Contributions: Young Soo Suh contributed to main algorithm design. Duy Duong Pham implemented
the algorithm in Matlab and did all the experiments. Both authors wrote the paper together.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, L.; Hu, H. IMU/GPS based pedestrian localization. In Proceedings of the 2012 4th Computer Science
and Electronic Engineering Conference, Colchester, UK, 12–13 September 2012; pp. 23–28.

2. Langer, M.; Kiesel, S.; Ascher, C.; Trommer, G. Deeply Coupled GPS/INS integration in pedestrian
navigation systems in weak signal conditions. In Proceedings of the 2012 International Conference on
Indoor Positioning and Indoor Navigation, Sydney, Australia, 13–15 November 2012; pp. 1–7.

3. Chen, G.; Meng, X.; Wang, Y.; Zhang, Y.; Tian, P.; Yang, H. Integrated WiFi/PDR/Smartphone Using an
Unscented Kalman Filter Algorithm for 3D Indoor Localization. Sensors 2015, 15, 24595–24614.

4. Deng, Z.A.; Wang, G.; Hu, Y.; Wu, D. Heading Estimation for Indoor Pedestrian Navigation Using a
Smartphone in the Pocket. Sensors 2015, 15, 21518–21536.

5. Jimenez, A.; Seco, F.; Prieto, J.; Guevara, J. Indoor pedestrian navigation using an INS/EKF framework
for yaw drift reduction and a foot-mounted IMU. In Proceedings of the 2010 7th Workshop on Positioning
Navigation and Communication, Dresden, Germany, 11–12 March 2010; pp. 135–143.

6. Renaudin, V.; Combettes, C. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-Based
Attitude Estimation with Smartphone Sensors for Indoor Pedestrian Navigation. Sensors 2014, 14,
22864–22890.

7. Placer, M.; Kovacic, S. Enhancing Indoor Inertial Pedestrian Navigation Using a Shoe-Worn Marker. Sensors
2013, 13, 9836–9859.

8. Jin, Y.; Motani, M.; Soh, W.S.; Zhang, J. SparseTrack: Enhancing Indoor Pedestrian Tracking with Sparse
Infrastructure Support. In Proceedings of the IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010;
pp. 1–9.

9. He, Z.; Renaudin, V.; Petovello, M.G.; Lachapelle, G. Use of High Sensitivity GNSS Receiver Doppler
Measurements for Indoor Pedestrian Dead Reckoning. Sensors 2013, 13, 4303–4326.

10. Broggi, A.; Cerri, P.; Ghidoni, S.; Grisleri, P.; Jung, H.G. A New Approach to Urban Pedestrian Detection
for Automatic Braking. IEEE Trans. Intell. Transp. Syst. 2009, 10, 594–605.

11. Baranski, P.; Strumillo, P. Enhancing Positioning Accuracy in Urban Terrain by Fusing Data from a GPS
Receiver, Inertial Sensors, Stereo-Camera and Digital Maps for Pedestrian Navigation. Sensors 2012, 12,
6764–6801.

12. Dickens, J.; van Wyk, M.; Green, J. Pedestrian detection for underground mine vehicles using thermal
images. In Proceedings of the AFRICON, Livingstone, South Africa, 13–15 September 2011; pp. 1–6.

13. Yuan, Y.; Chen, C.; Guan, X.; Yang, Q. An Energy-Efficient Underground Localization System Based on
Heterogeneous Wireless Networks. Sensors 2015, 15, 12358–12376.

14. Liu, Z.; Li, C.; Wu, D.; Dai, W.; Geng, S.; Ding, Q. A Wireless Sensor Network Based Personnel Positioning
Scheme in Coal Mines with Blind Areas. Sensors 2010, 10, 9891–9918.

15. Hightower, J.; Borriello, G. Location Systems for Ubiquitous Computing. Computer 2001, 34, 57–66.
16. Ruiz, A.; Granja, F.; Prieto Honorato, J.; Rosas, J. Accurate Pedestrian Indoor Navigation by Tightly

Coupling Foot-Mounted IMU and RFID Measurements. IEEE Trans. Instrum. Meas. 2012, 61, 178–189.
17. Amendolare, V.; Cyganski, D.; Duckworth, R.; Makarov, S.; Coyne, J.; Daempfling, H.; Woodacre, B. WPI

precision personnel locator system: Inertial navigation supplementation. In Proceedings of the IEEE/ION
Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2008; pp. 350–357.

18. Fischer, C.; Muthukrishnan, K.; Hazas, M.; Gellersen, H. Ultrasound-aided Pedestrian Dead Reckoning for
Indoor Navigation. In Proceedings of the 1st ACM International Workshop on Mobile Entity Localization
and Tracking in GPS-less Environments, San Francisco, CA, USA, 19 September 2008; pp. 31–36.



Sensors 2016, 16, 120 17 of 17

19. Zhou, C.; Downey, J.; Stancil, D.; Mukherjee, T. A Low-Power Shoe-Embedded Radar for Aiding Pedestrian
Inertial Navigation. IEEE Trans. Microw. Theory Tech. 2010, 58, 2521–2528.

20. Duong, P.D.; Suh, Y.S. Foot Pose Estimation Using an Inertial Sensor Unit and Two Distance Sensors.
Sensors 2015, 15, 15888–15902.

21. Xu, Z.; Wei, J.; Zhang, B.; Yang, W. A Robust Method to Detect Zero Velocity for Improved 3D Personal
Navigation Using Inertial Sensors. Sensors 2015, 15, 7708–7727.

22. STMicroelectronics. LIDAR (Light Detection and Ranging Module) Datasheet. Available online:
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/lidarlite2DS.pdf (accessed on 19 January 2016)

23. Nam, C.N.K.; Kang, H.J.; Suh, Y.S. Golf Swing Motion Tracking Using Inertial Sensors and a Stereo Camera.
IEEE Trans. Instrum. Meas. 2014, 63, 943–952.

24. Titterton, D.H.; Weston, J.L. Strapdown Inertial Navigation Technology; Peter Peregrinus Ltd.: London,
UK, 1997.

25. Kuipers, J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual
Reality; Princeton University Press: Princeton, NJ, USA, 1999.

26. Savage, P.G. Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithms.
J. Guid. Control Dyn. 1998, 21, 19–28.

27. Markley, F.L. Multiplicative vs. Additive Filtering for Spacecraft Attitude Determination. In Proceedings of
the 6th Cranfield Conference on Dynamics and Control of Systems and Structures in Space, Riomaggiore,
Italy, 18–22 July 2004; pp. 467–474.

28. Suh, Y.S.; Park, S. Pedestrian Inertial Navigation with Gait Phase Detection Assisted Zero Velocity
Updating. In Proceedings of the 4th International Conference on Autonomous Robots and Agents,
Wellington, New Zealand, 10–12 February 2009; pp. 336–341.

29. Hawkinson, W.; Samanant, P.; McCroskey, R.; Ingvalson, R.; Kulkarni, A.; Haas, L.; English, B. GLANSER:
Geospatial Location, Accountability, and Navigation System For Emergency Responders. In Proceedings
of the Position Location and Navigation Symposium, Myrtle Beach, SC, 24–26 April 2012; pp. 98–105.

30. Park, S.K.; Suh, Y.S. A Zero Velocity Detection Algorithm Using Inertial Sensors for Pedestrian Navigation
Systems. Sensors 2010, 10, 9163–9178.

31. Skog, I.; Nilsson, J.O.; Handel, P. Evaluation of zero-velocity detectors for foot-mounted inertial navigation
systems. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation,
Zurich, Switzerland, 15–17 September 2010; pp. 1–6.

32. Markley, F.L.; Crassidis, J.L. Fundamentals of Spacecraft Attitude Determination and Control; Springer:
New York, NY, USA, 2014.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Overview System
	Distance Sensor Calibration
	Kalman Filter Combining an INA and Compensation Using LIDAR
	Basic INA
	Proposed Position and Heading Updating Algorithm Using the Distance Sensor 

	Experiments and Results
	Discussion
	Conclusions

