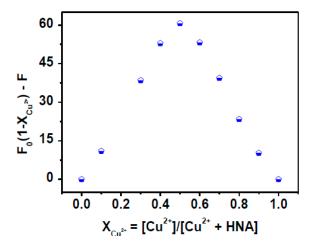
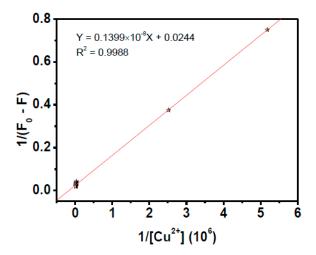
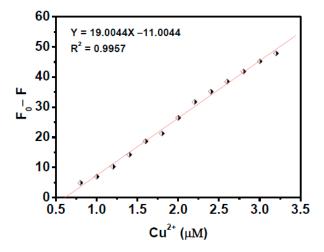
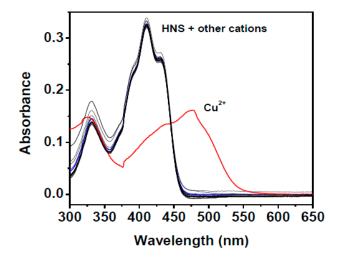
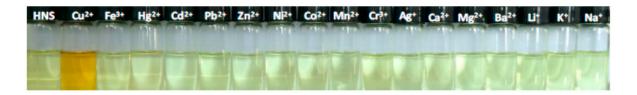

Supplementary Materials: Synthesis and Application of an Aldazine-Based Fluorescence Chemosensor for the Sequential Detection of Cu²⁺ and Biological Thiols in Aqueous Solution and Living Cells

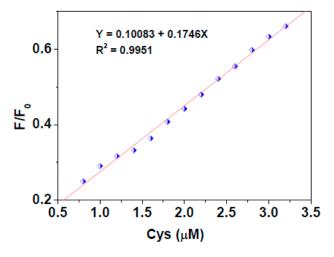

Hongmin Jia ¹, Ming Yang ¹, Qingtao Meng ^{1,*}, Guangjie He ², Yue Wang ¹, Zhizhi Hu ¹, Run Zhang ³ and Zhiqiang Zhang ^{1,*}

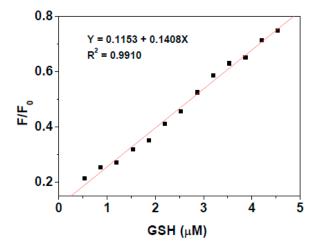

Figure S1. Fluorescence intensity of **HNA** (10 μ M) at different time in DMF-HEPES buffer (20 mM, pH = 7.4, 3:7 v/v). The intensities were recorded at 513 nm, excitation at 411 nm.

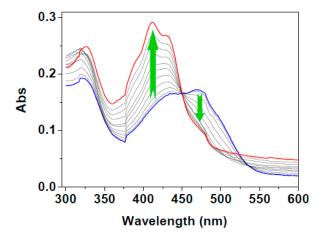

Figure S2. Variations of fluorescence intensity of **HNA** (10 μ M) at 513 nm in aqueous solution with (bottom) and without (up) Cu²⁺ (0–20 μ M) as a function of pH. Excitation at 411 nm.

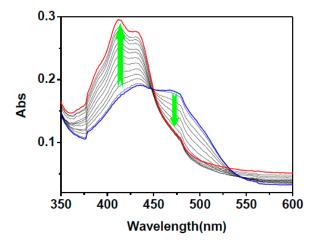

Figure S3. Job's plots according to the method for continuous variations. The total concentration of **HNA** and Cu^{2+} is 10 μ M. The intensities were recorded at 513 nm, excitation at 411 nm.

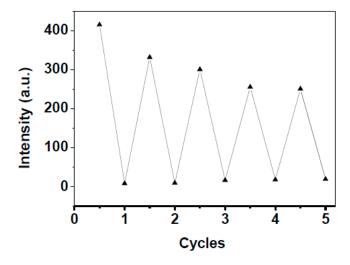

Figure S4. Benesi-Hildebrand plot of **HNA** (10 μ M) based on 1:1 binding stoichiometry with Cu²⁺ ions. The intensities were recorded at 513 nm, excitation at 411 nm.


Figure S5. Linear relationship between fluorescence intensity of **HNA** (1 μ M) at 513 nm *versus* the concentration of Cu²⁺ (0-3.5 μ M) in DMF-HEPES buffer (20 mM, pH = 7.4, 3:7 v/v). Excitation was performed at 411 nm.


Figure S6. Absorption spectra of **HNA** (10 μ M) in DMF-HEPES buffer (20 mM, pH = 7.4, 3:7 v/v) upon addition of various metal ions (30 μ M).


Figure S7. The colour changes of **HNA** (10 μ M) in DMF-HEPES buffer (20 mM, pH = 7.4, 3:7 v/v) upon addition of various metal ions (30 μ M).


Figure S8. The linear fluorescence responses of **HNA-**Cu²⁺(3 μ M) *versus* low concentration Cys (0–3.3 μ M) at 513 nm. Excitation was performed at 411 nm.


Figure S9. The linear fluorescence responses of **HNA**-Cu²⁺ (3 μ M) *versus* low concentration GSH (0–4.6 μ M) at 513 nm. Excitation was performed at 411 nm.

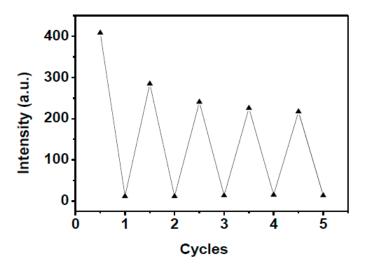

Figure S10. UV-Vis absorption spectra of **HNA**-Cu²⁺(10 μ M) in the presence of increasing amount of GSH (40 μ M) in DMF-HEPES buffer (20 mM, pH = 7.4, 3:7 v/v).

Figure S11. UV-Vis absorption spectra of **HNA**-Cu²⁺(10 μ M) in the presence of increasing amount of Cys (40 μ M) in DMF-HEPES buffer (20 mM, pH = 7.4, 3:7 v/v).

Figure S12. Fluorescence intensity of **HNA**-Cu²⁺ (10 μ M) at 513 nm in DMF-HEPES buffer (20 mM, pH = 7.4, 3:7 v/v) upon the alternate addition of Cys/Cu²⁺ with several concentrations ratio (0:0, 20:0, 20:40, 80:40, 80:160, 160:160, 160:320, 320:320, 320:640, 640:640 μ M, respectively). Excitation at 411 nm.

Figure S13. Fluorescence intensity of **HNA**- Cu^{2+} (10 μ M) at 513 nm in DMF-HEPES buffer (20 mM, pH = 7.4, 3:7 v/v) upon the alternate addition of GSH/ Cu^{2+} with several concentrations ratio (0:0, 20:0, 20:40, 80:40, 80:160, 160:160, 160:320, 320:320, 320:640, 640:640 μ M, respectively). Excitation at 411 nm.

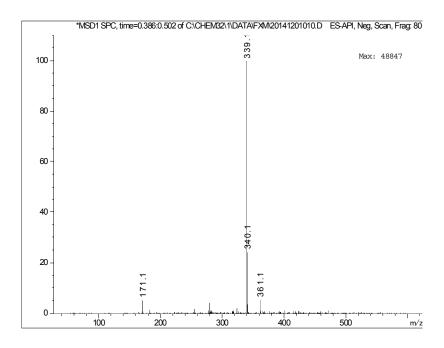
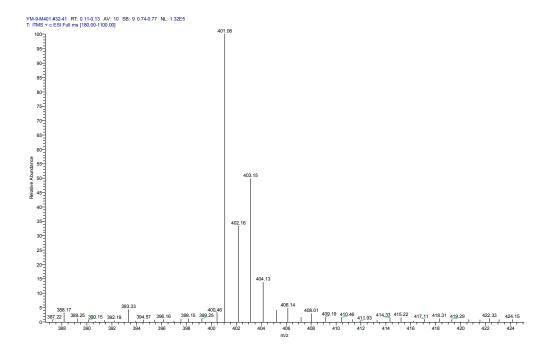
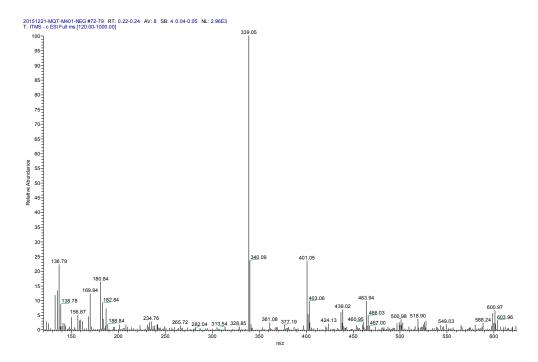




Figure S14. ESI-mass spectra of HNA.

Figure S15. ESI-mass spectra of HNA- Cu^{2+} ensemble.

Figure S16. ESI-mass spectra of **HNA**-Cu²⁺ ensemble in the presence of Hcy.