Supplementary Materials: ESIPT-Based Photoactivatable Fluoroscent Probe for Ratiometric Spatiotemporal Bioimaging

Xiaohong Zhou, Yuren Jiang, Xiongjie Zhao and Dong Guo

Calculated the Quantum Yields

The quantum yield of PHBT and HBT under DMSO/H₂O = 1:99 (v/v)solution (pH 7.4) were calculated by employing rhodamine B (Φ_R = 0.95 in ethanol) as a reference using the following equation: ($\Phi_F = I/I_R \times (n/n_R)^2 \times A_R/A \times \Phi_R$, where Φ_F is the quantum yield, I is the integrated area under the fluorescence spectra, A is the absorbance, n is the refractive index of the solvent and R refers to the reference fluorophore rhodamine B.

Synthesis of Probes

Figure S1. Synthetic route for the Photoactivatable fluorescent probe PHBT. (**a**) R: H₂O₂ (30%), R: (NH₄)₂Ce(NO₃)₆, S: MeCN, 30 min, room temperature; (**b**) R: K₂CO₃, S: MeCN, 24 h, 70 °C.

(a) Synthesis of HBT¹

In a round-bottomed flask (50 mL) equipped with a magnetic stirrer, a solution of 1,2phenylenediamine (125 mg, 1 mmol), salicylic aldehyde (122 mg, 1 mmol) in MeCN (3 mL) was prepared. H₂O₂ (30%, 0.4 mL, 4 mmol,) and (NH₄)₂Ce(NO₂)₆ (54.8 mg, 0.1 mmol) were added, and the mixture was stirred at room temperature for 30 min. Then, the reaction mixture was quenched by adding water (10 mL), extracted with ethyl acetate (4 × 10 mL) and dried with anhydrous MgSO₄. The filtrate was evaporated and the only product HBT (204 mg, 0.9 mmol) was obtained.

(b) Synthesis of PHBT²

A 227 mg (1 mmol) sample of 2-(2-hydroxyphenyl)benzothiazole was added to a 50 mL flask with a reflux condenser. At the same time, 216 mg 2-nitrobenzyl bromide (1 mmol), 276 mg (2 mmol) K₂CO₃ and 10 mL of acetonitrile were added, and the mixture was stirred at 70 °C overnight under protection from light. Then, the mixture was filtered and the solvent was evaporated by rotary vacuum, followed by fast column chromatography (petroleum ether/ethyl acetate = 5/1, v/v) to obtain 308 mg (0.85 mmol) PHBT.

Figure S2. ¹H-NMR of PHBT in DMSO-*d*₆.

Figure S4. ESI-MS spectra of PHBT.

Figure S5. (a) Cytotoxicity of PHBT and HBT ($0 \sim 10 \mu$ M) against MDA-MB-231 cells, as determined by the MTT assay; (b) cytotoxicity of PHBT (10μ M) after UV irradiation at 365 nm ($0 \sim 30$ min) against MDA-MB-231 cells, as determined by the MTT assay.

Figure S6. HPLC spectra of PHBT (10 μ M, **blue** line), HBT (10 μ M, **red** line) and PHBT (10 μ M, **black** line) after irradiation by UV light at 365 nm for 30 min in PBS-buffer (DMSO 1%) at pH 7.4.

Figure S7. Absorption spectra of PHBT (10 μM) (**red** line) and PHBT (10 μM) (**black** line) after irradiation by UV light at 365 nm for 30 min in PBS-buffer (DMSO 1%) at pH 7.4.

Figure S8. Fluorescence response of probe PHBT (10 μ M) to some biologically relevant species (100 μ M): K⁺; Na⁺; Ca²⁺; ClO⁻; H₂O₂; vitamin C and cysteine after UV radiation for 30 min.

Figure S9. Effect of pH on the fluorescence intensity of probe PHBT (10 μ M) after UV radiation for 30 min in buffer (pH 2.0–10.0, 10 mM), the pH values were adjusted by an aqueous solution of NaOH (aq, 1 mM) or HCl (aq, 1 mM), with excitation λ = 365 nm.

References

- 1. Bahrami, K.; Khodaei, M.M.; Naali, F. ChemInform Abstract: Mild and Highly Efficient Method for the Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. *J. Org. Chem.* **2008**, *73*, 6835–6837.
- Carvalho, J.F.S.; Louvel, J.; Doornbos, M.L.J.; Klaasse, E.; Yu, Z.Y.; Brussee, J.; Ijzerman, A.P. Strategies to reduce HERG K+ channel blockade. Exploring heteroaromaticity and rigidity in novel pyridine analogues of dofetilide. *J. Med. Chem.* 2013, *56*, 2828-2840.