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Abstract: With increasing technical requirements in the design of microresonators, the development
of new techniques for lightweight, simple, and inexpensive components becomes relevant. Lead
zirconate titanate (PZT) is a powerful tool in the formation of these components, allowing a
self-actuation or self-sensing capability. Different fabrication methods lead to the variation of the
properties of the device itself. This research paper covers the fabrication of a novel PZT film and
the investigations of its chemical, surface, and dynamic properties when film thickness is varied.
A screen-printing technique was used for the formation of smooth films of 60 um, 68 um, and 25 pm
thickness. A custom-made poling technique was applied to enhance the piezoelectric properties of
the designed films. However, poling did not change any compositional or surface characteristics of
the films; changes were only seen in the electrical ones. The results showed that a thinner poled PZT
film having a chemical composition with the highest amount of copper and zirconium led to better
electrical characteristics (generated voltage of 3.5 mV).
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1. Introduction

Today, piezoelectric materials are a very attractive method for the design of various
micro-electro-mechanical systems (MEMS) and micro-opto-electro-mechanical systems (MOEMS).
The importance of the piezoelectric effect in the micro dimension is imperative: it enables sensing and
actuation performance, transforms strain into an electric current (and vice versa), and converts an
electric field into strain [1,2].

Microresonators are devices where a piezoelectric coating plays the most important role in the
design and operation of the element itself. In recent years, scientific researchers have concentrated
on the fabrication and improvement of microresonators in different levels of components: design,
electronic, mechanical, and control. A number of different types of microresonators are designed
for different purposes: ceramic [3,4], acoustic [5-7], optical [8], pressure sensors [9], etc. Up-to-date
technologies allow the attainment of a precise and sensitive design with a good signal-to-noise
ratio (SNR) [10], a wide frequency range, a simplified digital interface, etc. However, the basic
problem of these novel microresonators is the variation of their cross-section, leading to a complicated
assessment of the resonant frequency and their high sensitivity to surface processes (e.g., a large surface
area-to-mass ratio). The usage of piezoelectric materials in the design of microresonators requires a
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low driving voltage and enables self-sensing and self-actuation. It may be designed into a compact
structure and easily integrated in any electronic circuit.

In this study, working with a cantilever-type structure allows the characterization of the properties
of piezoelectric material coatings correctly—i.e., by analyzing resonance frequency shifts and dynamic
responses. Characterization at low frequencies is more effective because of the appearance of large
amplitude oscillation and due to potential nonlinear behavior.

Different methods of fabricating piezoelectric materials [11-13] lead to the variation of the
properties of the device itself. This research article has utilized novel piezoelectric films integrated
in the design of a microresonator. The elements designed in this study consist of copper foil, a layer
of novel piezoelectric material (a sol-gel lead zirconate titanate, PZT), and a segment top of a copper
electrode layer. Six kinds of cantilever-type microresonators were designed, each with a different
thickness of a piezoelectric coating; three of them were poled, and the rest were not. However, poling
did not make any change to surface and chemical composition, except for the piezoelectric properties.
Therefore, the main data in this paper are given for poled elements, except the results of a dynamic
response. The influence of the variation of piezoelectric coating thickness on the properties of a
microresonator was examined. The selection of the correct geometrical configuration of the device
enables researchers to design a microresonator working at a defined frequency range and having
a high Q factor. The variation of the thickness of a piezoelectric coating allows parameters to be
controlled according to the designed system requirements. This technique of cross-section variation is
one of the effective methods to determine microresonators’ fundamental resonant frequency. The main
advantages of the novel designed resonators are: a simple and compact structure, a low driving
voltage, and low-cost fabrication process and materials.

2. Materials and Methods

2.1. Synthesis and Formation of PZT Coating

An oxalic acid /water-based synthesis of nano powders of lead zirconate titanate [Pb (Zrx, Ti;_x) O3]
with x = 0.52—also known as PZT (52/48)—was used. The precursors of PZT (52/48) solution were
lead (IT) acetate [Pb(NO3),], titanium butoxide [Ti(C4HyO)4], and zirconium butoxide [Zr(OC4Hg)4]-
The other reagents used were oxalic acid, deionized water, acetic acid, and ammonia solution. Lead (II)
acetate [Pb(NO3),] (8.26 g) was poured into 100 mL of water. Then, acetic acid was added, and the
solution was heated to 50 °C and mixed to dissolve. Thirty-two grams of oxalic acid was dissolved
in 500 mL of water, then stirred with the titanium butoxide (5.1 g) and zirconium butoxide (7.65 g)
at a concentration of 80%. Afterwards, the lead acetate solution was added to the titanium butoxide
and zirconium butoxide solution. The final solution was alkalized with 25% ammonia solution to
pH 9-10 and mixed for an hour. The precipitate of the solution was filtered in vacuum, and was
washed with water and acetone during filtering. After filtering, the material was dried at 100 °C for
12 h. The powder was heated at 1000 °C for 9 h. Finally, PZT powder was milled and mixed with 20%
solution of polyvinyl butyral in benzyl alcohol mixed under defined conditions: 80% of PZT and 20%
of binding material. Finally, the paste was coated on a copper foil using a screen printing technique.

Three different types of polyester monofilament screen mesh were used in this research paper:
32/70,48/70, 140/34. The coating was then dried in the furnace for 30 min at 100 °C. Different size
screen mesh was chosen to control the thickness of the PZT coating. Thus, three coatings of different
thickness were formed and investigated: element 1 with a PZT coating of 68 um thickness, element 2
with 60 um thickness, and element 3 with 25 um thickness (see Table 1).
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Table 1. Properties of screen mesh and layer thickness.

Meshed Mesh Opening, Thread, = Open Area, Mesh Theoretical Ink Formed PZT Layer
Screen Type um um % Thickness, pum Volume, cm3/m? Thickness, um
32/70 245 70 60.5 108 65 68+ 1
48/70 130 70 423 107 46 60+ 1
140/34 30 34 22 52 11 25+1

2.2. Analytical Methods for the Evaluation of PZT Coating Properties

2.2.1. Electrical Pole Alignment of the Coating

Before measuring the generated voltage, an electrical pole alignment was applied on a PZT
coating of the microresonators. It was accomplished with a high voltage generator and a custom-made
holder, shown in Figure 1. An element with a PZT coating was placed in the special holder between
positive and negative poles. The high voltage generator was set at 5 kV current and held for 30 min.
The poling technique aligns a positive pole on one side of the PZT coating and a negative pole on the
other side. This process improves voltage characteristics of a piezoelectric coating.

Figure 1. Pole alignment set.

2.2.2. Structural and Chemical Composition Measurements

The structure and chemical composition of the designed material was investigated using scanning
electron microscope (SEM) Quanta 200 FEG, also integrated with the energy dispersive X-ray
spectrometer (EDS) detector X-Flash 4030 from Bruker. Samples were examined under the atmosphere
of a water steam of controlled pressure. A 133 eV (at Mn K) energy resolution at 100,000 cps was
achieved with a 30 mm? area solid state drift detector, cooled with a Peltier element. The X-ray
spectroscopy method allows for the analysis of energy distributions. The energy differences were
measured between various quantum states of the system, together with the probabilities that the
system jumps between these states.

Fourier transform infrared spectroscopy (FTIR, SPECTRUM GX 2000 RAMAN, PerkinElmer,
Waltham, MA, USA) was used for the investigation of changes in chemical composition when the
coating was poled and not poled. The diapason of FTIR spectrum was 10,000-200 cm™!. This technique
enabled the researchers to identify changes in chemical compounds of the elements.

For qualitative and quantitative analysis of chemical compounds, an X-ray diffractometer D8
Discover (Bruker, Billerica, MA, USA) was used. The atomic and molecular structure of the designed
PZT was identified.
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2.2.3. Evaluation of Surface Morphology

The investigations of surface morphology were performed with an atomic force microscope
NT-206 in contact mode. Atomic force microscopy is a surface analytical technique used to generate
very high-resolution topographic images of surfaces down to molecular/atomic resolution, the sample
being deposited on a flat surface being the only requirement. Depending on the sharpness of the tip,
it gives spatial resolutions of 1-20 nm. It can record topographic images in addition to providing some
information on nanoscale chemical, mechanical (modulus, stiffness, viscoelastic, frictional), electrical,
and magnetic properties when using specialized modes. Morphology parameters are as follows: Zean,
average height; R,, arithmetic average surface roughness; R;, root mean squared surface roughness.

2.2.4. Dynamic Investigations of PZT Coatings

The experimental setup of this investigation consisted of a piezoelectric energy harvester (PVEH)
applying single hits, excitation, and measurement systems and data acquisition. The data acquisition
system consisted of a four-channel USB oscilloscope (analog-to-digital converter) PicoScope 6000 series
(Pico, Cambridgeshire, UK) (Figure 2) that collects signals from the accelerometer and PVEH. Signals
from the oscilloscope are forwarded to the computer and managed with PicoScope 6000 software.
The system is based on a mathematical pendulum (Figure 2).

Figure 2. Experimental setup consisting of: (1) a mathematical pendulum; (2) a LK-G82 sensor head;
(3) an investigated element; (4) PicoScope oscilloscope; (5) LK-G3001PV control block; and (6) a power
supply block.

The experimental system was designed as a mathematical pendulum, which provides a single
impulse to the clamped element when indicated. The response of vibrations was sensed with an
accuracy of 0.2 um using a LK-G3000 series laser triangular displacement sensor (sensor head LK-G82,
control block LK-G3001PV) (Keyence, IL, USA), and the measured data was collected with a PicoScope
data acquisition system (with data reading velocity 5 Gs/s).

3. Results

3.1. Structure and Chemical Composition

A dispersive X-ray spectrometer was used here for energy distribution analysis.
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Figure 3 shows the XRD pattern of PZT powder after the final calcination process. PZT ceramics
crystallize in a tetragonal structure (a = b = 4.006 A, c = 4.128 A, x = p =y = 90 deg.) with space group
P 4 mm (noncentrosymmetric) and the (001),(100),(101),(110),(111),(002),(200),(102),(210),
(112),(211),(202),(220),(103),and (3 20) crystallographic plane orientations, corresponding to
values reported in [14,15]. The XRD pattern of PZT powder corresponds to Pb(Zr 5, Tip 48)O3 with R
factor of 0.31.
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Figure 3. X-ray diffraction (XRD) pattern of lead zirconate titanate (PZT) powder after the final
calcination process.

Fourier transform infrared spectroscopy FTIR analysis of a non-poled and poled PZT coating
applied using different screen-printing meshes was carried out. There was no significant influence of
poling and thickness upon the spectrum of PZT; therefore, the typical FTIR absorbance spectrum at
4000-500 cm™ of the PZT coating is presented in Figure 4.
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Figure 4. Fourier transform infrared spectroscopy (FTIR) absorbance spectra with functional groups of
PZT coating.

In the FTIR spectra, strong and broad absorption peaks were observed at 3490 cm™ (O-H stretch),
2969 cm™! (C—H stretch), 2878 cm™! (C—H stretch), 1723 cm™ (C=O stretch), 1627 cm™! (C=C stretch),
1435 cm™! (CH2 bend), 1385 cm™ (CH3 bend), 1273 cm™! (C-O-C stretch), 1162 cm™! (C-O-C stretch),
and 1010 cm™ (C-O stretch). The entire array of these peaks corresponds to the FTIR absorbance
spectra of polyvinyl butyral (PVB) [15]. A wide and strong peak observed in the range of 800-550 cm™
corresponds to the M—O-M bonds (M is metal) of PZT (e.g., Ti-O, Ti-O-Ti, Zr-O, and Zr-O-Zr) [16].

The structure and chemical composition of the designed PZT material was investigated using a
Quanta 200 FEG scanning electron microscope (Hillsboro, OR, USA) integrated with the X-Flash 4030
energy dispersive X-ray spectrometer detector from Bruker (Berlin, Germany). Three elements, 1, 2,
and 3 (poled, with different thicknesses) were examined under the atmosphere of a water steam of
controlled pressure. A 133 eV (Mn-Ka) energy resolution at 100,000 cps was achieved with a 30 mm?
area solid state drift detector, cooled with a Peltier element. The energy differences were measured
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between various quantum states of the system together with the probabilities that the system jumps
between these states. The obtained results clearly show that PZT is dominant in the composition of all

three elements (Figure 5).
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Figure 5. Energy dispersive spectrum of: (a) Element 1 (mesh 32/70); (b) Element 2 (mesh 48/70);
(c) Element 3 (mesh 140/34).

The comparison of EDS samples with different layers shows that there are no significant
differences in the locations of peaks. Comparing EDS patterns of layers of different thickness,
it is observed that the intensities of peaks for PZT elements (Pb, Ti, Zr) increased for a thinner layer;
i.e., a thinner layer has a greater concentration of PZT, which provides better piezoelectric properties.

SEM micrographs of the investigated elements are given in Figure 6. Results show that element 1
has small granular grains on the surface of a diameter ~1.1 pm. Element 2 has a smoother surface, with
fewer grains of a diameter ~0.9 um. Element 3 has three-dimensional structures with empty cavities of

a 6-8 um diameter.

(@) (b) (©

Figure 6. SEM views of samples: (a) Element 1 (mesh 32/70); (b) Element 2 (mesh 48/70); (c) Element 3
(mesh 140/34).
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Full composition of the elements was defined in Figure 7. The main elements in the composition
are Carbon (C) and Zirconium (Zr); both are very good conductors defining good piezoelectric
properties of designed novel coatings.
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Figure 7. Elemental mapping done with SEM of the (a) Element 1 (mesh 32/70); (b) Element 2
(mesh 48/70); (c) Element 3 (mesh 140/34).

3.2. Surface Morphology

Atomic force microscopy was used to evaluate the surface morphology of the designed elements.
3D views show that element 1 has a rather smooth surface, with roughness Rq = 29 nm (Figure 8a).
Elements 2 and 3 have rough surfaces with roughness Rq = 189 nm and Rq = 149 nm, respectively
(Figure 8b,c). Using a different screen-printing mesh allows controlling not only thickness but also
surface morphology of the element (Table 2).

@) (b) (c)

Figure 8. Atomic force microscopy (AFM) 3D view of: (a) Element 1 (mesh 32/70); (b) Element 2
(mesh 48/70); (c) Element 3 (mesh 140/34).

Table 2. AFM values of the surface morphology.

Element Mesh Znean, NIM R,;, nm Ry, nm
1 32/70 54 21+1 29+1
2 48/70 396 156 + 0.5 189 + 0.5

3 140/34 457 112+ 05 149+ 0.5
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3.3. Energy Harvesting of the Elements

Elements (poled and not poled) were investigated with PVEH based on direct and indirect
piezoelectric effects. Results showed that no signals were received when indirect piezoelectric was
applied; i.e., there were no significant vibrations under various frequencies and different bias for both
poled and not poled elements. However, the investigations based on the direct piezoelectric effect
showed remarkable results; i.e., under impulse force of 5 N amplitude applied on the poled element,
it generated from ~1.4 mV to ~3.5 mV (Figure 9). Poled element 3—the one with the thinnest PZT
layer—generated the highest voltage of 3.6 mV (Figure 9c). It was easy to detect the difference between
poled and not poled elements—i.e., around 61% less of a generated voltage.
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Figure 9. Generated voltage diagram of (a) Element 1 (—poled, === not poled); (b) Element 2 (—poled,
=as not poled); (c) Element 3 (—poled, sus not poled).

During poling, the material is subjected to a very high electric field that orients all the dipoles
in the direction of the field. Upon switching off the electric field, most dipoles do not return to their
original orientation as a result of the pinning effect produced by microscopic defects in the crystalline
lattice. This gives a material comprising numerous microscopic dipoles that are roughly oriented in
the same direction.

The novelty is in the designed material PZT; i.e., the obtained material is not classic PZT,
with wider application areas. The designed microresonator may be operated in a system with an
indicated resonant frequency by varying dimensions of the microresonator’s layers and its geometrical
parameters. The aim of this research was to create a novel microresonator with controllable parameters
that could assure much higher functionality of MEMS. Creation of this novel element will allow it to
integrate in various MEMS systems: high stability electric oscillation sources (as generators), electric
filters, in energy harvesting, sensors for testing proteins, viruses, chemical species, etc.

4. Conclusions

The main elements in the PZT film composition were Carbon (C) and Zirconium (Zr)—both are
very good conductors defining good piezoelectric properties.

No significant differences in chemical composition and surface morphology were determined
when elements were poled and not, except for the dynamic response.

Results showed that under the impulse force of 5 N amplitude applied on the poled element,
it generated from ~1.4 mV to ~3.5 mV; i.e., the thinner the PZT layer, the more power it generates
when affected mechanically.

The poled element generated around 61% more power compared to the one which was not poled.

Using determined dimensions of the microresonator’s layers with its geometrical parameters
allows the microresonator to be operated at a resonant frequency suitable for a particular application.
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