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Abstract: A novel approach for estimating the instantaneous velocity of the pelvis during walking was
developed based on Inertial Measurement Units (IMUs). The instantaneous velocity was modeled
by the sum of a cyclical component, decomposed in the Medio-Lateral (ML), VerTical (VT) and
Antero-Posterior (AP) directions, and the Average Progression Velocity (APV) over each gait cycle.
The proposed method required the availability of two IMUs, attached to the pelvis and one shank. Gait
cycles were identified from the shank angular velocity; for each cycle, the Fourier series coefficients
of the pelvis and shank acceleration signals were computed. The cyclical component was estimated
by Fourier-based time-integration of the pelvis acceleration. A Bayesian Linear Regression (BLR)
with Automatic Relevance Determination (ARD) predicted the APV from the stride time, the stance
duration, and the Fourier series coefficients of the shank acceleration. Healthy subjects performed
tasks of Treadmill Walking (TW) and Overground Walking (OW), and an optical motion capture
system (OMCS) was used as reference for algorithm performance assessment. The widths of the
limits of agreements (±1.96 standard deviation) were computed between the proposed method and
the reference OMCS, yielding, for the cyclical component in the different directions: ML: ±0.07 m/s
(±0.10 m/s); VT: ±0.03 m/s (±0.05 m/s); AP: ±0.06 m/s (±0.10 m/s), in TW (OW) conditions. The
ARD-BLR achieved an APV root mean square error of 0.06 m/s (0.07 m/s) in the same conditions.

Keywords: body center of mass; walking speed; inertial measurement unit; Fourier harmonic analysis;
Bayesian methods; regression

1. Introduction

An important goal of locomotion is the displacement of the Body Center of Mass (BCOM), whose
location in humans is somewhere within the pelvis. During walking, the pelvis moves in the three
dimensional (3D) space, showing, relative to the mean forward velocity, speed fluctuations in the
direction of progression [1].

One approach to investigate the behavior of the BCOM during gait consists of attaching a marker
to the sacrum bone and tracking its motion using an Optical Motion Capture System (OMCS)—the
sacral marker method [2]. In spite of being less accurate, this method is appealing for the ease of
implementation, as compared with other approaches, such as the segmental analysis and the force
plate methods [3]. However, a feature common to all these methods is that their application is restricted
to gait labs [4]. Additionally, unless a treadmill is used to reproduce walkway conditions, the capture
of a large sample of consecutive gait cycles is precluded [4]. Unobtrusive approaches to estimating the
BCOM motion are thus needed, e.g., in the ambulatory assessment of external work during gait [5,6].

In this paper, we report and evaluate a novel inertial sensor-based algorithm that estimates the
instantaneous velocity of an Inertial Measurement Unit (IMU) attached to the pelvis (pelvis IMU)
during gait. For cyclical motions such as bipedal locomotion, the instantaneous velocity can be modeled
by the sum of the 3D cyclical component of velocity and the velocity of forward motion averaged
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over each cycle, henceforth called the Average Progression Velocity (APV) [7,8]. It is commonplace
to estimate the 3D cyclical component of velocity by numerical single time-integration of the linear
acceleration, followed by high-pass filtering [8,9]. Recently, a Fourier-based method was proposed
for analytical double time-integration of the linear acceleration of points on the human body moving
cyclically [10]; this method, for which implementation one pelvis IMU and an additional IMU attached
to one shank (shank IMU) were suggested, performed better than existing methods as for the closeness
of agreement between the 3D displacements estimated by the pelvis IMU and the OMCS reference.
In this paper, the Fourier-based approach to analytical integration was applied and validated for
estimating the 3D cyclical component of pelvis velocity.

As for the APV estimation, available inertial sensors-based algorithms can be grouped in three
main categories: human-gait model, direct integration, and abstraction model [11]. Human-gait model
algorithms estimate walking speed using predefined human gait models that estimate the stride length
essentially from the BCOM vertical displacement [12,13]. These algorithms require subject-specific
model building and calibration (personalization); moreover, they tend to lack robustness, since stride
length depends on features of the lower limb kinematics that cannot be captured by a human-gait model
without additional measurements (e.g., the shank/thigh angle [12]). Direct integration algorithms
perform the strap-down integration of the linear acceleration of the anatomical point of interest
from null initial conditions of velocity, using kinematics constraints of walking in their formulation
(i.e., zero-velocity update) [14,15]. These algorithms do not require personalization, and are generally
accurate; however, they are restricted in the IMU positioning to feet or shanks for accurate detection
of the zero-velocity conditions; IMU positioning to the pelvis was only proposed in [16]. Abstraction
model algorithms use training via machine learning algorithms [17–20]. Although off-line training
can be time consuming and would require a dense set of examples, yet they are fast and suited for
real-time implementation [19,20]. These algorithms may suffer from limited generalization capabilities,
although, in contrast with human-gait model algorithms, personalization is not mandatory; moreover,
they are very flexible, in terms of sensor type and placement site [19].

Direct integration and abstraction model methods can perform equally well when compared with
the same ground-truth data, at least in conditions of normal level walking and for an IMU positioning
to feet [17]. The large variety of signals that can potentially be used as inputs to an abstraction model is
the key asset of abstraction model methods, for the considerable freedom they give as for the choice of
the IMU location. In principle, they can be applied to learn the kinematics of any point on the human
body, provided that suitable reference data are available for learning [19].

In this paper we develop an abstraction model algorithm, based on the Bayesian Linear Regression
(BLR) with Automatic Relevance Determination (ARD) [21,22]; the approach is to learn the underlying
relationship between feature vectors from the shank IMU signals and the pelvis APV, without using
the kinematics equation of motion, that may lead to drifted velocity estimates. Bayesian approaches to
regression allow to handle conveniently problems of data over-fitting and model selection; in particular,
the ARD-BLR comes with a built-in mechanism of feature selection, which enables the removal of
irrelevant feature variables from the input space. Computational efficiency of training is another
advantage of the ARD-BLR in our proposed application, as compared with other Bayesian methods,
e.g., the Gaussian Process Regression [22,23].

In our approach, the feature vectors include, among other variables, the Fourier series coefficients
computed from the shank IMU signals at each gait cycle; the feature vectors are mapped to the APV
of that cycle (target) without requiring any kinematics constraint of walking. The Fourier series
coefficients from the shank IMU are computed using the same method used to process the pelvis
acceleration. The Fourier-based approach is then used to efficiently implement two different tasks
(time integration and regression) and is applied to data from individual gait cycles, thus requiring a
gait segmentation phases algorithm. In this paper, a Hidden Markov Model (HMM) is used to perform
gait phases segmentation from the measured angular velocity of the shank. The HMM is capable of
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detecting the underlying periodicity of gait data and performs data-driven windowing without loss of
time resolution [17].

2. Materials and Methods

2.1. Datasets

In this paper, we revisited two datasets available from our previous research. The Treadmill
Walking (TW) dataset collects IMU and OMCS data from healthy subjects that performed trials of
treadmill walking at preset speeds [10] (Table 1). The Overground Walking (OW) dataset collects IMU
and OMCS data from healthy subjects that walked along a “figure-of-eight” pathway at their preferred
speed [24] (Table 2).

Table 1. Setup and experimental protocol for the TW dataset [10].

IMU

WIMU (proprietary wireless battery-operated device)

• gyroscope (InvenSense ITG-3200, full range: ±2000◦/s)
• accelerometer(Bosch BMA180, full range: ±4 g)
• magnetic sensor * (Honeywell HMC5843)
• barometric altimeter * (Bosch BMP085)

OMCS five-camera system (Bonita B10, Oxford, UK)

sampling frequencies IMU: 100 Hz
OMCS: 100 Hz

subjects P = 12 (6 male and 6 female), with age: 29.8 ± 7.8 years

task

• 2-min walking trials for each participant
• five trials, each at different speeds, from 3 to 7 km/h at steps of 1 km/h
• familiarization with treadmill walking allowed
• rest period of 5 s with the participants standing still in their upright

posture before the start of each trial
* Although available, data from these sensors were not used in this paper.

Table 2. Setup and experimental protocol for the OW dataset [24].

IMU

OPAL (Opal, APDM Inc., Portland, OR, USA)

• gyroscope (full range: ±1500◦/s)
• accelerometer (full range: ±6 g)
• magnetic sensor *

OMCS nine-camera system (Vicon MX3, Oxford, UK)

sampling frequencies IMU:128 Hz (digitally resampled at 100 Hz)
OMCS: 100 Hz

subjects P = 5 (3 male and 2 female), with age: 28.6 ± 5.1 years

task

• level walking along a “figure of eight” pathway, (4 × 2 × 1.5) m
• walk at self-selected speed for 180 s
• rest period of 5 s with the participants standing still in their

upright posture before the start of each trial
* Although available, data from these sensors were not used in this paper.

In both datasets, the experimental setup required two IMUs that were attached to the lumbar spine
(L5 level) and to the shank (above the right malleolus). Clusters of four retro-reflective markers were
mounted on a small plastic support rigidly attached to each IMU. In the case of the TW dataset, three
additional retro-reflective markers were available in correspondence of the heel, the first metatarsal
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head and the fifth distal phalanx of the instrumented foot. Standard precautions were taken for
aligning the IMU axes approximately along the anatomical directions and securing the IMUs in place
firmly [10,24].

2.2. IMU and OMCS Data Pre-Processing

The procedures of IMU sensor calibration, frame registration, synchronization and conditioning
of IMU and OMCS data streams were the same in the construction of both datasets [24]. The Cartesian
coordinate systems fixed with the OMCS and an IMU were denoted, respectively, as the Global
Earth-fixed Frame (with one axis aligned with Gravity) (GGF) and the Unit Local Frame (ULF).
The orientation of the IMU axes were X: Antero-Posterior (AP) and positive forward; Y: Medio-Lateral
(ML) and positive to the right; and Z: VerTical (VT) aligned with the direction of gravity and positive
downwards, Figure 1.
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Virtual markers were created in correspondence of the center of the tri-axial accelerometer chips,
where the origins of the ULFs were located, by using the positions of the four retro-reflective markers
associated to each IMU (Tables 1 and 2).

2.3. Mathematical Processing

During steady-state level locomotion it is reasonable to assume that limb, or trunk displacement
data can be modeled as quasi-periodic functions of time. Body segment displacement data have been
obtained that can be accurately described through Fourier series that contain up to M = 6 significant
harmonics [4,7]:

f (t) = c0 +
M

∑
i=1

(
ai sin

(
i
2π

T
t
)
+ bi cos

(
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T
t
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(1)

where the DC component c0 accounts for the effect of forward motion and the period T is the stride
time. In this paper, the stride time is identified by the time elapsed between successive contacts of the
same foot with the ground. The Fourier series can also be represented in the so-called phase-angle form:

f (t) = c0 +
M

∑
i=1

ci sin
(

i
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T
t + ϕi

)
(2)



Sensors 2016, 16, 2206 5 of 17

Suppose that f (t) describes the instantaneous linear velocity of a point on the human body in the
progression direction. The DC component c0 is identified with the APV of this point, with the cyclical
component of velocity being described by the partial sum series in Equations (1) and (2).

Figure 2 reports the block diagram of the method proposed in this paper to estimate the
instantaneous velocity of the pelvis. All computations were performed using functions written
in MATLAB (The MathWorks, Natick, MA, USA).Sensors 2016, 16, 2206 5 of 17 
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2.4. Gait Phases Segmentation

The ML component of the angular velocity measured by the shank gyroscope was used to perform
the gait phases segmentation. A four-state left-right Hidden Markov Model (HMM) was developed
with two-dimensional emission vectors that included the measured angular velocity and its first time
difference [25]. The emissions were modeled as Gaussian mixtures with three modes. The gait phases
that were paired to model states were defined by consecutive occurrences of Foot Strike (FS), Flat Foot
(FF), Heel Off (HO) and Toe Off (TO).

IMU and OMCS data from the TW dataset were used for HMM training. The data from the foot
markers were used to generate the reference data for the FS, FF, HO and TO gait events in the k-th gait
cycle, namely tFS(k), tFF(k), tHO(k), tTO(k). Model parameters were trained in a supervised way, and
testing was done using a Leave-One-Out-Subject (LOSO) validation study: one subject was tested with
a model learnt using data from all other subjects; the training-testing procedure was then repeated,
with all subjects being used once for testing.

2.5. Target Extraction

The nominal speed of the treadmill machine was the reference chosen for the APV (TW-APVREF) in
the TW dataset. In the case of the OW dataset a different procedure was needed. A task-specific HMM
was not trained, since, in contrast with the TW dataset, OMCS foot-marker data were not available
(Table 2); rather, we used the HMM structure learnt using the TW dataset. The X and Y coordinates of
the virtual marker at the pelvis (shank) were submitted to a first central difference method for numerical
differentiation, after being low-pass filtered using a forward-backward second-order Butterworth filter
(cut-off frequency: 3 Hz). The norm of the instantaneous velocity in the horizontal plane was then
computed and averaged for each detected gait cycle, yielding the pelvis (shank) OW-APVREF.

2.6. Strap-Down Rotation

The Extended Kalman Filter (EKF) discussed in [24] was used to estimate the quaternion from the
pelvis ULF to the GGF. The estimated quaternion was used to perform the strap-down rotation of the
accelerometer output, so as to obtain the linear acceleration of the pelvis IMU. In the EKF design the
magnetic sensor measurements were dismissed, although they were potentially helpful to stabilize the
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yaw estimate; this was done to meet the experimental setups that are typically used in studying the
kinematics of pelvic motion [10].

2.7. Fourier Analysis for Estimating the Cyclical Component

Data from the pelvis IMU were submitted to Fourier analysis at each gait cycle (stride) [10]. In
short, each linear acceleration component (namely: ML, VT, AP) of the k-th stride was analyzed and
the Fourier series coefficients were computed up to M = 6:

acck
ML = aML0(k) +

M
∑

i=1

(
aMLi(k) sin

(
i 2π

Tk
t
)
+ bMLi(k) cos
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i 2π

Tk
t
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where Tk is the duration of the k-th stride. The analytical integration of Equation (3) where
aML0(k), aVT0(k) and aAP0(k) were set to zero (equivalent to removing a constant term from the
original stride linear acceleration data) led to the following expression of the mean-subtracted k-th
stride velocity data:
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It is noted that the mean subtraction in Equation (3) is implemented in recognition of practical
difficulties in estimating the pelvis APV by time integration of noisy acceleration data [8].

One advantage of the Fourier regression (Equations (1) and (2)) is that, differently from, e.g.,
a polynomial regression, the coefficients computed up to a given order do not change when one is
interested in adding further terms to the model (e.g., for achieving a better model fit to the original
time function). Moreover, when dealing with raw data, effective smoothing can be achieved by using
Fourier basis functions [26]. The Fourier analysis was performed using the methods of functional data
analysis developed in [26], for the implementation of which a MATLAB toolbox is available.

2.8. Fourier Analysis for Estimating the APV

For the purpose of APV prediction, we propose to use the coefficients {ci(k)}M
i=1 of the Fourier

series in the phase-angle form, which were computed using the k-th stride signals from the shank IMU.
Six measurement channels were available (three for the acceleration, three for the angular velocity).
The feature vector built at the k-th stride included, in addition to the Fourier harmonic coefficients for
each measurement channel, the k-th stride time TFS(k), and some additional temporal parameters of
gait from the HMM: 

TFS(k) = tFS(k + 1)− tFS(k)
TFF(k) = tFF(k)− tFS(k)

THO(k) = tHO(k)− tFS(k)
TTO(k) = tTO(k)− tFS(k)

(5)

The feature vector had thus size d = 6M + 4. By preliminary testing, a good trade-off between fitting
accuracy and APV predictive power was achieved by retaining the first two harmonic components of
shank angular velocity and acceleration (i.e., M = 2 and d = 16).
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2.9. Bayesian Linear Regression

The model was created from a training set of N observations D = {x(i), v(i)}N
i=1; x(i) ∈ Rd is the

feature vector and v(i) is the APV target paired to the i-th gait cycle. Henceforth, the feature vectors
are denoted collectively by the N × D data matrix X, whose n-th row is xT

n (n = 1, . . . , N), and the
corresponding target values are given by the column vector v = [v(1) . . . v(N)]T .

For some parameter vector w, the targets v(i) are given by adding noise to a linear combination
of the input variables:

v(i) = f (x(i), w) + ε(i)

f (x(i), w) = w0 +
d
∑

j=1
wjxji = wTx(i) (6)

where the residual ε(i) is modeled as a zero-mean Gaussian random variable with precision (inverse
variance) α. When a bias weight w0 or offset is included in the parameter (weight) vector w, as in
Equation (6), the input vector is augmented with an additional element whose value is always one,
which leads to the following expression of the N × (D + 1) design matrix Φ:

Φ =

 1 xT
1

...
...

1 xT
N

 (7)

In the BLR approach a zero-mean Gaussian prior with precision βi is assigned to each parameter
wi:

p(wi) = N
(

wi

∣∣∣0, β−1
i

)
(8)

Under the assumption of independence of the marginal distributions, the weight prior is written
as follows:

p(w|B) =
(

1
2π

)(d+1)/2 d

∏
i=0

β2
i exp

(
−

βiw2
i

2

)
(9)

where B = diag(β0, . . . , βd).
The likelihood function of the target data is given by:

p(v|X, w, α) =
( α

2π

)N/2
exp

(
−α

2
‖v−Φw‖2

)
(10)

The posterior distribution p(w|X, B , α) for the weights is Gaussian, with mean and covariance
given by: {

µ = α Σ ΦTv
Σ =

(
B + α ΦTΦ

)−1 (11)

The values of the hyperparameters α, B are obtained by maximization of the
log-marginal likelihood:

ln p(v|X, B, α) = −1
2

{
N ln(2π) + ln|C|+ vTC−1v

}
(12)

where the N × N matrix C is written in the following form:

C = α−1I + ΦB−1ΦT (13)
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The point estimates of B, α can be substituted back into Equation (11) to give an updated posterior
distribution for the weights, from which re-compute the log-marginal likelihood. B and α can be thus
iteratively updated for maximization [20]: βi =

γi
µ2

i
1
α = ‖v−Φµ‖2

N−∑i γi

(14)

where µi is the i-th component of the posterior mean µ defined by Equation (11) and the quantity γi is
defined by

γi = 1− βiΣii (15)

in which Σii is the i-th diagonal component of the posterior covariance matrix Σ defined by
Equation (11). The iterative process stops when a criterion of convergence is met, i.e., the largest
change in the values of the hyperparameters is below a tolerance.

During re-estimation, some βi’s can become very large, shrinking the corresponding posteriors
p(wi|X, B, α) to zero; this implies that the corresponding i-th column in Φ can be “pruned” (Automatic
Relevance Determination (ARD)). In our implementation, the βi’s that were 200 times larger than
the data precision α were discarded, removing the corresponding feature variables from the input
space [21].

The LOSO validation was conducted to evaluate the performance of each regression model.
A difference exists in the way TW and OW datasets were managed in this regard: the LOSO validation
of the HMM-based gait event detector and the LOSO validation of the ARD-BLR model were
intertwined in the former case. Conversely, in the latter case the LOSO validation of the HMM
was not performed, since the HMM structure emerging from analyzing the TW dataset was used.

2.10. Performance Assessment

Steady-state gait strides were considered as for the TW dataset; data from the first 30-s periods of
recording were thus discarded; all gait strides were retained for analysis in the case of the OW dataset.
The performance assessment for the cyclical component of velocity was based on the procedure devised
for method comparison studies [27,28]. The Mean Difference (MD) and upper and lower Limit of
Agreement (LA), namely MD ± 1.96 Standard Deviation (SD) of differences, were computed for the
cyclical component of velocity in the ML, VT and AP directions, as it was obtained from IMU and
OMCS data. Henceforth, the LA width is the difference between the upper and lower LAs. Scatter
plots were produced to visualize differences between IMU and OMCS data against their mean.

The APVBLR values during steady-state gait cycles were compared with the treadmill speed
(TW-APVREF), yielding the estimation error eln per speed condition. The index l run over the number
of strides Ln that were walked by the n-th participant in each walking trial. In the case of overground
locomotion, the APVBLR values were compared with the corresponding target values (pelvis or shank
OW-APVREF).

The mean bias error (MBE) was the mean value of eln where, before taking the mean over
participants, the mean error per participant mn was computed [15]:

mn = 1
Ln

Ln
∑

l=1
eln

MBE = 1
N

N
∑

n=1
mn

(16)

The Root Mean Square Error (RMSE) was the root mean square value of mn:

RMSE =

√√√√ 1
N

N

∑
n=1

m2
n (17)
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The Average Root Mean Square Error (ARMSE) was the average of the root mean square values
en of the estimation error eln, computed for each participant:

en =

√
1

Ln

Ln
∑

l=1
e2

ln

ARMSE = 1
N

N
∑

n=1
en

(18)

3. Results

The HMM-based gait event detector estimated the time occurrences of the FS, FF, HO and TO
events. The mean, the SD and the Mean Absolute Value (MAV) of their difference from the OMCS
reference values, averaged across subjects, are reported in Table 3. A total number of 3377 strides
were analyzed; missed and additionally detected gait strides (deletions and insertions, respectively)
were not observed. As for the OW dataset, mean = 7.0 ms, SD = 29.8 ms, and MAV = 37.1 ms were
obtained by analyzing the difference between the FS time occurrences delivered by the HMM and the
Zijlstra’s method [29], which was applied to the pelvis accelerometer. A total number of 753 strides
were analyzed, without observing any erroneous event.

Table 3. Gait events statistics, in ms (difference between HMM-based and reference data).

FS FF HO TO
Speed Mean SD MAV Mean SD MAV Mean SD MAV Mean SD MAV

3 14.2 22.3 20.7 134.0 059.9 134.2 −101.8 89.6 108.0 −18.8 22.9 24.8
4 14.7 18.1 19.4 −42.1 102.8 089.1 −57.5 72.1 068.3 −18.1 16.0 20.1
5 17.7 15.0 19.6 −17.2 086.5 054.6 −24.1 70.8 057.7 −12.0 14.5 14.8
6 12.8 18.3 17.8 −25.0 082.2 063.5 −16.1 75.8 068.9 –4.5 15.3 12.2
7 11.0 23.8 19.8 −36.8 071.1 064.0 −39.4 82.6 071.1 −7.7 27.7 15.5

Scatter plots of the difference between IMU and OMCS estimates of the cyclical component of
the pelvis instantaneous velocity over their mean are reported in Figure 3 (data from all subjects and
speed conditions were collapsed in producing the scatter plots).

Slight tendencies are observed for differences being increasingly negative with increasing mean
value of the velocity; hence, compared to OMCS, the Fourier-based integration method slightly
underestimated and overestimated for respectively negative and positive values of the velocity resolved
in the GGF. Moreover, slight tendencies are observed for the spread of the differences to vary over
the measurement range, which may produce non-constant LAs. In the attempt to refine the LA
computation, the regression approach for non-uniform differences was applied [27]; the correction
equations needed to compute the LA widths are reported in Table 4.

For each direction, a representative value of the LA width was finally obtained by taking the
average of the widths that were computed over a range of velocity covering 95% of the measured
values; the following values were obtained: ±0.07 m/s (ML component), ±0.03 m/s (VT component),
and ±0.06 m/s (AP component) for the TW dataset; and ±0.10 m/s (ML component), ±0.05 m/s
(VT component), and ±0.10 m/s (AP component) for the OW dataset. As a matter of comparison,
the estimated vertical velocity profile of a trunk-mounted IMU during walking—reconstructed using
strap-down integration [30]—was affected by root mean square errors of 0.08 m/s (on average), which
translates, roughly, to LA widths of ±0.16 m/s.
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Figure 3. Bland Altman plots showing the difference between OMCS and proposed method as a
function of their mean, for each component of velocity: ML (a,b); VT (c,d); and AP: (e,f). The plots
in the panels (a,c,e) and (b,d,f) are produced from the TW and OW datasets, respectively. The line
fitted to the plotted data is reported in black. The upper and lower limits of agreement based on the
regression approach are reported in red. The green lines represent the constant limits of agreement
computed without the regression-based correction.
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Table 4. Regression equations of the difference (D) between the methods on the average (A) of the two
methods, which provide the upper and lower LAs for each cyclical component of velocity.

TW Dataset Upper and Lower Limits of Agreement

ML direction D = −0.1065A − 0.0000 ± 2.46 (0.0242A + 0.0266)
VT direction D = −0.0158A + 0.0001 ± 2.46 (0.0017A + 0.0105)
AP direction D = −0.0795A + 0.0001 ± 2.46 (0.0083A + 0.0225)

OW Dataset

ML direction D = −0.0258A + 0.0013 ± 2.46 (0.0683A + 0.0435)
VT direction D = −0.0015A − 0.0023 ± 2.46 (0.0084A + 0.0185)
AP direction D = −0.0093A − 0.0262 ± 2.46 (0.0416A + 0.0398)

The ARD process pruned some temporal features (i.e., TFF, THO) and all Fourier coefficients
of the shank angular velocity; the stride time TFS and the duration of the stance phase TTO were
retained, together with the Fourier series coefficients of the shank acceleration, yielding an input
space of dimension d = 8, either in TW or OW conditions. The evolution of the hyperparameters in
two representative runs of the ARD process is shown in Figure 4.
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Figure 4. Time plots of the hyperparameters: (a) TW dataset; and (b) OW dataset. The priors of the
stride time and stance duration were given precisions β1 and β2 , respectively; the priors of the ML,
AP and VT components of the shank acceleration were given precisions β3 – β4, β5 – β6 and β7 – β8 ,
respectively; the Gaussian noise in the likelihood function was given precision α. The threshold for
pruning the i-th column of the design matrix is depicted using the horizontal line in black.

The performance metrics of the ARD-BLR are reported in Tables 5 and 6, for TW and OW datasets,
respectively (cross-validation was task-specific, namely training and testing were done using data from
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the same walking condition). As for the OW dataset, two different targets were considered, namely
the pelvis and the shank OW-APVREF. Especially when walking along a curved path, the velocity
fields changed across the body: Table 6 also reports the statistics of the pelvis and shank OW-APVREF

(minimum and maximum value, designated min and max, respectively, and the 25%, 50%, and 75%
percentile, designated Q1, Q2 and Q3, respectively).

Table 5. Statistics of APV estimation for different treadmill speeds, in km/h (validation performed
using the TW dataset).

Speed MBE RMSE ARMSE

3 −0.094 0.237 0.240
4 −0.041 0.142 0.167
5 −0.057 0.183 0.193
6 −0.095 0.221 0.222
7 −0.007 0.231 0.252

Table 6. Statistics relevant to the target OW-APVREF and to its estimation, in km/h (validation
performed using the OW dataset; shank and pelvis indicate the site used to compute the target).

Min Q1 Q2 Q3 Max MBE RMSE ARMSE

shank 2.1 3.2 3.7 4.1 5.9 −0.020 0.156 0.332
pelvis 2.6 3.1 3.4 3.7 4.3 −0.035 0.172 0.247

The final step of analysis consisted of training with one dataset and testing with the other dataset.
The performance metrics of the ARD-BLR are reported in Tables 7 and 8. Data in Table 7 were obtained
when the regression model was trained with the OW dataset (target: shank OW-APVREF) and were
tested with the TW dataset. Data in Table 8 concern the case in which the regression model was trained
with the TW dataset and were tested with the OW dataset. The generalization capabilities of the
method across the two walking conditions improved when using the pelvis OW-APVREF as target
for testing.

Table 7. Statistics of APV estimation for different treadmill speeds, in km/h (training done using the
OW dataset, target: shank APVREF).

Speed MBE RMSE ARMSE

3 −0.247 0.315 0.277
4 −0.138 0.174 0.189
5 −0.273 0.313 0.312
6 −0.202 0.307 0.276
7 −0.025 0.326 0.322

Table 8. Statistics of APV estimation in conditions of overground locomotion, in km/h (training done
using the TW dataset; shank and pelvis indicate the site used as target for testing).

MBE RMSE ARMSE

shank −0.590 0.666 0.723
pelvis −0.313 0.425 0.528

Figure 5 shows representative examples of pelvis instantaneous velocity, when cross-validation
was task-specific; transient stride data were also inspected for the treadmill-related example.
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4. Discussion

The HMM-based gait phases segmentation method delivered accurate estimates of the gait events’
time occurrences, especially as for the FS and TO. FF and HO were detected with greater difficulty [31]
(Table 3). The algorithm was capable of generalizing well across different tested subjects and walking
conditions, although overground walking is known to be different from treadmill walking [32,33];
moreover, the participants recruited for constructing the two datasets were different people, and even
the experimental setups were different in the two cases (Tables 1 and 2). The Zijlstra’s method, which
is widely used to detect gait strides [34], matched closely the HMM-based method as for the estimates
of the FS events in conditions of overground walking.

As for the estimation of the cyclic component of velocity, the regression approach for non-uniform
differences allowed accounting for slight systematic differences between the IMU and OMCS data, and
to establish average LA widths across the measurement range (Table 4). It is noted that the agreement
appears to be slightly looser in OW conditions, as compared with TW conditions, particularly for the
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horizontal components (i.e., ML and AP), compared with the vertical component (VT). This fact can be
explained by the much larger measurement volume of the OMCS and by the longer duration of the
OW trials. Both these factors make the procedure of aligning the ULF to the GGF in the direction of
travel less accurate [24].

The ARD automatically removed feature variables that were irrelevant to the regression task.
The same input space was considered to predict the APV in either TW or OW conditions, with one
important difference. As shown in Figure 3, the ARD gave less importance to the temporal feature
variables in OW conditions as compared with TW conditions (i.e., the corresponding priors were
given higher precisions β1 and β2). Locomotion along a curved path is in fact a task that implies
continuous deviation from straight-ahead locomotion, thereby requiring continuous adjustment of
body movement [33]. For example, stride length is unchanged for the outer but decreases for the
inner leg; however, the cadence is the same for both legs, in spite of the different length of the inner
and outer strides. In other words, whilst the increase of the treadmill speed determined a marked
reduction of stride time and duration of the stance phase [35], speed changes occurring during curved
path locomotion were not accompanied by significant changes of either of them.

The predictive power of the input space slightly decreased in OW conditions compared with TW
conditions when the validation was task-specific, Tables 5 and 6. ARMSEs of less than 7.5%–8% were
reported at the speed of 3 km/h, which fell at slightly less than 4% at velocities greater than 4 km/h.
These results compare favorably with the state-of-the-art reported in the literature (e.g., ARMSE =
4%, overground walking with velocities 4–6 km/h, using a 16-dimensional input space of time- and
frequency-domain feature variables from a foot IMU, in combination with a Linear Least Squares
model [15]). Since, in contrast with RMSE, the ARMSE accounts for the intra-subject variability [15], it
is not surprising that the ARMSE was larger than the RMSE in OW conditions, compared with TW
conditions, due to the high walking regularity enforced by the treadmill machine.

When the regression model trained in OW conditions was applied to TW data for testing
purposes (Table 7), the predictive performances degraded slightly compared with those obtained by
the task-specific validation of Table 5. Using the regression model trained in TW conditions directly on
OW data performed poorly, especially when the target for testing was the pelvis OW-APVREF, Table 8.
Using the TW dataset, the shank acceleration signal features were used to predict the treadmill velocity,
and the shank APV was matched to that velocity, Table 5. Since the forward component of the pelvis
IMU motion was small (ideally, null) when walking on the treadmill machine, no effort was spent to
learn the relationship between the input space and the pelvis APV. The use of the shank OW-APVREF

as target improved significantly the generalization abilities of the ARD-BLR across the two walking
conditions. This was also true when the treadmill velocity was predicted using the regression model
learnt from the OW data. As shown in Table 8, the best predictive performance were observed at
4 km/h, a value close to the mode of the distribution of the shank OW-APVREF (Table 6); for the
highest treadmill speeds, the ARD-BLR worked in extrapolation mode, which reflects in less predictive
power. Under-estimation at 5 and 6 km/h treadmill speed were observed, which did not occur when
validation was task-specific. ARMSEs of 9% were reported at the speed of 3 km/h, which fell at 5% at
speeds greater than 4 km/h, implying a one percentage-point drop compared with when the validation
was task-specific. Another factor, namely that the treadmill nominal speed might not perfectly match
the actual walking speed, would also have contributed to this one percentage-point drop.

Finally, the good behavior of the proposed method is shown, qualitatively, in Figure 5; here the
analysis started before the treadmill reached the preset velocity, although the ARD-BLR worked in
extrapolation mode in these conditions. As for the Fourier-based method of integration, it is noted
that the method could be successfully applied to data in the time interval between static upright
posture and steady-state locomotion. The applicability of the proposed method during gait initiation
is currently being studied in more detail, although we verified that the LA widths did not change
appreciably when transient strides were accounted for in their calculation.
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The model predictive power could be enhanced by subject-specific model calibration (i.e.,
biometric parameters, such as the height, are included in the input space) or personalization (i.e., few
gait strides from a new subject for whom reference data are available are used to refine the model,
thereby promoting a better match of estimates to the reference) [15]. Subject-specific calibration and
personalization of the model were not considered in this paper and are left to our future work, which
will be devoted to study mechanical energy changes of the BCOM in normal and pathologic walking
using inertial motion sensors.

5. Conclusions

In this paper, an inertial sensor-based algorithm was developed with the aim of estimating the
instantaneous velocity of an IMU attached to the pelvis during walking.

Under the assumption about the cyclical motion of human body parts during walking, the
instantaneous velocity was modeled by the sum of two components, namely the cyclical component
and the average progression velocity at each gait cycle. The algorithm made use of methods of Fourier
harmonic analysis applied to pelvis and shank acceleration data to address two tasks: analytical
time-integration of the linear acceleration, which enabled the estimation of the cyclical component, and
regression using the ARD-BLR approach for estimating the average progression velocity. Analytical
time-integration and regression required gait phases segmentation, which was efficiently done using
an HMM-based gait event detector.

The inertial sensor-based algorithm was validated in conditions of treadmill and overground
walking by healthy subjects. Analytical integration based on Fourier series coefficients was thus
shown a useful approach to accurately estimate instantaneous velocity data from noisy acceleration
measurements, whilst good generalizability of the ARD-BLR across different factors (namely, subjects,
walking conditions, and IMU hardware) was demonstrated.
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Abbreviation

AP Antero-posterior
APV Average progression velocity
ARD Automatic relevance determination
ARMSE Average root mean square error
BCOM Body center of mass
BLR Bayesian linear regression
EKF Extended Kalman filter
FF Flat foot
FS Foot strike
GGF Global earth-fixed frame
HMM Hidden Markov model
HO Heel off
IMU Inertial measurement unit
LA Limits of agreement
LOSO Leave-one-subject-out
MAV Mean absolute value
MBE Mean bias error
MD Mean deviation
ML Medio-lateral
OMCS Optical motion capture system
OW Overground walking
RMSE Root mean square error
SD Standard deviation
TO Toe off
TW Treadmill walking
ULF Unit local frame
VT Vertical
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