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Abstract: Vehicle analysis involves license-plate recognition (LPR), vehicle-type classification (VIC),
and vehicle make and model recognition (MMR). Among these tasks, MMR plays an important
complementary role in respect to LPR. In this paper, we propose a novel framework for MMR using
local tiled deep networks. The frontal views of vehicle images are first extracted and fed into the local
tiled deep networks for training and testing. A local tiled convolutional neural network (LTCNN) is
proposed to alter the weight sharing scheme of CNN with local tiled structure. The LTCNN unties
the weights of adjacent units and then ties the units k steps from each other within a local map. This
architecture provides the translational, rotational, and scale invariance as well as locality. In addition,
to further deal with the colour and illumination variation, we applied the histogram oriented gradient
(HOG) to the frontal view of images prior to the LTCNN. The experimental results show that our
LTCNN framework achieved a 98% accuracy rate in terms of vehicle MMR.

Keywords: moving-vehicle detection; vehicle-model recognition; deep learning; HOG

1. Introduction

Vehicle analysis is widely used in various applications such as driver assistance, intelligent
parking, self-guided vehicle systems, and traffic monitoring (quantity, speed, and flow of vehicles) [1].
A notable example is an electronic tollgate system that can automatically collect tolls based on the
identification of vehicle’s make and model. This MMR technology can be further used for public
security to monitor suspicious vehicles.

The detection of moving vehicles is the first task of a vehicle analysis. Background subtraction [2-5]
plays an important role by extracting motion features from video streams for detection; however, this
algorithm cannot be applied to static images. Many studies tried to solve this problem including a
Wau et al. study in which a wavelet was used to extract texture features to localize candidate vehicles [6].
Furthermore, Tzomakas and Seelen suggested that the shadows of vehicles are an effective clue for
vehicle detection [7]. Ratan et al. used the wheels of vehicles to detect candidate vehicles and then
refined the vehicles using a diverse density method [8].

The tasks of vehicle analysis include license plate recognition (LPR), vehicle-type classification [9],
and vehicle MMR [10]. LPR provides a unique identification for a detected vehicle, but the technique is
not reliable due to the LPR-specific errors that can be incurred by low resolution, bad illumination, or
fake license plates. Vehicle-type classification attempts to distinguish vehicles according to identifiers
such as “saloon”, “estate vehicle”, and “van”, while vehicle MMR tries to identify the manufacturer
and model of a vehicle, such as “Kia K3” or “Audi A4”. Vehicle-type classification and vehicle MMR
therefore provide valuable complementary information in the case of an LPR failure. They also
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contribute to public security through the detection of suspicious vehicles and the identification of
improper driving.

However, the distinction of vehicle with same manufacturer, model, and reflective coating is an
unresolved and challenging problem in MMR technique. Abdel Maseeh et al. incorporated global and
local cues to recognize vehicle models [11], while Hsieh et al. proposed a symmetrical Speeded Up
Robust Features (SURF) method for both vehicle detection and MMR [12]. The frontal or rear view
image is widely used for the Region of Interest (ROI) of MMR due to its computational efficiency
and discriminative property; Petrovic and Cootes first proposed this concept for MMR [13], which
established the baseline and methodology for later research studies [14,15]. Llorca proposed the use of
geometry and the rear-view image of a vehicle for vehicle-model recognition [16]. Considering the 3D
properties of a vehicle, 3D-based methods [17,18] have been proposed to enable vehicle MMR from an
arbitrary view, including a 3D view-based alignment method to match 3D curves to 2D images [18].
A significant issue with 3D object recognition is large variance within one model that is incurred by
view changes. Other research studies using various features and machine-learning techniques such
as SIFT [19], Harris corners [20], and texture descriptors [21-23] were also developed. In terms of a
classifier, SVM [14], nearest neighbour [15], and neural networks [24] were widely used.

In this paper, we propose a framework for vehicle MMR based on local tiled CNN. Deep
learning based on CNN has achieved state-of-the-art performance in various applications, including
handwritten digit recognition [25] and facial recognition [26]. CNN uses the hard-coded weight sharing
scheme with translational invariance that prevents network from capturing more complex invariance.
The proposed LTCNN unties the weights of adjacent units and ties units that are k steps away from
each other within a local map. This alternate architecture provides the translational, rotation, and scale
invariance as well as locality. In addition, to further deal with the colour and illumination variation, we
applied the histogram of oriented gradient (HOG) to the frontal view of images prior to the LTCNN.

The remainder of this paper is organized as follows: Section 2 introduces the related work in terms
of convolutional neural network; Section 3 describes the framework of our MMR system in terms of
moving-vehicle detection and a frontal-view extraction method; we then introduce the vehicle-model
recognition based on LTCNN in Section 4; Section 5 describes the histogram of orientated gradient
algorithm; Section 6 applies the previously mentioned algorithm to our vehicle database and presents
the experiment results; and lastly, Section 7 presents the conclusions of our paper.

2. Related Work

Deep networks are used to extract discriminative features for vehicle MMR. The deep network
concept has been around since 1980, with similar ideas including neural network and back propagation.
The resurgence of interest on deep networks is brought on by breakthrough in Restricted Boltzmann
Machines (RBM) from Hinton [27]. For the last three years deep learning-based algorithms have
won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), which used convolutional
architectures of deep models.

2.1. RBM and Auto-Encoder

RBM and auto-encoder are two primary division for deep learning, the former uses the
probabilistic graphical models while the latter roots in computation graphs. A deep network is more
capable of characterizing input data with multiple layers. Training a deep network with traditional
back-propagation suffers from problems of poor local optima and high time-consumption. Another
problem is the requirement of labeled data for back-propagation even though labeled data are not
always available for small datasets. Alternatively, the deep-learning method [27] uses unlabeled data
to initialize the deep model, thereby resolving the poor local optima and lengthy time frame through
learning of the p(image) instead of the p(label | image). This technique generates input data through
maximizing probability of generative model.
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Unlabeled data are easier to acquire than labeled data. We therefore used unlabeled data for the
pre-training of the deep architecture to obtain the initial weights. Through these initial weights that
are in the region of an effective solution, an optimal solution is readily accessible. An RBM provides
us with an effective pre-training method that is comprised of a two-layer network with stochastic,
binary pixels as units; these two layers consist of pixels of “visible” units and “hidden” units that are
connected with symmetrically weighted connections.

The RBM has been extended to Gaussian RBM (GRBM) to enable the real-valued data by modelling
visible units as a Gaussian distribution [28]. The mean and covariance RBM (mcRBM) was proposed
to parametrize the mean and covariance from hidden units [29]. For natural images, mPoT model [30]
was used to extract large-scale features. As for the auto-encoder, sparse auto-encoders are proposed to
regularize the sparsity, such as Contractive auto-encoders (CAE) [31] and Denoising auto-encoders

(DAE) [32].

2.2. Convolutional Models

Massive parameters are involved in the deep networks, which requires a large scale dataset
to training. To this end, convolutional structure is usually adopted to reduce the number of
parameters, such as convolutional neural network (CNN) [33] and convolution RBM [34]. In addition,
many advanced techniques have been coupled into the CNN structure, such as dropout, maxout,
max-pooling. By going deeper with the convolutional networks, CNN dominates the performance in
various applications, such as AlexNet [35], Overfeat [36], GoogLeNet [37], and ResNet [38].

The architecture of one convolutional layer is illustrated in the Figure 1, where the bottom
layer is N x N input layer, and the top layer is M x M convolutional layer. The convolutional layer
conducts convolution operation across the input maps with a K x K filter for each map, resulting in a
(N-K+1) x (N—K+1) feature map. Thus, M =N -K+ 1.

Figure 1. Architecture of one convolutional layer.

Tied weights

Figure 2. Tied weights within a feature map of a convolutional layer.
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The idea behind the convolution layer is weight sharing within a feature map as shown in Figure 2.
The units of a feature map are weights tied. Through this scheme, the number of weights to be trained
is reduced significantly. This hard-coded network provides translational invariance by pooling across
units of each feature map. However, more invariances towards rotation and scale change are disabled
by this hard-coded structure.

3. Framework of Proposed MMR System

A correct frontal view is essential for the deep-learning training. Figure 3 shows the proposed
MMR system based on LTCNN. Each vehicle model consists of multiple samples for the training of the
deep network; based on the trained model, we were able to recognize the vehicle make and model. The
proposed MMR system involves the following three major steps: (1) Vehicle detection from a video or
image; (2) ROI extraction, which is the frontal view of a vehicle in our system; and (3) vehicle MMR.
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Figure 3. Framework of proposed vehicle make and model recognition (MMR) system based on
LTCNN. Moving vehicle was detected using the frame difference, and the resultant binary image was
used to detect the frontal view of a vehicle with a symmetry filter. The detected frontal view was used
to identify the vehicle make based on the LTCNN algorithm.

Vehicle detection is the first step of an MMR system. In this study, we used frame difference to
detect a moving vehicle because our camera is static on the streets. Frame difference is efficient in
terms of the computational power that enables real-time application in this scenario.

We applied only the frontal view of a vehicle for real-time application in MMR processing, while
3D MMR [18] used an entire vehicle image. The frontal view images of vehicle provide sufficient
discrimination to recognize vehicle models, as shown in many other studies [14,15]. Meanwhile, the
frontal view is relatively small compared to the entire vehicle image, which reduces the computational
time. Notably, the frontal view of a vehicle is typically symmetrical, thus a symmetrical filter was
used to detect the frontal view in our system. The symmetrical filter first sums up the values of pixels
of the same column. The car image turns to be a vector, and the symmetrical filter is performed in a
sliding-window manner by calculating the difference between left and right parts of the window. The
window of the minimal difference is regarded as the frontal view of a car.

The LTCNN was performed on the HOG features of the frontal view of the vehicles for vehicle
MMR. HOG extracts the texture of images that is consequently more robust against geometric and
illumination variations. LTCNN learns the feature model from the frontal view database, the features
of new image are extracted based on the feature model. The extracted features are further fed into the
large linear SVM [39].
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4. Local Tiled Convolutional Neural Networks

As we pointed out in the related work section, CNN only provides the translational invariance.
However, in real world, the input images varies with rotation and scale. The CNN is not capable of
capturing these variances since the pooling layer only pool over the same basis/filter. To address this
problem, a tiled CNN (TCNN) [40] is proposed by using only tied units that are k steps away from
each other as shown in Figure 4a, where k = 2 shows that the stripe between two tied units is 2. This
enables the adjacent untied units, which refers to as “tiling.” By varying the stripe k, TCNN learns
various structure of models that provides rotation and scale invariances. The TCNN inspired us to
consider the locality of images. As we know, the convolutional operation between layers is essentially
a linear function. The conventional CNN/deep learning ties the weights for the entire upper layer,
which characterizes only one linear transformation for the whole input. However, the local map with
different characteristics and features tends to have varying transformation goals through the network,
which can handle more variations of the input data. By untying the weights between different local
maps, LTCNN is capable of learning various linear function for different local maps. It is meaningful
to warp the different local map with different weights especially in case the input data vary in pose or
angle. In this paper, we extended the idea of TCNN and coupled with locality of images. Local part of
an image tends to share the weights, while units that far apart from each other do not have sharing
weights. Following this idea, we develop a novel algorithm, which we call “local tiled CNN” (LTCNN)
as shown in Figure 4b. The feature map of the convolutional layer is divided into identical local maps,
within each local map is a tiny TCNN. For example, when tied stripe k = 2, and the number of local map
is b = 4, there are totally eight tiled units for each feature map, which learns eight basis/filters for each
feature. This various basis provide not only the translational, scale, rotation invariance, but also the
locality of feature maps. Specially, when k =1, and b = 1, LTCNN decays to the typical convolutional
layer. On the other hand, when k x b = M2, where M2 is the number of units in the feature map,
LTCNN turns out to be traditional neural network of untied units.

Tied weights 1 Tied weights 2 Local Map
\

tevpe b

d
11
(11
IRNIEEE
o
|
oy

]
Loy
]

]

(a) TCNN (k=2) (b) Local TCNN (k = 2,b = 4)

Figure 4. The convolutional layer of TCNN and proposed local TCNN. Units with same colour and fill
are weights tied.

Unsupervised feature learning is used to extract features in this study. In order to perform
LTCNN in an unsupervised manner, we use Topographic Independent Component Analysis (TICA)
network [41] as in the study [40]. Our LTCNN is integrated into the TICA network, which has three
layers network: input layer, convolutional layer, and pooling layer as shown in Figure 5, where the
convolutional layer is altered to our LTCNN layer, and the pooling layer is connected to a small patch
of the convolutional map to pool over the adjacent units. For convenience, we unroll the 2D map into
vector as a representation. The weights W between input pattern x' and convolutional layer {I;}/"
are to be learned, while the weights V between convolutional layer and pooling layer {p;}/" are fixed
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and hard-coded, where W € R"* " and V € R™*™ m and n is the number of convolutional units and
input size. The output units of the second layer can be described as:

2
m n

pi (X, W, V) = Y Vi [ D] W] 1
k=1 i=1

where Vj; = 1 or 0 encodes whether the pooling units 7 is connected to convolutional units k or not,
and if the convolutional unit is not connected to input units, Wy; = 0. The goal of the TICA is to find
the sparse representations of the output features, which can be solved by:

T m
mvan tzjl le pi (x',W, V), subject to WWNT =T )
=1i=

where the condition of WWT = [ ensures that the learned features are competitive and diverse. As
the weights between convolutional layers connect with local receptive field, it is constrained to zero
outside the small receptive field. The weights of different receptive fields are orthogonal. Thus, the
remaining problem is to ensure the weights that are on the same local receptive field to be in similar
orthogonal orientation. This is more efficient than the primitive TICA. The weights W can be learned by
stochastic gradient descent and back propagation, the only difference is the weights orthogonalization
after each update of weights.
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Figure 6. Architecture of network based on the proposed LTCNN.
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The overall architecture of our network is illustrated in Figure 6. The input frontal views of car
images are resized to 32 x 32, and feed into two TICA network, resulting in a four layer network. The
first and third layers are LTCNN with filter size 7 x 7, and 3 x 3, respectively. The second and forth
layers are pooling layer with stripe of 2 x 2. The resulting feature map is 24 x 24.

5. Histogram of Oriented Gradient

To further improve the invariance of LTCNN algorithms towards the colour and illumination, we
apply the histogram of oriented gradient (HOG) to the frontal views of images. The idea behind HOG
features is the characterization of the appearance and shape of the local object using the distribution of
local intensity gradients or edge directions. The local property is implemented by the division of the
image into cells and blocks. The main HOG steps are summarized as follows:

(1) Gamma/Color Normalization: Normalization is necessary to reduce the effects of illumination
and shadow; therefore, gamma/ colour normalization is performed prior to the HOG extraction.

(2) Gradient Computation: Gradient and orientation are calculated for further processing, as they
provide information regarding contour and texture that can reduce the effect of illumination.
Gaussian smoothing followed by a discrete derivative mask are effective for calculating the
gradient. For the color image, gradients are calculated separately for each color channel, and the
one with the largest norm is considered the gradient vector.

(8) HOG of cells: Images are divided into local spatial patches called “cells”. An edge orientation
histogram is calculated for each cell based on the weighted votes of the gradient and orientation.
The votes are usually weighted by either the magnitude of gradient (MOG), the square of MOG,
the square root of MOG, or the clipped form of MOG; in our experiment, the function of MOG
was used. Moreover, the votes were linearly interpolated into both the neighbouring orientation
and position.

(4) Contrast normalization of blocks: Illumination varies from cell to cell resulting in uneven gradient
strengths, and local contrast normalization is essential in this case. By grouping cells into a larger
spatial block with an overlapped scheme, we were able to perform contrast normalization at a
block level.

6. Results

To evaluate the performance of the proposed algorithm, we built a vehicle make and model
dataset. This dataset comprises 3210 vehicle images with 107 vehicle models, and 30 images of various
colors and illuminations are captured for each model. The specifications of the computer used to
perform all of the experiments are as follows: Intel Core i7-4790 with 3.6 GHz and 8 GB of RAM,
running on 64-bit Windows 7 Enterprise SP1.

6.1. Frontal-View Extraction

A frame-difference algorithm was used for the moving-vehicle detection in our study, while the
database consists of images that makes it easier than video to measure the accuracy. To make frame
difference works for the images, we generated an adjacent frame by shifting each of the images by
10 pixels. The frame difference is performed between the original image and its shifted image in
our system. The frame difference is integrated with a mathematical morphology operation and the
symmetrical filter to find the exact location of frontal view of a car.

Figure 7 presents the results of the frontal-view extraction including four vehicle models of four
companies. The red rectangle in the original vehicle image is the detected frontal view of the vehicle,
and the binary image of each frontal view is also presented. The experimental results illustrate that our
system is capable of accurately extracting the frontal view of vehicles. The algorithm was evaluated
over 3210 images, and achieved 100% accuracy in terms of frontal-view extraction.
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Figure 7. Results of frontal-view extraction on five vehicle images featuring four companies and
four models.

6.2. Local Tiled CNN

Local tiled CNN involves numerous crucial parameters, such as the number of maps, local maps,
and tile size. To investigate the effect of different parameters, we evaluate the performance of varying
parameters. For each experiment, we vary one parameter and fix the others. Figure 8 shows the
accuracy of varying tile size when the number of local maps is fixed as 16. The various tile sizes are
tested as {1, 2, 3, 10, 15, 20}. Result indicates that tile_size = 2 achieved the best performance among
these experiments. This is because the increasing tile size tends to overfit since the number of training
samples are limited. Figure 9 illustrates the test accuracy of varying number of local maps with fixed
tiled size as 2. The test series of various number of local maps are {1,4,9,16,25,36}. The results show the
number of local maps set to 16 achieve the best performance. This shows the same pattern as Figure 8,
in which the bigger value does not necessarily result in better performance. Similarly, 10 maps show
the best performance for both Figures 8 and 9. Thus, in our experiments, we set number of maps,
number of local maps, and tiled size as 10, 16, and 2, respectively.

Test accuracy of varying tile size

o ®
IR

Accuracy

83

Tile Size

@6 maps ==@==10 maps 16 maps

Figure 8. Test accuracy of varying tile size with fixed number of local maps (16).

Test accuracy of varying number of local
maps

1 4 9 16 25 36
Number of Local Maps

== Maps ==@=10 maps 16 maps

Figure 9. Test accuracy of varying number of local maps with fixed tile size (2).
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6.3. Enhancement with HOG Feature

HOG features were extracted from the detected frontal views. Figure 10 shows the HOG features
of the frontal views of the vehicle images. The frontal image was resized to 80 x 112 and HOG was
applied to the resized image with 8 x 8 cell size in our experiment. The size of the resultant HOG
features is therefore 10 x 14 x 36. This allows 140 cells with a descriptor of dimension by 36 for each
cell. Figure 11 illustrates that the HOG features characterized the orientations of the frontal view well,
and frontal images that are discriminative with each other are more effective.

Figure 10. HOG features of frontal view of vehicle image, cell size was set to 8 x 8, and the size of the
HOG features is 10 x 14 x 36.

To evaluate the performance of our LTCNN with HOG, we first compared LTCNN-HOG with
LTCNN using varying numbers of training samples; we secured 30 samples for each vehicle model
for the purpose of reasonable training. We divided the samples into a training set and a testing set,
varying the number of training samples between 15 and 29. For each experiment, the accuracy of the
vehicle-model recognition was calculated and plotted, as shown in Figure 11; this figure shows that
LTCNN-HOG outperformed LTCNN regardless of the number of training samples. It is noted that
both curves show an increased accuracy that corresponds with an increased sample number. There
is approximately a 5% accuracy difference between 15 training images and 29 training images for
both algorithms.

Car model recognition with varying number
of samples

100.00%
95.00%
90.00%
85.00%
80.00%
75.00%
70.00%

Accuracy

Number of training data

LTCNN-HOG == == = LTCNN

Figure 11. Accuracy of the vehicle-model recognition with different number of sample sizes for each
experiment. The size of cell and HOG features are set to 10 x 14 x 36, respectively.
6.4. Comparison with Other Algorithms

Lastly, we compared our LTCNN method to the following widely used algorithms: local binary
pattern (LBP) [22], local Gabor binary pattern (LGBP) [23], scale-invariant feature transform (SIFT) [19],
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linear SVM [39], RBM [27], CNN [35], TCNN [40]. Specifically, the experiment protocol of feature
extraction based methods are interpreted in detail, the other algorithms have the same experimental
protocol with LTCNN.

(1) LBP: The LBP operator, one of the most popular texture descriptors of various applications, is
invariant to monotonic changes and computational efficiency. In our experiment, frontal-view
images were characterized by a histogram vector of 59 bins, and the weighted Chi-square distance
was used to measure the difference between the two LBP histograms.

(2) LGBP: LGBP is the extension of LBP incorporated with a Gabor filter, whereby the vehicle images
are first filtered using Gabor and the results are in Gabor Magnitude Pictures (GMPs) frequency
domain. In our experiment, five scales and eight orientations were used for the Gabor filter; as a
result, 40 GMPs were generated for each vehicle image. Also, the weighted Chi-square distance
was used to measure the differences between the LGBP features.

(3) SIFT: SIFT is an effective local descriptor with scale and rotation-invariant properties. Training is
not necessary for the SIFT algorithm. To compare SIFT with our LTCNN that requires training
in advance, we used the same number of training sets to make a comparison with a test image,
and a summation of the matched keypoints was used to measure the similarities between the
two images.

In our experiments, 29 images of each vehicle make were used for training, and the remaining
images were used for testing. The comparison results are shown in Table 1. The results show that
LTCNN with HOG achieved the best performance among the compared methods. Our LTCNN
outperformed the feature extraction based methods significantly. LTCNN also achieved an accuracy
that is 5% higher than CNN/RBM. It is also noted that the 5% accuracy rate was gained by incorporating
HOG features into the LTCNN method. The computational time is also shown in Table 1. The LTCNN
increases the accuracy without significantly increased computional time. The neural network based
algorithms are more scalable towards the increasing number of the classes. In contrast, LBP, LGBP,
SIFT suffers from the long computational time when it comes to large size of images.

Table 1. Performance comparison of vehicle-model recognition with prestigious methods.

Algorithm Accuracy (%) Time (ms)
LBP 46.0 2385
LGBP 68.8 3210
SIFT 78.3 3842
Linear SVM 88.0 1875
RBM 88.2 539
CNN 88.4 1274
TCNN 90.2 843
LTCNN 93.5 921
LTCNN (with HOG) 98.5 1022

7. Conclusions

In this paper, a framework for vehicle MMR that is based on LTCNN is proposed. We first
detected moving vehicles using frame difference; the resultant binary image was used to detect the
frontal view of a vehicle using a symmetry filter. The detected frontal view was used to identify a
vehicle based on LTCNN. The frontal view of the vehicle images were first extracted and characterized
using the HOG features; the HOG features were fed into the deep network for training and testing.
The results show that LTCNN with HOG achieved the best performance among other comparable
methods. Our LTCNN outperforms the feature extraction based methods significantly. The accuracy
of proposed MMR algorithm is 5% higher than the CNN or RBM. Another 5% of accuracy is gained
by incorporating HOG features into the LTCNN method. Thus, the accuracy of LTCNN with HOG
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features shows 10% higher than traditional approaches. Furthermore, computational time of proposed
method takes only 66% of CNN, which means that real-time recognition is possible.

Acknowledgments: This work was supported by the Brain Korea 21 PLUS Project, National Research Foundation
of Korea. This work was also supported by the Business for Academic-Industrial Cooperative establishments
that were funded by the Korea Small and Medium Business Administration in 2014 (Grants No. C0221114). This
research was also supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the ITRC
(Information Technology Research Center) support program (II'TP-2015-R0992-15-1023) supervised by the IITP
(Institute for Information & communications Technology Promotion).

Author Contributions: Yongbin Gao performed experiement; Hyo Jong Lee supervised a whole process. Both
authors wrote the paper equally.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gao, Y,; Lee, H.J. Vehicle Make Recognition based on Convolutional Neural Networks. In Proceedings of the
International Conference on Information Science and Security, Seoul, Korea, 14-16 December 2015.

2. Faro, A,; Giordano, D.; Spampinato, C. Adaptive background modeling integrated with luminosity sensors
and occlusion processing for reliable vehicle detection. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1398-1412.
[CrossRef]

3. Unno, H.; Gjima, K.; Hayashibe, K.; Saji, H. Vehicle motion tracking using symmetry of vehicle and
background subtraction. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey,
13-15 June 2007; pp. 1127-1131.

4.  Jazayeri, A.; Cai, H.-Y,; Zheng, J.-Y.; Tuceryan, M. Vehicle detection and tracking in vehicle video based on
motion model. IEEE Trans. Intell. Transp. Syst. 2011, 12, 583-595. [CrossRef]

5. Foresti, G.L.; Murino, V.; Regazzoni, C. Vehicle recognition and tracking from road image sequences. IEEE
Trans. Veh. Technol. 1999, 48, 301-318. [CrossRef]

6. Wu,],; Zhang, X.; Zhou, J. Vehicle detection in static road images with PCA-and-wavelet-based classifier. In
Proceedings of the 2001 IEEE Intelligent Transportation Systems, Oakland, CA, USA, 25-29 August 2001;
pp. 740-744.

7. Tzomakas, C.; Seelen, W. Vehicle Detection in Traffic Scenes Using Shadow; Internal Report 98-06; Institut Fur
Nueroinformatik, Ruhr-Universitat: Bochum, Germany; August; 1998.

8.  Ratan, A.L.; Grimson, W.E.L.; Wells, W.M. Object detection and localization by dynamic template warping.
Int. ]. Comput. Vis. 2000, 36, 131-147. [CrossRef]

9.  Chen, Z; Ellis, T.; Velastin, S.A. Vehicle type categorization: A comparison of classification schemes. In
Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Washington, DC, USA, 5-7 October 2011; pp. 74-79.

10. Ma, X,; Eric, W.; Grimson, L. Edge-based rich representation for vehicle classification. In Proceedings of the
2005 Tenth IEEE International Conference on Computer Vision (ICCV), Beijing, China, 17-21 October 2005;
pp. 1185-1192.

11. AbdelMaseeh, M.; Badreldin, I.; Abdelkader, M.E; EI Saban, M. Car Make and Model recognition combining
global and local cues. In Proceedings of the 2012 21st International Conference on Pattern Recognition
(ICPR), Tsukuba, Japan, 11-15 November 2012; pp. 910-913.

12.  Hsieh, J.W,; Chen, L.C.; Chen, D.Y. Symmetrical SURF and Its Applications to Vehicle Detection and Vehicle
Make and Model Recognition. IEEE Trans. Intell. Transp. Syst. 2014, 15, 6-20. [CrossRef]

13.  Petrovic, V,; Cootes, T. Analysis of features for rigid structure vehicle type recognition. In Proceedings of the
British Machine Vision Conference, London, UK, 7-9 September 2004; pp. 587-596.

14. Zafar, I.; Edirisinghe, E.A.; Avehicle, B.S. Localized contourlet features in vehicle make and model
recognition. In Proceedings of the SPIE Image Processing: Machine Vision Applications II, San Jose, CA,
USA, 18-22 January 2009; p. 725105.

15. Pearce, G.; Pears, N. Automatic make and model recognition from frontal images of vehicles. In Proceedings
of the IEEE International Conference on Advanced Video and Signal-Based Surveillance, Klagenfurt, Austria,
30 August-2 September 2011; pp. 373-378.


http://dx.doi.org/10.1109/TITS.2011.2159266
http://dx.doi.org/10.1109/TITS.2011.2113340
http://dx.doi.org/10.1109/25.740109
http://dx.doi.org/10.1023/A:1008147915077
http://dx.doi.org/10.1109/TITS.2013.2294646

Sensors 2016, 16, 226 12 of 13

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Llorca, D.E; Colés, D.; Daza, 1.G.; Parra, I.; Sotelo, M.A. Vehicle model recognition using geometry and
appearance of car emblems from rear view images. In Proceedings of the International Conference on
Intelligent Transportation Systems (ITSC), Qingdao, China, 8-11 October 2014; pp. 3094-3099.

Prokaj, J.; Medioni, G. 3-D model based vehicle recognition. In Proceedings of the 2009 Workshop on
Applications of Computer Vision, Snowbird, UT, USA, 7-8 December 2009; pp. 1-7.

Ramnath, K; Sinha, S.N.; Szeliski, R.; Hsiao, E. Car make and model recognition using 3D curve alignment.
In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO,
USA, 24-26 March 2014.

Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91-110.
[CrossRef]

Mikolajezyk, K.; Schmid, C. Scale and Affine Invariant Interest Point Detectors. Int’l ]. Comput. Vision 2004, 1,
63-86. [CrossRef]

Varjas, V.; Tanacs, A. Vehicle recognition from frontal images in mobile environment. In Proceedings of the
8th International Symposium on Image and Signal Processing and Analysis, Trieste, Italy, 4-6 September
2013; pp. 819-823.

Ahonen, T.; Hadid, A.; Pietikainen, M. Face Description with Local Binary Patterns: Application to Face
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037-2041. [CrossRef] [PubMed]

Zhang, W.; Shan, S.; Gao, W.; Chen, X.; Zhang, H. Local Gabor Binary Pattern Histogram Sequence (LGBPHS):
A Novel Non-Statistical Model for Face Representation and Recognition. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Beijing, China, 17-20 October 2005; pp. 786-791.
Lee, H.]J. Neural network approach to identify model of vehicles. Lect. Notes Comput. Sci. 2006, 3973, 66-72.
Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18,
1527-1554. [CrossRef] [PubMed]

Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. DeepFace: Closing the Gap to Human-Level Performance
in Face Verification. In Proceedings of the IEEE International Conference on Computer Vision and Patter
Recognition, Columbus, OH, USA, 23-28 June 2014; pp. 1701-1708.

Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006,
313, 504-507. [CrossRef] [PubMed]

Vincent, P. A Connection between Score Matching and Denoising Autoencoders. Neural Comput. 2011, 23,
1661-1674. [CrossRef] [PubMed]

Ranzato, M.; Hinton, G. Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann
Machines. In Proceedings of the IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA,
USA, 13-18 June 2010; pp. 2551-2558.

Ranzato, M.; Mnih, V.; Hinton, G. Generating More Realistic Images Using Gated MRF’s. In Proceedings of
the Neural Information and Processing Systems, Vancouver, BC, Canada, 69 December 2010.

Rifai, S.; Vincent, P; Muller, X.; Glorot, X.; Bengio, Y. Contractive Auto-Encoders: Explicit Invariance during
Feature Extraction. In Proceedings of the the 28th International Conference on Machine Learning, Bellevue,
WA, USA, 28 June-2 July 2011.

Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and Composing Robust Features with
Denoising Autoencoders. In Proceedings of the the 25th international conference on Machine learning,
Helsinki, Filand, 5-9 July 2008.

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient based learning applied to document recognition. In
Proceeding of the IEEE; 1998.

Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional Deep Belief Networks for Scalable Unsupervised
Learning of Hierarchical Representations. In Proceedings of the 26th Annual International Conference on
Machine Learning, Montreal, QC, Canada, 14-18 June 2009.

Alex, K.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in neural information processing systems, Lake Tahoe, NV, USA,
3-6 December 2012.

Sermanet, P.; Eigen, D.; Zhang, X. Overfeat: Integrated recognition, localization and detection using
convolutional networks. Available online: http:/ /arxiv.org/abs/1312.6229 (accessed on 21 December 2013).
Szegedy, C.; Liu, W,; Jia, Y. Going deeper with convolutions. Available online: http://arxiv.org/abs/
1409.4842 (accessed on 17 September 2014).


http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000027790.02288.f2
http://dx.doi.org/10.1109/TPAMI.2006.244
http://www.ncbi.nlm.nih.gov/pubmed/17108377
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1162/NECO_a_00142
http://www.ncbi.nlm.nih.gov/pubmed/21492012

Sensors 2016, 16, 226 13 of 13

38. He, K,; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Available online:
http:/ /arxiv.org/abs/1512.03385 (accessed on 10 December 2015).

39. Fan, RE.; Chang, KW,; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large linear classification.
J. Mach Learn. Res. 2008, 9, 1871-1874.

40. Jiquan, N.; Chen, Z.; Chia, D.; Pang, W.K.; Quoc, V.L.; Andrew, Y.N. Tiled convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada,
6-9 December 2010; pp. 1279-1287.

41. Hyvarinen, A.; Hoyer, P. Topographic independent component analysis as a model of V1 organization and
receptive fields. Neural Comput. 2001, 13, 1527-1558. [CrossRef] [PubMed]

@ © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons by Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1162/089976601750264992
http://www.ncbi.nlm.nih.gov/pubmed/11440596
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Related Work 
	RBM and Auto-Encoder 
	Convolutional Models 

	Framework of Proposed MMR System 
	Local Tiled Convolutional Neural Networks 
	Histogram of Oriented Gradient 
	Results 
	Frontal-View Extraction 
	Local Tiled CNN 
	Enhancement with HOG Feature 
	Comparison with Other Algorithms 

	Conclusions 

