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Abstract: Center-location of a laser spot is a problem of interest when the laser is used for processing
and performing measurements. Measurement quality depends on correctly determining the location
of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are
fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion
(RD) system as the main computational framework for robustly finding laser spot centers. The
method presented is compared with a conventional approach for locating laser spots, and the
experimental results indicate that RD-based computation generates reliable and precise solutions.
These results confirm the flexibility of the new computational paradigm based on RD systems for
addressing problems that can be reduced to a set of geometric operations.

Keywords: reaction diffusion models; Turing patterns; reaction diffusion computers; reaction
diffusion computation; Fitzhugh-Nagumo model; laser spot position; laser spot detection; laser
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1. Introduction

Nowadays, self-organization is a prolific area of research that throughout the last century has
struggled with developing models to reproduce the complexity found in nature. Reaction Diffusion
(RD) system models belong to this class, and they aim to describe chemical reactions, that under
some circumstances [1], may exhibit stable pattern formation, or even more rich dynamics [2,3].
All of these interesting properties have already been explored in the context of problem-solving by
means of diverse experimental setups [4-10]. Unlike its experimental counterparts, computational
implementations do not rely on energy dissipation, for there is no consumption of chemical species as
is required in the thermodynamics of out-of-equilibrium. Therefore, it results in the appealing possibility
of taking advantage of all the properties of RD models” dynamics, such as their inherent robustness
against noisy data and automatic dismissal of the typical drawbacks of experimental setups. Some
of these properties include natural parallelism of the model propagation; for instance, the frontwaves
that separate stable states into a bistable configuration propagate with constant velocity, and all
possible solutions may be explored in parallel [11,12]. Also, due to its strong nonlinear character,
the interactions between these wavefronts produce counterintuitive results. It has been shown that
such interactions can be used to encapsulate the underlying logic of different types of geometric
operations, and indeed, this has led to the development of a novel computational framework capable
of addressing robotics-related problems [13-15].
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In this paper, the problem of finding the center of a laser spot with high accuracy by means
of the aforementioned RD-based computational framework is addressed, extending its range of
applicability beyond robotic approaches. Traditionally, this problem is carried out in several steps.
The algorithms are diverse, depending on the specific applications (e.g., gaming, laser measurement,
laser triangulation method, cutting edge laser physics experiments such as laser plasma, X-ray
production, sub-atomic particle creation, and even military applications such as target designation
or ammunition guidance—See [16] and references therein). However, two main steps can be clearly
stated: first, a spot detection, commonly based on recognizing circular- or ellipsoidal-like shapes
combined with color selectivity, followed by the actual computation of the spot center. Here, only the
computation of the center is considered, since we are interested in applications where high accuracy is
required, such as high-tech laser experiments, wherein the laser spot is known to occupy the majority
of the detection system’s output (such as an image provided by a CCD sensor). Contrastingly, in
the latter we expect notable aberrations caused by complex production, alignment, and focusing
systems. In a research facility such as ELI Beamlines [17], a laser beam is expected to encounter tens
of optical devices, such as mirrors (static and deformable), telescopes, lenses, etc., from its production
and during its transport towards experimental targets. Therefore, a highly accurate method for
performing calibration of the beams is needed. In addition, this method may also be used for post
processing of experimental data, wherein accuracy, above speediness, is required for fine-tuning and
high-quality experimental characterization of the produced beams.

This paper is organized as follows. The next section provides a brief introduction to the RD
systems and a short explanation about how the external (i.e., sensory) information can be introduced
into the model dynamics. Section 3 introduces a standard algorithm for the location of a laser
spot center, intended to provide a suitable comparison method for the RD-based approach, along
with the description of the RD algorithm. The experimental results, as well as a brief discussion
of our findings, are presented in Section 4. This paper concludes in Section 5 with a summary of
contributions and conclusions, as well as our future directions.

2. The Reaction Diffusion System

A detailed description of the relevant information about RD systems and their dynamics,
required for the comprehension of this text, can be found in our previous work [15]; nevertheless, for
the sake of clarity and self-containment, some fundamental concepts will be reproduced in this and
the following sections. A RD model can be written in the simplest way as a system of two equations:

= f(u,v)+D,Au

v = g(u,v)+DyAv @

Computationally, this system describes the spatio-temporal evolution of both state variables
u=u(Xxt)and v = v (X, t) over an integration grid. Originally, the functions f (#,v) and g (u,v)
represent biochemical aspects of the system, describing how the substances (u,v) are converted
into each other over time. Whilst the so-called diffusive coupling between cells (denoted by the
laplacian terms Au and Av) describes how the substances are spread out in space. The two-variable
FitzHugh-Nagumo (FHN) model [18,19] has remained as one of the simplest available RD cell
models. Its basic formulation is shaped by the following set of coupled equations, where the
particular parameters of the model are denoted as «, §, €, and ¢:

= e¢(u—ud—v+¢)+Dylu

0 = (u—av+p)+Dylv 2)

The first step to analyze its dynamics involves plotting the so-called nullclines, defined as the
geometric shape for which # = 0 and o = 0 in the absence of diffusion (i.e., D, = D, = 0). The
nullclines provide information about the asymptotic behaviour of each isolated cell, generating a
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phase space with information about trajectories and fixed points that may be stable or unstable,
depending on the model configuration. Upon that, the dynamics of each cell are governed by a
combination of the asymptotic behaviour, defined by its nullcline configuration plus the spatial
interactions with other cells due to the diffusive coupling. In addition, an interesting feature of
these systems is the possibility of codifying external information in the model dynamics. On the
one hand, this can be done through the so-called external forcing, which allows the introduction
of binary or even gradient-like information in the computational grid permanently. For example,
in [14] this method was used for introducing the environmental information coming from sensors
in a RD-based robotics exploration algorithm. On the other hand, the external information can be
introduced simply as the initial values for the state variables #,v. In such a case the information is
volatile, as it will be overwritten by the spatio-temporal evolution of the model. This last option is
the one used throughout this work.

3. Laser Spot Centering

3.1. Conventional Algorithm for Laser Spot Centroid Calculations

Conventional spot center-finding algorithms are based on matching basic geometrical shapes
such as circles or ellipses. The spot is expected to be quite similar to one of these patterns (only small
deviations are considered) and the spot shape is fitted as best as possible to the reference shape. For
the fitting part of the method, Least-squares, Hough transforms [20], Fourier transforms, Zernike
moments [21], Gaussian functions [16], etc., are commonly used. Many of these methods are also
based on interpolation schemes for achieving sub-pixel accuracy. However, all of these algorithms
implicitly assume that the laser spot shape is close to a circle. Further refinements of center-location
algorithms consider embedding of the spot in noisy environments, fast-acquisition techniques, and
multi-spot scenarios. However, to the best of our knowledge, there is no algorithm for processing
spots which considerably deviate from circular/ellipsoidal shapes.

In this paper we use a conventional image moment method (IMM) for benchmarking the
proposed RD-based algorithm. Although the above mentioned methods [16,20,21] may provide
better accuracy for a centroid location, the advantages of IMM are its simplicity and performance.
This method can be easy implemented for almost all platforms, including field-programmable gate
arrays (FPGA). Moreover, in order to produce a high-performance algorithm, it is feasible to use
an iterative process to locate the centroid of the laser spot. Using heuristic optimization techniques
(e.g., Hill Climbing [22]), one can recalculate the centroid location after each step of the optimized
algorithm. In this case there is no need for such a high accuracy.

The implementation of the image moment method is described below.

An image acquired from a CCD camera is transformed into a single channel 8-bit gray image

e A simple thresholding is applied to produce a binary image. Each pixel with a value greater
than I, is set to 27 — 1

e  Using the binary data we can find the outer contour of the spot. The topology information, such
as nested contours, is skipped for the sake of simplicity

e Now we can calculate the center of mass of the area surrounded by this contour using the
definition of the centroid:

L xilij Lyili
S - u
X = = (3)
Th; 7T T
ij ]

where [; ; is an image matrix

Figure 1 illustrates different stages of the above algorithm.
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(c) (d)

Figure 1. Steps of the image moment method applied to the original image sample19: (a) 8-bit single
channel gray scale image; (b) binary image, obtained using the threshold value I;, = 27; (c) contour
detection using the binary data; (d) centroid calculation.

3.2. RD-FHN Laser Spot Centering

3.2.1. Exemplification of the FHN-Based Computation

The technique for calculating the coordinates of the laser spot by means of the FHN model

uses the switch-of-phase mechanism introduced in [14,15] that analyses the nullclines in a bistable
asymmetric configuration (see Figure 2). For a bistable nullcline configuration, it is possible to locally
modify the relative stability of both stable points in order make one of them more stable than the other.
In a broad description, the relative stability can be related to the area under the curve as shown in

Figure 2a,b. The notation (551, _}){,,) denotes the most and least stable points respectively, for both

configurations, a and b. Based on this, the following description aims to showcase the mechanism by
which the RD model is used for computation:

First, a two-dimensional integration grid, where each cell has a bistable nullcline configuration
similar to the one depicted in Figure 2a is prepared. As initial conditions, the concentration
values of u,v for all the grid points are set in the less stable state SS_. As a result of this
configuration, the system remains static in those levels of concentration for all cells in the
integration grid.

Then, a geometric figure is introduced in the model using u#,v. This means that for a few cell
points corresponding to the shape of the desired pattern, the values of u,v are set in SS..
Consequently, a frontwave will be triggered, as can be seen in the series of Figure 3a—c, where
the model is evolving from SS_ towards SS.. The diffusive term in Equation (2) explains this
movement. Although the asymptotic behaviour is defined by the nullcline configuration, when
a cell point changes its concentration levels it transfers this change to its neighbor’s by means of
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the diffusive link between them. Hence, the global result is a wavefront that moves the whole
system towards S5.

e  Depending of the particular algorithm used, the END condition for the current phase will be
different. For instance, it can be stopped after a specific number of iterations, or wait until
the model stops its evolution after reaching a static situation. Thus, in the previous step the
spatio-temporal evolution was arbitrarily stopped after 1000 iterations.

e  Finally, switching the nullcline configuration to the one depicted in Figure 2b produces a shift
in the relative stability of the stable states. What in the previous step was SS; now becomes
SS_, and vice versa. This is possible due to the fact that the stable points in both configurations
(55){a,py are very close to each other, as depicted in Figure 2c, where both configurations were
superimposed. Therefore, after a short period of adaptation, (5S_), becomes (SS;),, and
(S54)a becomes (SS_);,. As can be expected, the system starts evolving all its grid points
towards the concentration values of u, v, corresponding to the new SS_. In short, the original
wavefront changes its direction of propagation. This process can be seen in the series of
Figure 3c—e, where the model evolution was again stopped after 1000 iterations.

(55-)a

(a) (b) (c)

Figure 2. Nullcline representations for a bistable system. (a) bistable asymmetric configuration
in which the second stable point is the most stable—therefore, in a system endowed with such a
configuration, the wavefronts will always travel towards (5S4 )4; (b) on the contrary, in this case, the
first stable point is the most stable; (c) both asymmetric configurations are now superimposed, thus
exposing the proximity of their stable points.

+ |+ | + |+

(a) (b) (9 (d) (e)

Figure 3. Model spatio-temporal evolution in a two-dimensional grid. (a) original pattern introduced
as the initial condition by means of u; (b,c) the model is left to freely evolve for a limited number
of iterations; (d,e) a switch of the nullclines configuration reverses the wavefront’s direction of
propagation, and the original pattern contracts over itself.

Needless to say, reversing the direction of propagation of the wavefronts will not have any other
result than modifying the size of the original pattern that was introduced as initial conditions, as it has
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been shown in the whole series of pictures depicted in Figure 3. Therefore, in the current approach,
endowing the system with computing capabilities means to encapsulate geometric operations in the
wavefront propagation. In other words, it is necessary to find configurations for the FHN-model
whose wavefront interactions can be related with specific geometric operations, instead of simply
producing a change in the direction of propagation of the wavefronts. This fact turns out to be the
cornerstone of the RD-based computation, at least in the approach that is exemplified above.

Herein, four different phases in correlation with four different model configurations are used.
Based on the above description of the algorithm, each of these phases can be considered as a filter
that performs a geometric operation over the original image. The succession of phases transforms a
raw image coming from the camera into a small spot corresponding to the expected location of the
laser spot center. Additionally, the spot size is increased in the last phase of the algorithm, to reach a
desired size for the section of the laser beam.

3.2.2. Thresholding Camera Data

The raw data coming from sensors has to be adapted somehow before being used in any
algorithm. In the present case, the cameras provide a gray scale pictures with 8 bits. Besides, for the
location of the laser center spot, only the information that represents laser light is relevant, because
only such information (with respect to the current approach) will trigger the wavefronts used in the
RD computation. Therefore, all information that does not represent laser light has to be filtered based
on the particular value of a grayscale threshold.

The histograms for the 19 images that will be used in Section 4 are shown in Figure 4.

It can be seen that the majority of the information corresponding to the background is below
30 in the abscissa. This is approximately the starting point from which the plateau of the histogram
starts for all the images. Values above this threshold represent laser light. The histogram also acts as
a calibration method for both cameras and the RD algorithm.

41_\,,11;,,,,11 RULVA LN LN ,“JL 1L VAL JAVITAWA (VA AAVAN V1 TR L
20 40 60 80 100 120 140 160 180 200
Nbr. of channels

Figure 4. Overlaid histograms corresponding to the 22 samples. Notice that the Y-axis representing
the number of pixels is in logarithmic scale.

3.2.3. Algorithm Description

As described in Section 2, the FHN model accepts external information by simply using the
initial concentration values of the state variables u, v. This will introduce a “pattern” in the system, as
discussed in Section 3.2.1. Then, the system will evolve and clearly will overwrite such a pattern by
the new u, v values. The evolution will be different in regards to the particular model configuration.



Sensors 2016, 16, 315 7 of 11

In the present case, the “pattern” to be introduced corresponds the profile of the laser beam that will
be transferred at the first stage of the algorithm using the u variable. For that purpose, the matrix
containing the camera data has to be mapped from the original [30 200]. After that, by means of the
previously described switch-of-phase mechanism, the algorithm will perform smooth transitions from
one phase to the next. Also, when a specific phase of the algorithm relies on a nullcline configuration
similar to the one depicted in Figure 2a, it will be called expansion-phase, whilst the nullclines depicted
in Figure 2b will correspond to a contraction-phase. This terminology was first introduced in [23], and
it has been maintained in subsequent publications for the sake of clarity. The different stages of the
FHN-based laser spot centering algorithm are described below:

Firstly, a contraction phase where the result of the model evolution will be removal of the
background noise. Besides, the edges of the beam section become smoother. An exemplification
of this process is depicted in the series of pictures in Figure 5a—d. This phase runs for only 1500
iterations, a value that was determined experimentally.

The second phase, an expansion in this case, removes all the remaining patches of wavefronts
that appear as isolated regions and also further smooths the contour of the laser beam. This
process can be seen in the series of pictures depicted in Figure 5e-h. In this case, 5000 iterations
is the appropriate value.

The third phase is again a contraction, where the wavefront representing the laser beam contour
retracts over itself, decreasing its size until the supposed laser spot center. The result of this
phase is a small spot that coincides with the centering of the laser beam. The process is shown
in the series of pictures depicted in Figure 5i-o. The end condition of this phase is determined
by the system reaching a static situation in the model evolution. The main reason underlying
this behaviour is the constant speed of the wavefront propagation; therefore, the velocity of
contraction is the same in all directions.

A final expansion phase results in the growth of the small spot that was achieved in the previous
step until it reaches the size of the supposed original laser beam contour. Although this phase
is non-essential for obtaining the coordinates of the laser spot, it shows how the FHN-based
computational approach is able to process geometric information. The process is represented
in the last series of pictures shown in Figure 5p—t. In this last case, the number of iterations
varies according to the desired size of the beam section, from which it is also trivial to extract the
beam contour.

It must be noticed that all images in Figure 5 have been cut out around the area of interest to

include a larger number of them in the figure. Also the chosen representation aims to give a 3D
glimpse of what is actually a 2D grid, which makes it easier to see the RD evolution, but also slightly
deforms the final perspective.

The set of FHN model values for each phase is represented in Table 1.

Table 1. Set of values for the FitzHugh-Nagumo (FHN) model, in order to reproduce the specific
behaviors in each of the four stages of the Reaction Diffusion (RD)-based algorithm.

FHN Parameters

i3 B e D, D,
contraction 5 01 10 01 1.5
Phase expansion 4 —05 40 045 2
contraction 5 01 10 01 1.5
5

expansion -02 10 01 15
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(b) (c) (d)

(e) () (8) (h)

(®) () (k) M (m) (n) (o)

(p) (9) () (s) ®)

Figure 5. Steps of the RD-based laser spot algorithm applied to the image sample19: (a—d) first stage of
the algorithm, where a contraction phase smoothes all of the noisy contour; (e-h) second stage, where
an expansion phase removes undesirable isolated spots that are interpreted as noise; (i-o) third stage
where an cotraction phase reduces its size until the supposed laser spot center; (p-t) final and extra
stage that reconstructs the expected circular beam.

4. Results and Discussion

In our experience, selection of the right metrics is a cumbersome task when trying to compare the
outcome of a RD-based algorithm with the results of a standard one. However, in this work, the offset
vector between centroids calculated by IMM and FHN-based method has been chosen. Since the same
images were used as an input for both calculations, such vector being normalized to the number
of pixels in each direction provides a meaningful metrics. The results are summarized in Table 2
which shows a good agreement between the standard image moment method and its FHHN-based
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counterpart. Figure 6 depicts the results in terms of distances between centroids calculated by

both methods.

Table 2. The comparison between the image moment method (IMM) and the RD method. Coordinates

are in pixels. The offset value is normalized to the number of pixels in each direction.

Centroid Coordinates

IMMx IMMy RDx RDy  Offsetx(1073) Offsety (10~3)
1 342330 584.317 342452 584.337 —0.095 —0.021
2 353200 590.375 353.304 590.349 —0.081 0.027
3 342330 584.317 342.452 584.337 —0.095 —0.021
4 366.411 585350 366.306 585.524 0.082 —0.181
5 373349 594326 373.339 594.661 0.008 —0.349
6 568.699 552488 562.710 562.493 4.679 —10.422
7 649.642 536.352 648.890 547.549 0.588 —11.664
8 646.670 599.226 644.034 615.806 2.059 —17.271
9 131.899 460.435 132.180 460.296 —0.220 0.145
Image 10 662283 453.218 661.256 458.574 0.802 -5.579
11 662263 453.169 661.517 458.714 0.583 —5.776
12 662.642 453.075 661.465 458.493 0.920 —5.644
13 213.383 477399 216.049 480.340 —2.083 —3.064
14 655.300 510910 653.975 520.126 1.035 —9.600
15 187.473 472137 188.648 473.333 —0.918 —1.246
16 655563 511.081 654.045 520.999 1.186 —10.331
17 625730 463.174 624.991 469.963 0.577 —7.072
18 578.307 531.479 586.126 523.829 —6.109 7.969
19 574611 380.773 577.164 380.872 -1.995 -0.103
7
o6l
s 5
BN
© 3t
i . |
o 1] |
“ _Hm :DDDHDDDD H
5 10 15 20
18 ‘ —_ ‘
~ 16}
L 4]
x 12¢
5 10
M|
TR
0 — 1™
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20
Image number

Figure 6. Illustration of the results depicted in Table 2. The height of each bar corresponds to the

distance between centroids calculated by both methods.

It is remarkable that many of the traditional center-location algorithms tacitly assume that the
laser spot outer contour can be approximated to a circle or an ellipse. In some cases, the beam is
intentionally defocused in order to fit a Gaussian profile (whose contour maps are also circles—See

for instance [16]), which may introduce large errors in the center position of non-symmetrical spots.
On another hand, while using ellipses to approximate the shape of the spot contour may improve the
calculation, one would expect the algorithm to produce non-neglectable errors for non-symmetrical

spots as well.

Regarding the RD-based method, it is noteworthy that no fine tuning at all was necessary in
any phase of the algorithm, in any case. As long as the threshold value obtained from a collection of
samples is well defined, the algorithm works seamlessly for finding the center in all cases. Indeed,
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three samples were removed from the collection used in the comparison, as the IMM method was
not able to properly handle those samples. However, this fact is not really relevant, because the
IMM algorithm can be improved as much as necessary in regards to the particular optical set up
(beam path, optical elements, etc.) that produces the misalignments, or can also be combined with
other algorithms to increase its accuracy. It is, however, worth mentioning the robustness of the
FHN-based solution. This quality makes the algorithm especially interesting for being integrated in
other systems, for instance in an automatic alignment setup, where the robustness of the method
(understood as the fact that a solution will be always provided) is preferable over accuracy.

5. Conclusions and Future Work

The proposed algorithm can accurately find the center of a spot, regardless of its shape or
whether the spot image is highly noisy. As shown in the previous section, the algorithm behaves
very well when the images are noisy, and when the spot presents strong arbitrary aberrations. In this
context, the RD-based method may be useful during the calibration of beams in research facilities, or
in data post-processing, wherein robustness of the method is preferred.

From a broader perspective, the RD-based computation has been in the spotlight of many works
regarding non-linear science for a long time, due to the numerous and interesting properties exhibited
by the spatio-temporal evolution of the models. The main problem faced by RD computation was
the lack of stable states as the outcome of the computation. This stems from the fact that using
excitable nullcline configurations has been the norm so far for implementing RD-based computation.
However, such configurations only generate transient states that have to be checked iteratively, a
fact that undermines the usefulness of the algorithm. The herein-presented approach based on the
switch-of-phase mechanism in a bistable asymmetric nullcline configuration overcomes that problem,
generating final stable states as the output of the computation.

Furthermore, the presented results are an extension of our previous studies, where different
behaviors have been successively included in a RD-based computational core. The addition of
the laser spot detection algorithm adds new capabilities to that novel approach, and represents
another step in the direction of consolidating a computational framework completely based in
RD computation. For that reason, it will be interesting to continue pursuing applications for the
developed framework, to extend the range of applicability, and also with the aim of demonstrating
the feasibility of using RD models to develop general purpose computation. This will also make
interesting a port to specialized hardware.
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