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Abstract: In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe
projection technique applies complex and laborious procedures to compensate for the errors that
exist in the vision system. However, the error sources in the vision system are very complex, such
as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be
explained or rendered with clear expressions and are difficult to compensate directly as a result.
In this paper, an approach is proposed that avoids the complex and laborious compensation procedure
for error sources but still promises accurate 3D measurement. It is realized by the mathematical
model extension technique. The parameters of the extended mathematical model for the ’phase to
3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm.
In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase
map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy
of the proposed flexible fringe projection vision system on spatially continuous and discontinuous
objects for 3D measurement.

Keywords: three-dimensional (3D) measurement; fringe projection; mathematical model extension;
phase to 3D coordinates; least-squares parameter estimation; phase-coding

1. Introduction

Industrial safety inspection has recently received considerable attention in the academic
community and technology companies. The accurate three-dimensional (3D) measurement provides
important information on monitoring workplaces for industrial safety. Numerous techniques on
3D measurement have been studied, including Stereo-vision, Time-of-Flight, and structured light
technique. Among these techniques, the phase-shifting digital fringe projection is widely recognized
and studied due to its high resolution, high speed, and noncontact property [1,2]. In a fringe projection
vision system, the projector projects light patterns with a sinusoidally changing intensity onto the
detected objects, and the pattern images are deformed because of the objects′ physical profile; then,
a camera captures the deformed pattern images. The absolute phase map on the detected objects is
derived by the phase unwrapping of the captured deformed fringe patterns. The 3D information is
uniquely extracted on the basis of the mapping relationship between the image coordinates and the
corresponding absolute phase value. Considering the digital projector has a large working range, the
fringe projection technique can be used on large scene reconstruction for industrial safety inspection.

In contrast to the polynomial fitting method [3,4] and least-squares method [5–7], the
phase-to-depth transformation based on the geometrical modeling method [8–13] has been widely
studied and used in the phase-shifting structured light technique owing to several advantages. First,
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no additional gauge block or precise linear z stage is needed for calibration, which simplifies the
calibration process and offers more flexibility and a cost savings. Second, there can be no restriction on
the camera’s and projector’s relative alignment regarding parallelism and perpendicularity. Third, it
has a clear and explanatory mathematical expression for the phase to 3D coordinates transformation
since it is derived from the triangulation relationship of the camera, projector, and detected object.

Although it has the advantages mentioned above, the given mathematical expression does not
have sufficient accuracy because the adopted simplified geometrical model ignores the lens distortion
and lens defocus of the fringe projection system. On the other hand, there are some other error sources
that exist in the vision system that influence the accuracy of the 3D measurement. As a result, a large
amount of work has been devoted to improving the measurement accuracy by considering the lens
distortion [5,14], the gamma nonlinearity for phase error elimination [15,16], the high-order harmonics
for phase extraction [17], the ambient light for phase error compensation [18], etc.

The extended mathematical model proposed in this paper eliminates the uncertainty in the
calibration parameters and the uncertainty in the phase extraction. In addition, it will not incur any
computational burden during normal computation of the phase to depth transformation. It avoids the
time-consuming iterative operation and exhibits more precision.

Experiments are carried out for a single object and multiple spatially discontinuous objects
with the proposed flexible fringe projection vision system by the extended mathematical model.
For spatially isolated objects, the fringe orders will be ambiguous for the phase unwrapping, which
makes it difficult to retrieve the absolute phase directly for three-step phase-shifting technique. As a
result, the depth difference between spatially isolated surfaces is indiscernible. Therefore, in order
to obtain an accurate 3D measurement of multiple discontinuous objects, several approaches are
developed to derive an accurate absolute phase map. The gray-coding plus phase-shifting technique
is one of the better methods to obtain the fringe order [19]. However, at least several more patterns
are required to generate the appropriate number of codewords, which slows down the computational
timing. In addition, Su [20] generated sinusoidal fringe patterns by giving every period a certain
color, and the fringe order was provided by the color information of the fringe patterns. However, the
phase accuracy might be influenced by the poor color response and color crosstalk. Wang et al. [21]
presented a phase-coding method. Instead of encoding the codeword into binary intensity images,
the codeword is embedded into the phase range of phase-shifted fringe images. This technique has
the advantages of less sensitivity to the surface contrast, ambient light, and camera noise. However,
three more frames are necessary for the phase-coding method. In this research, in order to realize
the accurate 3D measurement of multiple discontinuous objects with the abovementioned extended
mathematical model, we propose a new phase-coding method to obtain the absolute phase map by
only adding one additional fringe pattern.

The structure of this paper is as follows. Section 2 reviews the principles for obtaining the
3D coordinates from the absolute phase. Section 3 introduces the mathematical model extension
with least-squares parameter estimation. Section 4 presents the realization of the flexible fringe
projection vision system for the accurate 3D measurement of a single continuous object by the extended
mathematical model. Section 5 introduces the new phase-coding method for deriving an accurate
absolute phase map for spatially isolated objects. Finally, the conclusions and the plans for future work
are summarized.

2. Principle on Absolute Phase to 3D Coordinates Transformation

The geometrical model of the proposed fringe projection measurement system is shown in Figure 1.
The camera and the projector are all described by a pinhole model. The camera imaging plane and the
projection plane are arbitrarily arranged. The reference plane OXY is an imaginary plane, which is
parallel to the projection plane. The projector coordinate system is denoted as OpXpYpZp. The camera
coordinate system is denoted as OcXcYcZc. The imagined reference plane coordinate system is denoted
as OXYZ denotes. P represents an arbitrary point on the detected object. (x, y, z), (xc, yc, zc), (xp, yp, zp)
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denote the imaginary reference coordinate, the camera coordinate and the projector coordinate of
the point P, respectively. The imaging point of the point P is indicated as the point C. The point D
indicates the fringe point which projects at the point P in space. The points A and B denote the lens
center of the camera and the projector, respectively. Line ED is one of the sinusoidal fringes which
is parallel to xp - axis. Line BG is vertical to Line ED. Line PP′ is parallel to Z-axis and crosses the
imaginary reference plane at point P

′
. PP1 is the extension line of ray DP and crosses the imaginary

reference plane at point P1 . P′P′0 and P1P′1 are parallel to X-axis and cross the Y-axis at point P
′
0 and

P
′
1, respectively. The mathematical description of the phase to 3D coordinates transformation [22] is

as follows:

zc =
K(r−1

21 tx + r−1
22 ty + r−1

23 tz)− (r−1
31 tx + r−1

32 ty + r−1
33 tz)

K(r−1
21 D1 + r−1

22 D2 + r−1
23 )− (D1r−1

31 + D2r−1
32 + r−1

33 )
(1)

where K = 2π f p

(ϕ−ϕ0)λ0
, D1 =

uc−uc
0

f c
x

, and D2 =
vc−vc

0
f c
y

. Furthermore, the coordinates (xc, yc) at the given

pixel (uc, vc) are obtained by the calculated depth zc as follows:

xc = D1zc (2)

yc = D2zc (3)

By solving Equations (1)–(3), the xc, yc, and zc coordinates for each point of the detected object in
space are obtained from the absolute phase ϕ.

Figure 1. Geometrical model for the phase to depth transformation.

ϕ0 is the absolute phase of the center of the circle at Point B. (uc
0, vc

0) is principal point of the
camera plane. f c

x and f c
y are the scale factors in the image plane along the xc and yc axes. (up

0 , vp
0 ) is

principal point of the projector plane. f p is the scale factor in the projector plane along the x and y axes.
R and T are the rotation and translation matrixes from the projector coordinate system to the camera
coordinate system. They are expressed as:
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3. Mathematical Model Extension with Least-Squares Parameter Estimation

3.1. Error Analysis

Before working on the mathematical model extension, we first discuss the error sources existing in
the fringe projection system. The errors can be considered as a combination of systematic and random
errors. A detailed description of the error sources is illustrated in Figure 2.

Figure 2. The classification of error sources.

As for random errors such as noise and the fluctuation in the environmental light, filtering and
multiple sampling can be applied to avoid them as much as possible. For systematic errors, from the
observation of Equation (1), they include

(1) The uncertainty in the computed model. The simplified geometrical model f (·), which does
not consider the lens distortion and lens defocus, results in a systematic error. σf (·) denotes the
standard deviation (std) of the simplified model.

(2) The uncertainty in the system calibration parameters. σf c
x , σf c

y , σuc
0
, and σvc

0
denote the std of the

estimated camera parameters f c
x , f c

y , uc
0, and vc

0, respectively; σf p denotes the std of the projector
focus length f p; σR denotes the std of the rotation matrix between the camera and the projector R;
and σT denotes the std of the translation matrix between the camera and the projector T.

(3) The uncertainty in the phase map. The nonsinusoity of the fringe pattern will result in a phase
map error. σϕ denotes the std of the absolute phase map ϕ; σϕ0 denotes the std of the absolute
phase of the projection center ϕ0.

The whole fringe projection system error σz is accumulated by the abovementioned errors.

3.2. Mathematical Model Extension

Considering the complex error sources introduced above, it is difficult to compensate for all of
them with a single processing method. In order to eliminate the uncertainty and improve the 3D
measurement accuracy with less computational time and complexity, the mathematical model of the
phase to 3D coordinates transformation is extended on the basis of the mathematical expression and the
uncertainty in the parameters introduced in Section 3.1, and several parameters are added that more
accurately describe the relationship between the phase and absolute 3D coordinates. The extended
mathematical model is expressed in Equations (4)–(7). zm

i is the measured depth value with the
extended mathematical expression and expressed as follows:
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zm
i =

K(r−1
21 tx + r−1

22 ty + r−1
23 tz + C1)− (r−1

31 tx + r−1
32 ty + r−1

33 tz + C2)

K(r−1
21 D1 + r−1

22 D2 + r−1
23 + C3)− (r−1

31 D1 + r−1
32 D2 + r−1

33 + C4)
+ K′ (4)

where i is the ordinal number of each valid point.

K =
2π( f p + K f p)

((ϕu)m
i − ϕ0 + Kϕ)λ0

(5)

D1 =
(uc)m

i − uc
0 + Ku0

f c
x + K f c

(6)

D2 =
(vc)m

i − vc
0 + Kv0

f c
y + K f c

(7)

where C1, C2, C3, C4, K f p, Kϕ, Ku0, Kv0, K f c, and K′ are the parameters to be determined. C1 and C2

are the parameters related to the uncertainty of system calibration parameters R and T. K f p and K f c
are the parameters related to the uncertainty of the calibrated focus length of the projector and the
camera, respectively. C3 and C4 are the parameters related to the uncertainty of rotation matrix R. Kϕ

is the parameter related to the phase unwrapping process. Ku0 and Kv0 are the parameters related
to the uncertainty of the calibrated principle points of the camera. K′ is the parameter related to the
computational model on the phase to depth transformation.

4. Realization and Experiments with Single Continuous Objects

4.1. Experimental Setup

The experimental setup is shown in Figure 3. The projection unit (DLP LightCrafter, Texas
Instruments) projects light patterns onto the target object during measurements. The smart camera
(Vision Components VC6210nano, Vision Components GmbH) is responsible for capturing the
deformed images. It has an image resolution of 752 × 480 pixels. For the projection unit, the physical
resolution of the DLP3000 digital micromirror device (DMD) is 608 × 684 pixels in a diamond array.
The DLP3000 DMD is a digitally controlled micro-opto-electromechanical system (MOEMS) spatial
light modulator (SLM), which is used to modulate the ampitude and direction of the incoming light.
The individual mirror is 7.6 µm square. For a working distance of approximately 600 mm, the width
of the projected image is 360 mm; this corresponds to a horizontal resolution of 0.414 mm per pixel
assuming “perfect” optics.

Figure 3. Experimental setup of the fringe projection vision system: Fringe patterns are projected by
the projector. The deformed fringe patterns are captured by the camera. The system calibration is
implemented with the help of the calibration board.
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4.2. System Calibration

In this study, the plane-based system calibration method is applied to obtain the intrinsic
parameters of the camera and projector and their relative positions [23]. Figure 4 shows the calibration
patterns. Figure 4a shows the checkerboard pattern for the camera calibration. Figure 4b shows the
projected checkerboard pattern for the projector calibration, which covers the same field of view as the
camera calibration. In addition, three vertical sinusoidal fringe patterns are projected by the projector
and captured by the camera for each calibration position. One example pattern is shown in Figure 4c.
The reason for doing this is to obtain the measured depth map for the same calibration position by the
three-step phase-shifting technique proposed in this paper.

Figure 4. Calibration fringe patterns: (a) checkerboard for the camera calibration; (b) projected
checkerboard for the projector calibration; and (c) projected sinusoidal fringe pattern for the
depth calculation.

The obtained system calibration is based on the intrinsic parameters of the camera calibration.
Therefore, the camera calibration plays an important role in the whole fringe projection 3D
measurement. The camera calibration error will be added to the system calibration for the plane-based
calibration method. Fortunately, the camera calibration technique is presently very mature and robust.
In order to acquire precise camera calibration results, the nonlinear parameter optimization algorithm is
adopted by taking full advantage of the geometry of the calibration plane in this paper [24–26]. Figure 5
shows the camera calibration reprojection error and the extrinsic parameters for the abovementioned
experimental setup. The std of the reprojection error is (0.09870, 0.09053) pixels, and it is equivalent to
0.03 mm for an image resolution of 752 × 480 pixels.

From Figure 5a, the worst reprojection error for some feature points is up to 1 pixel, and the
error is up to approximately 0.3 mm, which is not acceptable. For the feature points that are chosen
with known geometrical knowledge, we choose points with a reprojection error within 0.25 pixels,
which is equivalent to 0.07 mm in the worst case. On the one hand, this still provides enough fitting
data to obtain the extended mathematical model parameters. On the other hand, this is the error that
we can accept for our fringe projection vision system since the chosen projector of this system has a
resolution of 0.414 mm. The std of the reprojection error for the projector is (0.77058, 0.48506), and
the reprojection error is equivalent to 0.319 mm, which is much higher than the error deviation of
0.07 mm for the reference coordinates. The 3D information for the calibration plane can be regarded as



Sensors 2016, 16, 612 7 of 15

known geometrical knowledge. The relative positions of the calibration planes based on the camera
coordinate system are shown in Figure 5b.
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Figure 5. Camera calibration results. (a) Reprojection error and (b) relative positions of the calibration
planes based on the camera coordinate system.

4.3. Derivation of the Extended Mathematical Model Parameters

To derive the extended mathematical model parameters introduced in Section 3.2, we first define
an error function of the form e(u, v). In the sense of least squares, the parameters can be estimated by
minimizing the sum of squares of ei(uc, vc):

min

{
N

∑
i=1

e2
i

}
= min

{
N

∑
i=1

(zr
i − zm

i )
2

}
(8)

where i is the ordinal number of each valid point, and N is the total number of valid points that are
used in the calculation. Zr

i is the reference depth of the ith valid point, which is known in advance as the
basic geometric information of the calibration target at different positions from the camera calibration,
as introduced in Section 4.2. Zm

i is the measured depth of the ith valid point using the extended
mathematical model in Equation (4) to the same calibration plane. By solving Equations (4)–(8),
the least-squares parameter estimate is implemented. The obtained parameters are as follows:

C1 = 0.048, C2 = 0.083, C3 = 0, C4 = 0, K f p = 0, Kϕ = 2.7, Ku0 = 17.9, Kv0 = 0, K f c = −6.975,
and K′ = 0.2.

4.4. Experimental Results

In order to verify the extended mathematical model for the phase to 3D coordinates transformation
technique introduced in this paper, we measured the cylinder and hand plaster models shown in
Figure 6. Firstly, we carried out the measurement for the cylinder plaster model in Figure 6a with
the fringe projection vision system. The point clouds of the measured surface in Matlab are shown in
Figure 7a. It should be mentioned that the direction of Xc is defined to be inversed to the placement
of the detected object. In Figure 7a, X

′
c is defined to be opposite to the Xc as so to display the

measured surface upright. The radius of the cylinder is 52.5 mm. The measured radius is 51.9 mm
when Equations (1)–(3) are applied, as shown in Figure 7b. The error is 0.6 mm without using the
mathematical model extension technique.
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(a) (b)

Figure 6. Detected targets. (a) Cylinder and (b) hand plaster models.
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Figure 7. 3D measurement by the fringe projection vision system. (a) 3D point clouds in Matlab and
(b) curve of the cross section.

In order to obtain an accurate 3D measurement, the mathematical model extension technique
using least-squares parameter estimation, as introduced in Section 4.3, is applied. After applying
Equations (4)–(7) with the abovementioned parameters, the surface of the cylinder is obtained.
The terminal points of the cross section to the cylinder surface are A:(52.39, 31.27, 674.7) and
B:(51.78, 136.2, 680). The connection of Points A and B forms the diameter of the cross section of
the cylinder. The calculated radius is 52.53 mm. The error is 0.03 mm when applying the extended
mathematical model. In addition, the cylinder with Xc from about 20 mm to 60 mm was truncated and
shown in Figure 8. A sequence of radius was obtained for the truncated cylinder. The mean value of
the measured radius is 52.25 mm. The root mean square deviation (RMSE) of the measured radius is
0.033 mm. It can be clearly seen that the measurement accuracy is significantly improved when using
the mathematical model extension technique. The surfaces measured on the cylinder and the hand
plaster models with Meshlab are shown in Figure 9. The color changes gradually on the basis of the
coordinate Xc and Zc for the cylinder and the hand plaster model, respectively.
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Figure 8. 3D measurement by the extended mathematical model.

(a) (b)

Figure 9. 3D measurement by the fringe projection vision system. (a) Cylinder and (b) hand surfaces
displayed with the Meshlab tool.

4.5. Performance Comparison with Kinect

Similar to the fringe projection vision system described in this paper, Kinect is another kind
of structured light technique that uses a speckle pattern to realize a 3D measurement. It is a
commercialized product mainly used for gesture control and home entertainment. The depth
measurement range for Kinect is 500−3500 mm. It has a resolution of 640 × 480. The fringe projection
vision system described in this paper has a working range of 364−2169 mm. Moreover, it has a
resolution of 608 × 684. It can be clearly seen that they have very similar measurement specifications.
Thus, the detected plaster models are also measured with Kinect in this research work. The detected
targets are also placed at a working distance of approximately 650 mm, which is similar to the proposed
fringe projection vision system. The measured surfaces are shown in Figure 10.

From Figure 10, we can see that the flatness of the measured surface is much worse compared with
the surface measured with the proposed fringe projection vision system in Figure 9. The advantage of
Kinect is that it has a special optical design that allows the device to obtain a much larger field of view
than the fringe projection vision system proposed in this paper.
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(a) (b)

Figure 10. 3D measurement with Kinect. (a) Cylinder and (b) hand surfaces measured with the
Meshlab tool.

5. Experiments with Multiple Discontinuous Objects

In phase-shifted fringe projection technique, three sinusoidal fringe patterns are projected onto
the object surface with phase shifts of 0, 2π/3, and −2π/3 in this study. The corresponding intensity
distributions are as follows:

I1(x, y) = I
′
(x, y) + I”(x, y)cos[ϕ(x, y)− 2π/3]

I2(x, y) = I
′
(x, y) + I”(x, y)cos[ϕ(x, y)]

I3(x, y) = I
′
(x, y) + I”(x, y)cos[ϕ(x, y) + 2π/3]

(9)

where I
′
(x, y) is the average intensity, I”(x, y) is the intensity modulation, and ϕ(x, y) is the phase to

be solved. By solving the above equations, the phase at each point (x, y) of the image plane is obtained
as follows:

ϕ(x, y) = tan−1 [

√
3(I1 − I3)

2I2 − I1 − I3
] (10)

By solving Equation (10), the obtained phase is a relative value between −π and +π. A spatial
phase-unwrapping algorithm can be used to remove the 2π discontinuities. The obtained absolute
phase is

Φ(x, y) = φ(x, y) + k(x, y)2π (11)

where k(x, y) is the fringe order.
Nevertheless, for spatially isolated objects, the fringe orders will be ambiguous. It is difficult to

retrieve the absolute phase directly. As a result, the depth difference between spatially isolated surfaces
is indiscernible. In order to reliably obtain the absolute phase map, a new phase-coding method is
proposed that takes full advantage of the frequency characteristic of the sinusoidal fringe pattern.

Figure 11 shows the designed fringe pattern. It consists of the codewords that give the fringe
order information of k. Figure 12 illustrates the relationship among the sinusoidal fringe pattern with a
phase shift of zero, the wrapped phase with a relative value between −π and +π, and the codewords
of the designed pattern. It should be mentioned that the retrieved wrapped phase is ten times the
actual value in order to observe the relationship with the codewords of the designed pattern clearly.
The period of the sinusoidal fringe pattern ps is set to 32 pixels in this study. pl is the regional period
of the designed codewords. Each codeword consists of a sequence of sinusoidal fringe patterns, and
the codewords change from period to period according to the 2π phase-change period. pl equals 2,
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3, 4, 5, 6, and 8 pixels separately, as shown in Figure 12. The designed pattern shown in Figure 11 is
formed by repeating the codewords (pl = 2, 3, 4, 5, 6, 8). In addition, when in the system calibration,
the projector projects the design pattern to the calibration board, and the camera captures the design
pattern. The obtained design pattern is recognized as the template design pattern. It can be used for
partition to the detected area to avoid the phase codewords aliasing effect. With the design pattern as
shown in Figure 11, there are three partitions at most in the practical application.

Figure 11. Designed fringe pattern that gives the fringe order information.
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Figure 12. Plot of the sinusoidal fringe pattern with a phase shift of zero that is colored in blue, the
phase codeword of the designed fringe pattern that is colored in red, and the wrapped phase that is
colored in cyan.

From the plot of the codewords of the designed pattern, we know that the frequency component
of the codewords changes from high to low. An analysis of the sinusoidal fringe pattern of the designed
codewords was carried out for the ideal projected patterns and captured patterns. The results are listed
in Table 1. It can be seen that the frequency components for various codewords do not exhibit aliasing.
The fringe order k in Equation (11) can be reliably obtained on the basis of a frequency analysis of
the codewords.
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Table 1. Frequency component of each phase codeword.

Codeword Period Ideal Sinusoidal Fringe Pattern Captured Sinusoidal Fringe Pattern

p1 2 80.5 82 ± 1
p2 3 53.2 54 ± 0.5
p3 4 40.5 41 ± 0.5
p4 5 32.6 33.5 ± 0.5
p5 6 27.3 28 ± 0.5
p6 8 20.5 21 ± 0.5

We take one example to describe the framework for obtaining the absolute phase map for multiple
discontinuous objects. The detected objects include one cylinder and one cone. They are discontinuous.
The designed pattern shown in Figure 11 is projected onto the detected objects. The captured fringe
pattern is shown in Figure 13a. The left object is one cylinder. The right object is one cone. The absolute
phase map retrieval of the spatially isolated objects is implemented in the following steps:

Step 1: Obtain the wrapped phase from the captured sinusoidal fringe patterns. Segment the
whole image into I various continuous regions on the basis of the branch-cut map of the wrapped
phase. Set the feature point in a continuous region, such as Point A (434, 181) and Point B (444, 493) in
Figure 13a. The chosen feature points are better located in the middle of a 2π phase period as shown
in Figure 13a.

Step 2: Adopt the conventional phase-unwrapping algorithm to unwrap the phase for each region
to obtain the relative phase map Φr

i (x, y) (i = 1· · ·I). In the example shown in Figure 13a, Φr
cyl(x, y)

denotes the relative phase map of the cylinder. Φr
con(x, y) denotes the relative phase map of the cone.

Here we still take the cylinder as the object of research. The absolute phase map of the cone equals its
relative phase map as follows:

Φa
con(x, y) = Φr

con(x, y) (12)

The absolute phase map of the cylinder is obtained as

Φa
cyl(x, y) = Φr

con(x, y)− k ∗ 2π (13)

where k is the fringe order difference between Points B and A.
Step 3: Obtain the fringe order difference of the phase codeword of Points A and B. We take Point

A as an example to explain the retrieval of the fringe order. Firstly, find the 2π phase period that
includes Point A and locate the zero-crossing points A′ and A′′ within the 2π phase period, as shown
in Figure 13b. Take a Fast Fourier Transformation (FFT) of this phase period and derive the frequency
component, as shown in Figure 13c. The obtained frequency component is about 54 Hz. From Table 1,
we know that the phase codeword is p2. Similarly for Point B, the codeword is p1. The difference in
the fringe order k of Points A and B is 5.

On the basis of the Equations (12)–(14), the absolute phase map of the detected objects is derived
as shown in Figure 14a. Furthermore, gray-coding plus phase-shifting method is also applied to obtain
the absolute phase map of the detected objects. The obtained absolute phase map is the same with the
result obtained by the proposed phase-coding method. By applying the abovementioned extended
mathematical model, the measured surfaces in Matlab are shown in Figure 14b. The measured surfaces
in Meshlab are shown in Figure 14c. The color changes gradually on the basis of the coordinate Zc.
The calculated radius of the cylinder is 52.56 mm. The error is 0.06 mm. The experimental results
demonstrate the effectiveness of the proposed phase-coding method. However, the error is a little larger
than the measured radius with single object. More effort will be made to improve the performance of
the proposed fringe projection vision system on multiple spatially discontinuous objects.
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Figure 13. Absolute phase map retrieval for spatially isolated objects. (a) Captured designed fringe
pattern for multiple discontinuous objects; (b) graph for finding the phase zero-crossing points that
include the chosen feature point; and (c) frequency component obtained by an FFT.
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(c)

Figure 14. 3D measurement by the fringe projection vision system. (a) Absolute phase map;
(b) measured 3D surface for discontinuous objects in Matlab; and (c) measured 3D surface for
discontinuous objects, shown in Meshlab tool.

6. Conclusions

In this study, a flexible fringe projection vision system is proposed that relaxes the restriction on the
camera’s and projector’s relative alignment and simplifies the calibration process with more flexibility
and a cost savings. The proposed flexible fringe projection vision system is designed to realize an
accurate 3D measurement to large scene for industrial safety inspection. The measured range can be
flexibly adjusted on the basis of the measurement requirements. Accurate 3D measurement is obtained
with an extended mathematical model that avoids the complex and laborious error compensation
procedures for various error sources.

In addition, the system accuracy is only determined by the derived point clouds with a mature
camera calibration technique. It is not influenced by the numerous systematic error sources. Moreover,
the system accuracy can be further improved by the following ways. (1) In this paper, a low-cost printed
plane is used for the calibration; if a high-accuracy planar plane is used, the calibration accuracy can be
further improved, and the known geometrical information (the calibration reference plane) will provide
a more accurate reference value for the following nonlinear parameter estimation; (2) A high-resolution
camera is applied. For the vision system in this work, the std of the reprojection error is 0.03 mm, and
it can be reduced to 0.015 mm with a camera with a two-fold higher resolution; (3) A more advanced
camera calibration algorithm with highly accurate feature point extraction can be used.

Finally, a new phase-coding method is proposed to obtain the absolute phase map of spatially
isolated objects. Only one additional fringe pattern is added for the proposed phase codeword method.
There is no gray level or color information that is used to unwrap the phase with depth discontinuities
because they are sensitive to noise. Since the proposed method takes full advantage of the frequency
characteristic of the sinusoidal fringe pattern, it is insensitive to noise and object texture. However,
accurate retrieval of the fringe order is dependent on the FFT of the signal of the phase period. If the
signal is too short, the accuracy of the fringe order retrieval will be affected. In our future work, it will
be improved by combining the FFT and a correlation technique for the phase period signal.
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