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Abstract: In inertial body tracking, the human body is commonly represented as a biomechanical
model consisting of rigid segments with known lengths and connecting joints. The model state
is then estimated via sensor fusion methods based on data from attached inertial measurement
units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment
calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based
on static poses, movements and manual measurements are still the most widely used, potentially
large human-induced calibration errors have to be expected. This work compares three newly
developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods
with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the
presence of model calibration errors with and without using magnetometer information. While the
existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a
constant angular acceleration motion model, the newly developed/adapted methods are all based on
a free segments model, where each segment is represented with six degrees of freedom in the global
frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration,
constant angular velocity, inertial data as control input), the state representation (segment-centered,
IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the
free segments representation, the optimization-based method also represents each IMU with six
degrees of freedom in the global frame. In the evaluation on simulated and real data from a three
segment model (an arm), the optimization-based method showed the smallest mean errors, standard
deviations and maximum errors throughout all tests. It also showed the lowest dependency on
magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and
segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly
propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe
model calibration errors and fast motion changes, the newly developed IMU centered EKF-based
method yielded comparable results with lower computational complexity.

Keywords: inertial body tracking; biomechanical model; calibration; magnetometers; sensor fusion;
extended Kalman filter; optimization

1. Introduction

Inertial motion capturing has found widespread use in various applications, including
biomechanics and health as two prominent ones [1–4]. This development is, among other reasons,
driven by the availability of smaller, cheaper and more precise hardware [4]. Inertial measurement
units (IMUs) comprise gyroscopes and accelerometers providing 3D acceleration and 3D rotational
velocity. In most cases they also contain magnetometers adding 3D magnetic fields. This is also referred
to as MIMUs. From these measurements motion information can be estimated through sensor fusion.
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A considerable amount of literature deals with fusion techniques for orientation tracking
based on a single IMU [5–10]. Especially the separation of body acceleration and acceleration
due to gravity [6,8,9,11] and the handling of magnetic disturbances [6,10] received attention.
Many applications, however, require knowledge about the motion of several (connected) body
segments, often in terms of joint angles, as derived from multiple attached IMUs [12–14]. In this
case, rather than independently tracking the orientation of each segment by means of the attached
IMU, biomechanical models of the human body including IMU-to-segment placement are used in the
sensor fusion method for reducing tracking errors [15–20]. Here, the body is typically modeled as a set
of rigid segments (the bones) with known lengths, which are connected through frictionless joints of
varying degrees of freedom (DoFs), and the IMUs are assumed to be rigidly mounted on the associated
segments (mostly with a one-to-one mapping) [21]. The respective transformation, i.e., the orientation
and position of each IMU w.r.t. the segment it is attached to, is called IMU-to-segment (subsequently
abbreviated I2S) calibration [22].

It is obvious that such model assumptions introduce errors associated to these assumptions.
In this work, we are focusing on the influence of selected model calibration errors, more specifically,
on errors in the calibrated I2S orientations, positions and segment lengths, on the segment orientation
estimation accuracy. Other calibration errors (e.g., joint rotation axes [23]) and errors associated to
the simplification of the biomechanical model (e.g., limited joint DoFs [19] or soft tissue artifacts [24],
which are motion reconstruction errors of the skeleton due to movement of e.g., skin or cloths w.r.t. the
bone) are not in the focus here.

Sensor fusion algorithms were developed to better handle or compensate for sensor errors [8,9,20,25],
such as noise and bias, and environmental effects, such as magnetic disturbances [6,10]. In contrast,
model calibration errors were not intensively addressed in literature; though they represent a
significant source of error [25] (cf. Section 1.2). Therefore, this work proposes three new/adapted
sensor fusion methods with the aim of providing increased robustness against such model calibration
errors. The performances of these methods, in combination with their dependence on magnetometer
usage, are assessed in comparison to an existing method [16]. Note, the above mentioned sensor errors
and compensation strategies for magnetic disturbance effects are not in the focus here. In the following,
Section 1.1 reviews state-of-the-art sensor fusion methods, which provide the basis for the proposed
set of methods. Section 1.2 shortly summarizes state-of-the-art methods for obtaining the addressed
calibration parameters, which provides an indication of typical error ranges. The contributions of this
work are then detailed in Section 1.3.

1.1. Sensor Fusion Methods

Based on the assessed literature, sensor fusion methods are in this work mainly distinguished
through the chosen biomechanical model representation and the method for solving the resulting
estimation problem. They are also categorized w.r.t. magnetometer usage.

A widespread and efficient representation of a kinematic body model is via a kinematic chain,
e.g., [13,16,18,20]. Here, the global orientation and position of the root segment, as well as the
relative orientations between segments (cf. Figure 1a), i.e., the joint angles, are modeled as estimation
variables. Orientations are typically parametrized in a minimal way, e.g., through Euler angles [13]
or Denavit-Hartenberg (DH) coordinates [16,20]. Kinematic chain models offer several advantages:
They can be used for predicting body accelerations at the IMU positions, which aids the separation
from accelerations due to gravity. In case of a minimal rotation parametrization and, if the segment
coordinate systems are sufficiently well aligned with the anatomical rotation axes, restricted joint DoFs
can be easily modeled by omitting single angular DoFs. Moreover, relative joint angles are the variables
of interest for most applications, e.g., [12–14]. At the same time, minimal orientation parametrizations
suffer from singularities [26].
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Figure 1. Two different biomechanical model representations. Note the additional world coordinate
system in the kinematic chain model.

Another approach found in literature chooses a redundant parametrization for the biomechanical
model by representing each segment with an orientation (mostly via a singularity-free unit
quaternion [26]) and position (or velocity [27]) w.r.t. a global frame [17,19,28]. This is subsequently
referred to as free segments model (cf. Figure 1b). Conditions from the biomechanical model
(e.g., connected segments, restricted rotational DoFs) are then incorporated into the estimation as
stochastic constraints, e.g., via virtual measurements [17,19]. In [19] this concept is also extended to
the IMU placement. Here, not only global segment kinematics but also the global poses of all IMUs are
estimated. The rigid connections between the IMUs and segments, i.e., the I2S calibrations, are then
again incorporated via stochastic constraints. Obviously, the definition of a redundant system with
stochastic constraints increases the dimensionality of the estimation problem, which results in a higher
computational complexity compared to the kinematic chain parametrization (cf. Table 1). At the
same time stochastic constraints consider errors in the associated biomechanical model assumptions
and parameters.

Along with the biomechanical model representation there are also different methods for solving
the resulting estimation problem. Focusing on online applications the most widespread methods are
based on recursive filters, e.g., on an extended Kalman filter (EKF) [9,16,27]. The latter approximates
nonlinear motion and measurement equations using a first-order Taylor expansion around the current
estimate [29]. The unscented Kalman filter (UKF) [6,20] uses sigma-point approximations [30] that
are related to the second-order moments [31]. Note that the UKF does not necessarily yield better
performance than the EKF, which has been investigated for the inertial tracking of an arm in [20].
In contrast to these filtering approaches, the work of [19] proposes an optimization-based method
to inertial body motion tracking. Here, an offline maximum a posteriori smoothing estimate of the
segment kinematics and IMU poses is obtained from a sequence of inertial measurements by solving
a global constrained weighted least squares (WLS) problem using an infeasible start Gauss-Newton
method. In [32], the estimation problem is decomposed into small subproblems exploiting its sparsity
structure. This leads to a distributed, but still offline version of the method, which allows for making
use of multiple processors. Using an optimization formulation better accounts for nonlinearities
through repeated linearizations. Moreover, it enables the incorporation of global constraints and
non-Gaussian noises. Note, the EKF can be considered as a special case of one optimization step [33].
Obviously, an optimization-based estimate is, compared to a filtering approach, computationally more
expensive (cf. Table 1). Moreover, the methods in [19,32] are offline, since all measurements need to be
collected before processing.

As mentioned above, inertial sensors are typically combined with magnetometers in order
to compensate for heading drift resulting from the integration of noisy and biased gyroscope
measurements. To this end, the work of [10] provides a survey of different techniques for dealing with
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magnetic disturbances. From the above referenced methods [18–20,27,32] work magnetometer-free
and can thus be considered independent of a static magnetic field.

1.2. Calibration Methods

In order to derive I2S orientations, calibration procedures, which require the user to precisely
perform predefined static poses [16,17,34] or movements [35,36], are typically used. In a recent
study [22] different established calibration methods were validated against an optical reference system
based on ten healthy subjects instructed by three operators. The study reports trueness (root mean
squared error w.r.t. the optical reference) in the range [8; 26]◦ and precision (reproducibility) in the
range [5; 10]◦, which attests that potentially large (human-induced) errors w.r.t. the I2S orientations
have to be expected, even when subjects are instructed when performing the calibration. Concerning
the I2S positions, there are no established calibration methods. In [37], an offline least squares
estimator is proposed, which obtains the position of a ball-and-socket joint in the reference frame
of two IMUs attached to the adjacent segments from arbitrary motion. The calibration method is
used in [18] as basis for knee flexion/extension and ankle plantar/dorsiflexion angle estimation.
On simulated data from a three segment model, the precision of the position calibration method is
reported with less than three percent difference to the true values. On real data from one subject, the
repeatability is reported with variations by about ±0.01 m. Manually measuring the I2S positions
or making assumptions concerning their relative positions w.r.t. the associated segment seem to be
the most widespread methods [16,17,19,27,38]. Segment lengths are often also manually measured,
based on anatomical landmarks, or they are derived from a measured or assumed height, based on
anthropometric tables [16,17,19]. Both methods likely lead to errors in the order of several centimeters,
given the difficulty in precisely locating the joint centers, even based on anatomical landmarks [39].

Note, besides the above mentioned position self-calibration method [37], Taetz et al. [40] propose
an online capable system, an extension of the optimization-based approach presented in this work,
where both I2S positions and orientations are estimated simultaneously with the segment poses.
On simulated data from a two segment model, an average precision in the order of sub-degrees for
the estimated I2S orientations and in the order of 0.01 m for the estimated I2S positions is reported.
On real data from the lower body of one subject, the repeatability of the I2S orientation estimation is
noted with a variation of below 2◦ for four IMUs mounted on the upper and lower legs. The estimated
I2S positions seemed to be more accurate for the upper legs (repeatability < 0.01 m) than for the lower
legs (<0.06 m), which is explained by the low amount of motion variability in the lower legs. Hence,
while self-calibration methods appear as a promising way for reducing human-induced calibration
errors, they are subject of current research and seem to be not yet in the state of being widely used.

1.3. Contributions

Given that calibration methods based on static poses, movements and manual measurements are
still the most widely used, potentially large calibration errors have to be expected, in particular when
calibration is performed by inexperienced users. A practical inertial body tracking method should
therefore robustly handle such errors. Showing reduced dependence on magnetometer usage also
represents an important aspect of robustness in man made environments. See, for instance, [41] for
an evaluation of indoor magnetic distortion effects on gait analysis performed with wearable inertial
sensors. In this respect, the major contributions of this work are:

• The development of two EKF-based methods with different state-space models, which use the
free-segments representation, inspired by [17]. These are subsequently denoted Quattracker IMU
and Quattracker segment . Here, rotations are represented through unit quaternions.

• The development of an online capable version of the optimization-based method in [19], based on
sliding window optimization. The method is subsequently denoted Optitracker .
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• A performance comparison of the new/adapted methods with an existing EKF-based method
that uses the kinematic chain representation and DH coordinates to represent joint angles [16].
Performance is measured in terms of angular error statistics on complex (i.e., simultaneous
variations in all joint DoFs) moderate and fast human motion (real and simulated) and on
artificially simulated complex motion from a case study. In particular, the influence of the selected
model calibration errors, i.e., I2S calibration and segment length errors, on the performances of
the different methods and their dependence on magnetometer usage are assessed.

Based on the results from these studies, useful considerations concerning the usage of the different
tested methods are provided. In the following, the notation, methods and evaluation setup are
introduced in Section 2. The results are summarized in Section 3. Section 4 discusses these results and
draws conclusions.

2. Materials and Methods

2.1. Notation

Let A, B be two Cartesian coordinate systems (coordinate frames), then RAB ∈ SO(3) denotes
the orientation of frame B in frame A and AB ∈ R3 denotes the translation of frame B in frame
A. The rotation matrix RAB and its unit quaternion representation qAB are used interchangeable.
Moreover, HAB denotes a homogeneous transformation comprising both, orientation and position
{RAB, AB}. To switch between the representations, rot(HAB) := RAB extracts the rotation matrix from
a homogeneous transformation. The translation is extracted with trans(HAB) := AB. The inverse
rotation is denoted (qAB)∗ := qBA, (RAB)T = RBA. The angular velocity of frame B w.r.t. A in frame A
is denoted ωAB

A . The cross product v× w with v, w ∈ R3 can be rewritten as a matrix multiplication
S(v)w, with S(v) being a skew-symmetric matrix. Let at ∈ Rm be a time dependent variable of
dimension m, then ȧt denotes the first and ät the second time derivative. Process and measurement
noises are assumed to be additive and Gaussian distributed with zero mean. Measurement noises are
denoted eX

t ∼ N (0, ΣX), with ΣX being the noise covariance matrix, while process noises are denoted
eX̂

t ∼ N (0, ΣX̂). Acceleration, angular velocity and magnetic field measurements from IMU i at time t
are denoted ya

i,t, yω
i,t, ym

i,t ∈ R3, respectively.

2.2. Biomechanical Model Representations

The two biomechanical model representations, i.e., the kinematic chain model and the
free segments model (see Figure 1), are now formalized using the introduced notation.
Both representations share a global position-less coordinate system G, whose x-axis is aligned with
the local magnetic north and whose z-axis points up, opposite gravity. Each segment i has a local
coordinate frame Si and is assumed to have one IMU attached to it. Thus, for notational brevity,
segment and attached IMU share one index. Each IMU i has a local coordinate frame Ii, in which
the measurements are represented. Moreover, Si and Ii are rigidly connected via the I2S orientation
qSI

i and position IS
i (or HSI

i for the chain model). The kinematic chain model, illustrated in Figure 1a,
defines a hierarchical order of transformations. In this work, the definitions from [16] are used, which
are based on DH transformations [42]. For the sake of completeness, the transformations and equations
for the model construction are provided in Appendix A. Further details can be found in [16]. The free
segments model is composed of a set of segments Si ∈ S, a set of IMUs Ii ∈ I and a set of joints Jk ∈ J.
For each intermediate joint Jk, the set of connected segments is denoted Si, Sj ∈ SJk . Each segment Si
and IMU Ii is represented in G with an orientation and translation {qGS

i , SG
i } and {qGI

i , IG
i }, respectively.

Figure 1b illustrates this model. Note, each segment also has a start and an endpoint defined in the
local segment coordinate system (pS

i , pS
j in the figure), which are used in Equation (10).
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2.3. EKF-Based Methods

The Chaintracker , the Quattracker IMU and the Quattracker segment use an EKF for parameter
estimation. The former is taken from [16] and is enhanced with an initialization method described
in Section 2.3.5. The other methods are inspired by the work of [17,19]. Note, the work of [17]
provides only a general concept for combining a free segments model with biomechanical constraints.
The formalizations with different state-space models leading to the Quattracker IMU and Quattracker
segment were contributed as part of this manuscript.

2.3.1. Measurement Models

For IMU Ii, the accelerometer measurement model at time t is:

ya
i,t = (RGI

i,t )
T
(

ÏG
i − gG

)
+ ea

i,t (1)

Here, ÏG
i and gG denote body acceleration and acceleration due to gravity, respectively, both given

in the global frame.
The gyroscopes measure the angular velocities w.r.t. the global frame, transformed into the IMU

frame, resulting in the following gyroscope measurement model:

yω
i,t = ωGI

I,i,t + eω
i,t (2)

Note, gyroscope and accelerometer bias models are not in the focus of this paper, but can be easily
added, see e.g., [19,43].

The magnetometer measurement model was chosen to only have an effect on the estimated yaw
direction. It omits information concerning the local dip angle. This is a common way of reducing the
influence of magnetic disturbances [10]. Let ŷm

i,t be the normalized magnetometer measurement, then
the model can be written as:

0 = atan2

[
(RGI

i,t ŷm
i,t)y

(RGI
i,t ŷm

i,t)x

]
+ em

i,t (3)

Here, (·)x, (·)y denote the x- and y-component of the vector. Hence, the model considers the
angular deviation of the magnetometer measurement, as transformed into the global frame and
projected into the horizontal plane, from the global x-axis.

In all models, the three variables ÏG, ωGI
I and RGI need to be extracted from the state space,

as defined in the following.

2.3.2. State Spaces

The Quattracker IMU uses a constant angular velocity and a constant acceleration model [43].
Thus, the angular velocity and the linear acceleration are required in the state. Assuming a rigid
and known I2S calibration, the IMU positions and orientations are sufficient to reconstruct the
corresponding segment pose. Hence, for n segments the state at time t comprises:

xt =
(
{IG

i,t, İG
i,t ÏG

i,t, qGI
i,t , ωGI

I,i,t}
n−1
i=0

)T
(4)

The Quattracker segment , similarly to the Chaintracker , represents the kinematic variables in
the segment frame. This leads to a dynamic model assuming constant linear and angular acceleration,
while the angular acceleration is required as part of the state:

xt =
(
{SG

i,t, ṠG
i,tS̈

G
i,t, qGS

i,t , ωGS
S,i,t, ω̇GS

S,i,t}
n−1
i=0

)T
(5)
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Note, the introduction of ω̇ is a consequence of the need for ÏG in Equation (1), since:

IG
i,t = SG

i,t + RGS
i,t IS

i,t (6a)

⇒ İG
i,t = ṠG

i,t + ṘGS
i,t IS

i,t + RGS
i,t İS

i,t︸︷︷︸
=0

(6b)

İG
i,t = ṠG

i,t + RGS
i,t S(ωGS

S,i,t)IS
i,t (6c)

⇒ ÏG
i,t = S̈G

i,t + ṘGS
i,t S(ωGS

S,i,t)IS
i,t + RGS

i,t S(ω̇GS
S,i,t)IS

i,t (6d)

2.3.3. Dynamic Models

The dynamic model for the Quattracker IMU is:

xt+T =



IG
i,t+T

İG
i,t+T

ÏG
i,t+T

qGI
i,t+T

ωGI
I,i,t+T

...


=



IG
i,t + TİG

i,t +
T2

2 ÏG
i,t

İG
i,t + TÏG

i,t

ÏGI
i,t + Te p̂

i,t
qGI

i,t � exp( T
2 ωGI

I,i,t)

ωGI
I,i,t + Teω̂

i,t
...


(7)

where � is the quaternion product, exp denotes the quaternion exponential and T is the sampling time.
Note, the vertical dots indicate that these variables are given for each segment i ∈ {0, . . . , n− 1}.

Equation (7) is built similarly for the Quattracker segment , by applying the following two
modifications: (1) replace IG with SG and (2) consider ω̇ in the rotational update by utilizing
Equation (B4) (Appendix B). Thus, Equation (7) can be extended as follows:

xt+T =



SG
i,t+T

ṠG
i,t+T

S̈G
i,t+T

qGS
i,t+T

ωGS
S,i,t+T

ω̇GS
S,i,t+T

...


=



SG
i,t + TṠG

i,t +
T2

2 S̈G
i,t

ṠG
i,t + TS̈G

i,t

S̈GI
i,t + Te p̂

i,t

qGS
i,t � exp

(
T
2 ωGS

S,i,t +
T2

4 ω̇GS
S,i,t

)
ωGS

S,i,t + Tω̇GS
S,i,t

ω̇GS
S,i,t + e ˙̂ω

i,t
...


(8)

The following equations obtain the quantities required for the measurement models (as defined
in Section 2.3.1) from the above state using the I2S calibrations:

ÏG
i,t = S̈G

i,t + RGS
i,t

[
S(ωGS

S,i,t)S(ω
GS
S,i,t) + S(ω̇GS

S,i,t)
]

IS
i (9a)

qGI
i,t = qGS

i,t � qSI
i (9b)

ωGI
I = qIS

i �ωGS
S,i,t � qSI

i = (RSI
i,t )

TωGS
S,i,t. (9c)

2.3.4. Constraints

Constraints within an EKF are commonly implemented as measurement models [44,45]. In this
work, in order to reduce drifts, constraints are used to ensure the segments staying connected at the
joints. The following models are reformulated biomechanical constraints from [19]. Let SG

i,t, SG
j,t be the

global position of two connected segments Si, Sj ∈ SJk at time t. Let RGS
i,t and RGS

j,t be their orientations.
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Given pS
i ∈ R3, an endpoint of Si, and pS

j ∈ R3, the corresponding point in Sj (cf. Figure 1b),
the measurement model that ensures connection of the two segments is:

0 = SG
i,t + RGS

i,t pS
i − (SG

j,t + RGS
j,t pS

j )− ep
i,t (10)

By exchanging the point of segment j by a constant point in the global system PG, the model:

0 = SG
i,t + RGS

i,t pS
i − PG − eG

i,t, (11)

ensures that the point pS
i stays close to the global point PG for all time steps. This is used in the

evaluation for fixing the position of the root segment’s origin.

2.3.5. Initialization

Given the first set of measurements, the TRIAD method [46] is used to determine the initial
IMU orientations qGI

i,0 . For the Quattracker IMU the obtained orientations can be introduced into the
state directly, whereas the Quattracker segment requires these to be transformed into the segment
orientations using the I2S calibrations. After initializing the orientations, in a second step, it is ensured,
that Equation (10) is fulfilled for the correctly rotated segments. The initial angular and linear velocities
and accelerations are set to zero. The state of the Chaintracker comprises the variable angles and angle
derivatives of the given kinematic chain (Appendix A). The angle derivatives are initialized with zero,
while the angles are calculated from the initial quaternions qGI

i,0 via inverse kinematics. This is done
by minimizing:

argmin
xc

n−1

∑
i=0
‖(RGI

i,0 rot( fi(xc))
T − I3×3)‖F (12)

where n is the number of IMUs, || · ||F denotes the Frobenius norm and rot( f (xc))T extracts the global
orientations from the chain state xc (Appendix A).

2.4. Sliding Window Optimization

While the presented EKF approaches only maintain a state for a single time step and process
one IMU data set at a time, the optimization-based approach uses windows or batches of IMU data
sets to compute a corresponding batch of states (see Equation (13)). The method is based on [19],
however, extends this offline optimization approach to an online-capable method by introducing the
window mechanism and appropriately adapting the cost function (cf. Section 2.4.2). As suggested
in [19], both the IMU and segment poses are estimated in the state. This relaxes the rigidity assumption
concerning the I2S calibrations. Moreover, in contrast to the EKF approaches, the dynamic model takes
the IMU data as control input (see Appendix C). This results in the IMU velocities being estimated
in the state, while the need for estimating the linear accelerations and angular velocities is avoided.
The state is composed as follows:

xb =
(
{{IG

i,t, İG
i,t, qGI

i,t , SG
i,t, qGS

i,t }
n−1
i=0 }

w−1
t=0

)T
(13)

where w is the window size, n the number of segments and b is the batch number. For every
optimization step, an overlap ov with w > ov ≥ 1 is defined. Setting ov = 1 results in a delayed
tracking, where the delay depends on the setting of w, while ov = w− 1 leads to online tracking using
moving horizon estimation. Here, for each new time step, the latest IMU data is added and the oldest
is discarded.
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The optimization-based approach comes down to solving a weighted least-squares problem for
each batch of data, where the different terms in the cost function are obtained by rearranging the
stochastic model equations so that the noises are isolated on the left-hand side:

min
xb

w−1

∑
t=0

n−1

∑
i=0

∥∥∥ecq
i,t

∥∥∥2

(Σcq)−1
+
∥∥∥ecp

i,t

∥∥∥2

(Σcp)−1︸ ︷︷ ︸
I2S calibrations, Appendix C

+
∥∥∥e p̂

i,t

∥∥∥2

(Σ p̂)−1
+
∥∥∥e

˙̂p
i,t

∥∥∥2

(Σ ˙̂p)−1
+
∥∥∥eq̂

i,t

∥∥∥2

(Σq̂)−1︸ ︷︷ ︸
motion model, Appendix C

+ ‖eG
i,t‖

2
(ΣG)−1︸ ︷︷ ︸

prior, Equation (11)

+ ‖em
i,t‖2

(Σm)−1︸ ︷︷ ︸
magnetometer model, Equation (3)

 (14)

+
n−1

∑
i=0

 ‖eq0
i,t‖

2
(Σq0)−1︸ ︷︷ ︸

initialization, Section 2.4.2

+
w−1

∑
t=0

∑
Jk∈J

 ‖(ep
k,t)‖

2
(Σp)−1︸ ︷︷ ︸

biomechanical constraints, Section 2.4.1


The following sections explain the individual terms in more detail. For the sake of completeness,

the terms already proposed in [19] are provided in the Appendix C. Note, compared to [19],
the prior and magnetometer model term were added in order to enable fair comparison with the
EKF-based methods.

2.4.1. Biomechanical Constraints

The biomechanical constraints (connected joints) are based on the re-arrangement of Equation (10).
In contrast to [19], where these are integrated as hard constraints, these are here included as terms into
the cost function. Thus, an unconstrained weighted least squares problem is obtained, which can be
solved using standard nonlinear least-squares methods, for instance the Gauss Newton or Levenberg
Marquardt method [47,48].

2.4.2. Initialization

The initialization of the IMU orientations can be obtained by minimizing ∀Ii ∈ I

eq0
i,t =

2 log
(

qIG,b−1
i,w−1 � qGI,b

i,0

)
for b > 0

2 log
(

qIG
i,init � qGI,b

i,0

)
else

(15)

This penalizes sudden changes of the estimated IMU orientations for the overlap of b− 1 and b,
which is a required adaptation for the proposed online-capable method compared to [19]. Note, in a
moving horizon context this term corresponds to the arrival cost for the variables. Here, log denotes
the quaternion logarithm. Note, for b = 0, similarly to the EKF methods, the initial quaternions qGI

i,init
are obtained using the TRIAD algorithm.

2.5. Summary and Overview

After the different methods have been described in detail, Table 1 provides a comparative
summary of their characteristics.
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Table 1. Characteristics of the different sensor fusion methods: n denotes the number of segments and w is the window size used by the Optitracker . All tuning
parameters are given in Appendix D. Note, θi represent the joint angles estimated by the Chaintracker and Σθ̈ refers to the process noise covariances used in the
dynamic model [16].

Chaintracker (cf. [16]) Quattracker segment Quattracker IMU Optitracker

Estimation method EKF EKF EKF WLS

State
(
{θi, θ̇i, θ̈i}n−1

i=0

)T

t

(
{SG

i,t, ṠG
i,tS̈

G
i,t, qGS

i,t , ωGS
S,i,t, ω̇GS

S,i,t}
n−1
i=0

)T (
{IG

i,t, İG
i,t ÏG

i,t, qGI
i,t , ωGI

I,i,t}
n−1
i=0

)T (
{{SG

i,t, qGS
i,t , IG

i,t, İG
i,t, qGI

i,t }
n−1
i=0 }

w−1
t=0

)T

Dimensions (state s, meas. vector k) x ∈ R9n, s = 9n, k = 7 x ∈ R19n, s = 19n, k = 7 x ∈ R16n, s = 16n, k = 7 x ∈ R17n×w, s = 17nw

Motion model 1D const angular acc 3D const angular & linear acc 3D const angular vel; 3D const linear accel IMU control input

Tuning parameters Σ
¨̂θ , Σa, Σω , Σm Σ ˙̂ω , Σ p̂, Σa, Σω , Σm, Σp, ΣG Σω̂ , Σ p̂, Σa, Σω , Σm, Σp, ΣG Σcq, Σcp, Σ p̂, Σ ˙̂p, Σq̂, ΣG, Σm, Σq0, Σp

Complexity O(k2.4 + s2) [49] O(k2.4 + s2) O(k2.4 + s2) O(s3) (Gauss Newton method)

Biomech. model chain free segments free segments free segments

State coordinate system segment centered segment centered IMU centered IMU and segment centered
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It also adds information concerning their computational complexities, which mainly depend on
the number of estimation variables per time step and the solution method. Also note that a higher
redundancy in the formulation of the estimation problem results in an increase in the number of
tuning parameters.

The Chaintracker , in contrast to all other methods, only models rotational quantities in the state.
This is due to using the kinematic chain model where positions and translations are implicitly given.
All EKF-based methods assume the I2S calibrations being error-free, while the Optitracker assumes
Gaussian distributed zero-mean errors being present in the I2S calibrations. The Quattracker IMU
and the Quattracker segment differ in the coordinate frame, in which the state variables are given.
The former is IMU centered, while the latter, similarly to the Chaintracker , is segment centered.
The segment centered formulation results in the need for keeping the segments’ angular accelerations
in the state and, thus, taking these into account in the dynamic model. Hence, the Quattracker segment
and the Chaintracker only differ in the biomechanical model representation (kinematic chain vs.
free segments) and the orientation parametrization (quaternions vs. joint angles). The Optitracker ,
in contrast to the EKF-based methods, keeps both the segment poses and the IMU poses in the state.
Moreover, it takes the IMU data as control input to the dynamic model. With its comparably high level
of redundancy in both spatial and temporal dimension, as well as, its iterative estimation method,
the Optitracker has a significantly higher computational complexity than the other methods.

2.6. Evaluation Setup

The overall goal of the evaluation was to answer the question, which of the proposed sensor fusion
schemes (Quattracker segment , Quattracker IMU , Optitracker), in comparison to the existing method
(Chaintracker , here considered as baseline), provides the best basis for developing a truly robust online
inertial body tracking method. Based on the argumentation in Section 1, sensitivity to the selected
model calibration errors and dependence on magnetometer usage was in the focus. The evaluation
was performed as a case study with a kinematic model comprising three rigid segments with known
lengths, which are connected through two three DoF joints. The root joint was assumed fixed in space,
with three rotational DoFs. In terms of motion sequences, moderate and fast motion was considered,
in order to compare the performances of the different sensor fusion methods w.r.t. the above mentioned
criteria also in relation to the motion agility (cf. [20]). General complex (i.e., containing simultaneous
variations in all joint DoFs) motion was chosen instead of planar motions or specific activities, since the
focus was on the comparison of the different sensor fusion methods under general conditions, rather
than on their ability to represent specific motion patterns. Further explanations are provided below.
Within this case study, we investigated two scenarios: (1) a real data scenario and (2) a simulation
scenario with systematically introduced calibration errors. Both were investigated under two test
configurations: (1) using magnetometer information (w/mag) and (2) dropping the magnetometer
information, i.e., dropping the magnetometer measurement model in Equation (18) for all sensor
fusion methods (w/o mag). The two scenarios, together with the used data sequences, as well as,
the measures of performance are described in the following.

2.6.1. Real Data Scenario

The goal of the real data scenario was to assess and compare the overall performances of
the different sensor fusion methods under realistic conditions. Here, different error sources are
unavoidably present and cannot be reliably separated, as also discussed in [9]. The major ones
are therefore characterized in Section 2.6.2. Hence, the real data setup served for gathering
tendencies concerning the overall robustness of the different sensor fusion methods under realistic
conditions, while the influence of the considered model calibration errors were assessed in simulation
(cf. Section 2.6.3). The results of the real data scenario are summarized in Section 3.1.

For data collection, the following systems were used: the NaturalPoint OptiTrack system with 12
Prime 13 cameras, operated with the Motive software (Version 1.8) (NaturalPoint, Inc., Corvallis, OR,
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USA) [50] and the XSens Link system, operated with the MVN Studio BIOMECH software (Version 4.1)
(Xsens, Enschede, The Netherlands) [51]. The former served as reference, while the latter provided the
real IMU data. Both systems recorded data at 120 Hz.

A healthy male (age: 30 years, height: 1.76 m) was equipped with three IMUs at the right upper
arm, forearm and hand (cf. Figure 2). Each IMU was mounted into a special casing with optical
markers (4 mm diameter) attached to it, in order to ensure a rigid connection between IMU and marker
rigid body. Additional markers (12 mm diameter) were placed at anatomical landmarks in order to
enable skeleton fitting using the Motive software (upper body model, 25 markers). The cameras were
arranged in a small volume in order to enable continuous tracking of the small markers.

I0 (RightUpperArm)

I1 (RightForeArm)

I2 (RightHand)

Figure 2. Capturing setup for the real data scenario. In the picture on the left, the segment coordinate
systems are associated to the proximal ends of the segments. Note, the axes are orthogonal and only
roughly aligned with the anatomical axes of rotation through the skeleton fitting of the optical system
as described in Section 2.6.1. Precise alignment with the anatomical axes was not in the focus of
this study. In the N-pose, for the right arm, the x-axes are chosen perpendicular to the frontal plane
pointing anterior, the y-axes are perpendicular to the transverse plane pointing along the segments in
the direction from the distal to the proximal ends and the z-axes are perpendicular to the sagittal plane
pointing lateral. The picture also indicates the initial arm configuration for real-slow and real-fast .

With this setup, two evaluation data sequences with complex moderate and fast human motion
were recorded. For this, the subject was asked to perform a movement, which introduces simultaneous
variations in all DoFs of the right arm, while keeping the shoulder stationary, once at moderate speed
and once at fast speed with fast speed changes. The movements also had to be performed anterior to
the frontal plane and with the hand roughly below the shoulder height in order to be well captured
by the optical system. The resulting data sequences, subsequently denoted real-slow and real-fast ,
both contain eight-shaped movements at respective speeds, smooth parts reminding of reaching
and steering in the case of real-slow , and agile parts with quick starts and stops, as well as, parts
reminding of sportive movements, such as boxing, in the case of real-fast . In Figure 3, the two data
sequences are illustrated in terms of Euler angles per time step and respective ranges of motion for
each joint DoF. The ranges of motion are comparable between the sequences, besides sim-fast covering
smaller ranges for rotations around the y-axes of shoulder and elbow (external rotations of upper
and forearm). The ranges of motion for the hand DoFs are the smallest among the considered joints.
Videos showing re-simulations of real-slow and real-fast (called sim-slow and sim-fast ) are available
as supplementary files.
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Figure 3. Real data scenario: Euler angle sequences (z, x′, y′′ convention) and ranges of motion,
[minimum angle, maximum angle] (each provided in degree), of real-slow (a–c) and real-fast (d–f).
The segment axes and initial segment orientations are as shown in Figure 2. Note, the shoulder angles
(left column) are represented w.r.t. to the initial upper arm configuration qGS

0,0 , rather than w.r.t. the
global frame, in order to cancel out the unknown heading offset for easier interpretation.

For each time step t, the data sequences contain the orientations and positions of the marker
rigid bodies (as generated with the Motive software) in the world reference frame O of the optical
system, the joint positions and orientations of the fitted skeleton and the IMU data, {yω

i,t, ya
i,t, ym

i,t}2
i=0.

The joint data was only used to obtain the I2S calibrations (see below). In addition to the Euler angles,
the measured peak accelerometer and angular velocity 2-norms are shown in Table 2.

Table 2. Measured/simulated instantaneous peak acceleration (Acc) and angular velocity (Gyr)
2-norms for real-slow , real-fast , sim-slow and sim-fast .

Mode Sequence→ Slow Fast

Sensor→ Acc (m/s2) Gyr (◦/s) Acc (m/s2) Gyr (◦/s)

Real
I0 13.44 178.68 26.88 457.05
I1 16.87 394.68 75.24 957.29
I2 18.74 468.55 95.45 1031.31

Re-simulated
I0 18.05 187.07 25.70 429.75
I1 22.07 395.27 77.20 968.35
I2 22.86 440.23 100.55 1030.76

Similarly to [52], temporal synchronization of optical and inertial data was done by maximizing
the correlation between the angular velocities measured by the IMUs and the angular velocities derived
from the marker rigid body orientations. The latter were calculated according to [53].
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For spatial synchronization of the orientations obtained from the marker rigid bodies, qOB
i,t , and the

segment orientations estimated by the different sensor fusion methods, qGS
i,t , the marker rigid bodies

were transformed into the IMU reference frames using:

q̄GS
i,t = qGO � qOB

i,t � qBI
i � qIS

i (16)

Here, qGO and qBI
i denote the hand-eye orientations, which are the relative orientations aligning

the global optical frame O with the global inertial frame G, and the marker rigid body frames Bi
with the IMU frames Ii. These were estimated from a data sequence with smooth motion, where
the three IMUs were mounted on a stick, using the approach of [54]. Since the alignment approach
in [54] is based on rotation sequences, the fused IMU orientations provided by the Link IMUs, qGI

i,t ,
rather than the measured IMU data, and the orientations of the marker rigid bodies, qOB

i,t , were used
for calculation. Moreover, qIS

i refers to the I2S orientations. The I2S calibrations were calculated
from a static recording of the subject being in a T-pose. For this, the fitted skeleton (i.e., the fitted
3D joint positions and orientations), the marker rigid body poses and the hand-eye orientations
were used. The segment lengths were also derived from the fitted skeleton with: ‖S0‖ = 0.28 m,
‖S1‖ = 0.23 m, ‖S2‖ = 0.08 m (including only the palm). The resulting biomechanical model is shown
in Figure 2 (left).

2.6.2. Real Data Scenario: Discussion of Major Error Sources

This section provides a characterization of the major error sources in both the optical reference
data and the IMU data. Such errors are unavoidably present and have to be taken into account for the
analysis provided in Section 3.1. Equation (16) shows the different components involved into obtaining
the reference segment orientations, which are subsequently used for measuring the performances of
the different methods (cf. Section 2.6.4). Here, the errors in the orientations of the marker rigid bodies,
qOB

i,t , as obtained from the optical system, cannot be estimated. Note, the point tracking is claimed to
provide sub-millimeter precision. The angular errors contributed through the hand-eye orientations,
qGO, qBI

i , can be quantified for each IMU i to some extend based on the residual errors as calculated
from each time step t of the data sequence used for calibration:

Ehe
i,t = 2 acos(qGO � qOB

i,t � qBI
i � qIG

i,t ) (17)

Here, as mentioned above, qIG
i,t refers to the orientations obtained from the IMUs. The results are

given in Table 3.

Table 3. Mean (std,max) angular residual errors (cf. Equation (17)) for the hand-eye calibrations of each
inertial measurement unit (IMU) Ii as calculated on the data sequence used for calibration.

IMU Residual Error

I0 1.14◦(0.57◦, 3.89◦)
I1 2.28◦(0.90◦, 6.10◦)
I2 1.51◦(0.77◦, 5.07◦)

Concerning the I2S calibrations, qIS
i , there are two aspects to consider. First, the errors in the

calculated quantities cannot be estimated, since these were derived based on data provided by the
optical system (see above). Second, due to soft tissue artifacts, these calibrations are in reality not rigid.
In our study, the influence of soft tissue artifacts was not in focus and was minimized by well suited
sensor placement, tight fixation and by ensuring a rigid connection between the marker rigid bodies
used for calculating the reference segment orientations and the IMUs. Since the proposed sensor fusion
methods all assume a kinematic model with rigid I2S calibrations (the Optitracker being the only
method, which models Gaussian distributed I2S calibration errors), soft tissue artifacts, which can
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partly be interpreted as time-dependent changes of the I2S calibrations, still influence the estimated
segment orientations, whereas the resulting error cannot be assessed.

The Link IMUs are intrinsically calibrated by the manufacturer, however, small gyroscope biases
remain. These were approximated as mean gyroscope values from a static IMU data sequence and
were subtracted from the angular velocities of the real-slow and real-fast sequences. The mean 2-norms
of the accelerometer measurements under static conditions were 9.74 m/s2, 9.76 m/s2, 9.77 m/s2 for
the three IMUs. These deviations from the local gravity strength [55] of 9.81 m/s2 were, however,
not corrected.

Though no ferromagnetic objects where present in the capturing volume during recording,
the measured magnetic field vectors indicate an inhomogeneous magnetic field. Table 4 shows the
statistics of the magnetic field vector 2-norms and the angular deviations, ](ym

i,t, ymean,t), in the global
frame for real-slow and real-fast . For each time step t, the latter were calculated as the normalized
magnetic field measurements transformed into the global frame G using the optical reference data.
More specifically, for n IMUs:

ymean,t =
1
n

n

∑
i=0

RGI
i,t

ym
i,t

‖ym
i,t‖

(18a)

](ym
i,t, ymean,t) = acos

(
ymean,t RGI

i,t
ym

i,t

‖ym
i,t‖

)
(18b)

where RGI
i,t were extracted from the optical reference data (cf. Equation (16)). Note that the resulting

errors include the hand-eye calibration errors (cf. Table 3).

Table 4. Mean (std) of magnetic field vector 2-norms (upper values) and global angular deviations
(lower values) for each IMU as calculated from the real data sequences.

I0 I1 I2

real-slow 0.92 (0.00) 0.90 (0.01) 0.90 (0.02)
1.79◦(1.18◦) 3.66◦(2.41◦) 4.36◦(2.89◦)

real-fast 0.92 (0.00) 0.91 (0.01) 0.91 (0.02)
2.63◦(2.38◦) 4.45◦(5.60◦) 4.59◦(6.04◦)

The table indicates stronger magnetic disturbances for I1 and I2 than for I0, which is due to the
varying distances of those IMUs from the floor, the latter causing an inhomogeneous magnetic field
(as also observed in [56,57]). Since this work investigates the dependence of the proposed sensor
fusion methods on magnetometer usage, rather than active compensation of magnetic disturbances,
for evaluation, we also tested the different methods on real inertial data in combination with simulated
magnetic field vectors (as also done in [9]). The latter were calculated by rotating the x-axis of the
global frame G into the frame of each IMU i using:

ym
art,i,t = RIG

i,t (1, 0, 0)T (19)

Here, again, the rotations RGI
i,t were extracted from the optical reference data (cf. Equation (16)).

2.6.3. Simulation Scenario with Systematically Introduced Model Calibration Errors

The goal of the simulation scenario was to assess the influence of model calibration errors, i.e.,
I2S calibration and segment length errors, on the different sensor fusion methods, in the absence
of other error sources. For this, three simulated data sequences were considered: a simulated data
sequence based on an artificially generated smooth, but fast motion and re-simulations of real-slow
and real-fast , which both contain human motion, as further explained below. These data sequences
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are subsequently referred to as sim-fast-artificial , sim-slow and sim-fast , respectively. The results of
the simulation scenario are summarized in Sections 3.2 and 3.3. The sim-fast-artificial sequence was
simulated from an arm-like three segment kinematic chain model, which was parametrized using
DH coordinates (cf. Table 5). The segment lengths were ‖S0‖ = 0.4, ‖S1‖ = 0.4, ‖S2‖ = 0.2, the I2S
positions were IS

0 = (0, 0, 0.3)T , IS
1 = (0, 0, 0.3)T , IS

2 = (0, 0, 0.1)T (all in m) and the I2S orientations
were assumed identity.

Table 5. Denavit-Hartenberg (DH) coordinates for the three segment kinematic chain model used for
simulating the sim-fast-artificial data sequence. The angles α[0:5](t) and θ[0:2](t) are the Degrees of
Freedom (DoFs) that are controlled via Equation (20). The Inertial Measurement Unit (IMU)-to-Segment
(I2S) positions are given by translations along the bone, in z-direction relative to the segment origins
(i.e., DH(z, 0, 0, 0)). The initial chain configuration (pointing up opposite gravity) is illustrated on
the right.

Segment (Si) d a αj(t) θj(t) IMU Image

S0

0 0 α0(t) − pi
2 None

0 0 α1(t)
pi
2 None

0 0 0 θ0(t) None

0.4 0 0 0 z = 0.3

S1

0 0 α2(t) − pi
2 None

0 0 α3(t)
pi
2 None

0 0 0 θ1(t) None

0.4 0 0 0 z = 0.3

S2

0 0 α4(t) − pi
2 None

0 0 α5(t)
pi
2 None

0 0 0 θ2(t) None

0.2 0 0 0 z = 0.1

In order to animate this kinematic chain, S0 was kept stationary at WG = (0, 0, 0.5)T and an angle
sequence {φ}628

t=0 was generated using:

φ(β(t)) = sin
(

β(t)
2

)
sin(β(t))π (20)

with β(t) = 2π
629 t. This results in a sampling of one 2π period with a discretization of roughly

0.01 radians, where each step is assumed to correspond to a sampling time of 0.01s. This sequence was
used for each rotational DoF α0, . . . , θ2 and the resulting motion provides the ground truth segment
orientations and positions for the sim-fast-artificial sequence. The angle sequence is visualized in
Figure 4 and the motion resulting from applying this angle sequence to each rotational DoF is provided
as a supplementary video. Based on the segment kinematics, the IMU trajectories are calculated
by applying the assumed I2S calibrations. From this, IMU data was obtained using standard data
differentiation [26] and, if applicable, by applying realistic sensor noises as detailed in Appendix D.
The peak acceleration and angular velocity 2-norms resulting from the above described I2S calibrations
for sim-fast-artificial are given in Table 6.

The sim-fast-artificial sequence provides simultaneous motion variations in all DoFs with large
ranges of motion and with smoothly varying and periodically increasing and decreasing angular
velocities, as well as direction changes. Comparing Figure 4 with Figure 3, the latter showing the Euler
angle sequences and ranges of motion of real-slow and real-fast , sim-fast-artificial , sampling a range
of motion of [±139◦], includes the maximum range of motion reached in the captured data sequences
(108◦ elbow extension in real-slow), however, applies this to each rotational DoF. Moreover, comparing
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Table 6 with Table 2, sim-fast-artificial also reaches comparable peak angular velocity 2-norms to
sim-fast . The peak accelerometer 2-norms are lower due to the artificial motion being more smooth,
however, they are still considerably higher than in real-slow . Note, these accelerations depend on the
assumed I2S positions. While sim-fast-artificial shares the mentioned characteristics with real-fast , as
indicated above, it represents an artificial motion, which does neither resemble human motion patterns
nor respect anatomical movement restrictions. However, it contains systematically sampled large
ranges of motion and changing angular velocities in all DoFs, providing a challenging test case, as also
visible in the supplementary video. Besides this, sim-fast-artificial also supports easy reproducibility
by other researchers, without the need for sharing recorded data sequences, since the movement is
based on an analytic function. Note, a similar sequence was also used in [40].

A
ng
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]
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100
phi [-139,139]
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Figure 4. Simulation scenario: angle sequence applied to each rotational DoF of the three segment
kinematic chain model (cf. Table 5) used for simulating sim-fast-artificial .

Table 6. Peak acceleration (Acc) and angular velocity (Gyr) 2-norms for sim-fast-artificial . For all
sensors, the values vary smoothly between 0 and the peak values shown in the table.

Sequence→ sim-fast-artificial

Sensor→ Acc (m/s2) Gyr (◦/s)

I0 14.03 356.90
I1 38.16 705.20
I2 61.90 1047.99

In contrast to the artificial motion in sim-fast-artificial , sim-slow and sim-fast represent
re-simulations of the captured data sets real-slow and real-fast , i.e., they provide simulated IMU
data for the human motions described in Section 2.6.1. As mentioned before, these movements are
illustrated in the supplementary videos. For the simulation, the segment lengths, I2S calibrations and
IMU trajectories were obtained from the optical system (cf. Section 2.6.1) and the IMU data was again
obtained by differentiation. To ensure the IMU data to stay in feasible ranges, the IMU trajectories were
low-pass filtered with a cut-off frequency of 10 Hz using a Butterworth filter of 4th order [58]. Table 2
shows the peak acceleration and angular velocity 2-norms of sim-slow and sim-fast in comparison
to the respective real data sequences. Compared to sim-fast-artificial , the purpose of sim-slow and
sim-fast is to provide IMU data based on human motion including respective limited joint DoFs and
motion ranges, and, as already mentioned in Section 2.6.1, to provide slow and fast motion separately,
in order to enable performance comparison of the different sensor fusion methods in relation to motion
agility. Compared to real-slow and real-fast , the purpose of sim-slow and sim-fast is to provide IMU
data for moderate and fast human motion with consistent ground truth and without errors, such
as those described in Section 2.6.2. Moreover, the re-simulated data sequences enable comparison
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of the performances of the proposed sensor fusion methods between simulated and real data of the
same motion.

Based on the above described motion sequences the influences of I2S calibration and segment
length errors on the proposed sensor fusion methods were studied by systematically introducing
respective model calibration errors when simulating the IMU data of the middle segment and
comparing the estimated segment orientations with the ground truth data (cf. Section 2.6.4). The middle
segment was chosen in order to enable assessing the error propagation behavior into neighboring
segments. To this end, five calibration error types were introduced:

1. I2S position errors: ∆palong
I2S ∈ [−0.2 m, 0.2 m], i.e., position changes along the segment axis.

2. I2S position errors: ∆pout
I2S ∈ [−0.2 m, 0.2 m], i.e., position changes perpendicular to the

segment axis.
3. Segment length variations: ‖∆S1‖ ∈ [−0.2 m, 0.2 m].

4. I2S orientation errors: ∆qalong
I2S ∈ [−30◦, 30◦] along the bone, i.e., rotations around the segment

axis associated to the IMU.
5. I2S orientation errors: ∆qout

I2S ∈ [−30◦, 30◦] out of bone, i.e., rotations around the IMU axis
perpendicular to the surface of the associated segment.

The ranges for the orientation errors are based on the findings in [22] concerning the trueness
(deviation from reference) of established calibration methods. The reported maximum error of 26◦ was
slightly increased in order to account for the fact that larger errors are to be expected when calibration
movements are performed by a subject autonomously. For obtaining the I2S positions and segment
lengths, as described in Section 1.2, a variety of methods providing different and not well documented
levels of reliability are in use. Hence, for this study, we determined the maximum I2S position error
that could appear for the test subject by assuming the IMU to sit inside the joint, i.e., a 0.2 m shift
along the forearm segment. We then used this value symmetrically for all translational error ranges, in
order to be able to compare the influences of the different error types also relative to each other using
a subsequently described normalized error measure (cf. Section 2.6.4). Note that these error ranges
likely include the majority of errors that could potentially appear, e.g., due to varying body shapes and
structures, heavy clothing or also failure of self-calibration methods, while they allow to compare the
robustness of the different sensor fusion methods also under extreme conditions. Note, all considered
model calibration errors were introduced separately in order to assess their influence in isolation.

The above error ranges were sampled with steps of 2◦ and 0.02 m, respectively. In total,
this summed up to 120 evaluations for each sensor fusion method.

2.6.4. Error Measures

The performances of the different sensor fusion methods were evaluated based on the angular
deviations of the estimated segment orientations, qGS

i,t , from the reference segment orientations, q̄GI
i,t .

For the real data scenario, the latter were calculated from the optical data according to Equation (16).
For the simulation scenario, the segment orientations were available from the given motion sequence
and can be considered as error-free ground truth. The angular deviations for each segment i at each
time step t were calculated as [59]:

Erel
i,t = 2 acos(q̄GS

i,t � qSG
i,t )w (21)
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Here, (·)w denotes the scalar part of the quaternion. The angular error statistics in terms of mean,
standard deviation and maximum orientation errors over K segments and N time steps of a data
sequence were calculated as:

Emean =
1
K

K−1

∑
i=0

1
N

N−1

∑
t=0

Erel
i,t (22a)

Esd =
1
K

K−1

∑
i=0

√√√√ 1
N − 1

N−1

∑
t=0

(Emean − Erel
i,t )

2 (22b)

Emax = max
i=0,...,K−1

max
t=0,...,N−1

Erel
i,t (22c)

By setting K = 1, the angular error statistics are calculated for each segment separately (K = 3
considers all segments used in the evaluation). All angular errors are given in degrees.

Additionally to the above measures of performance, a normalized range error, Enorm
tracker, was also

defined based on the mean angular errors, for quantifying the influence of model calibration errors on
the different sensor fusion methods and simplifying the performance comparison. The normalized
range error was defined as:

Enorm
tracker =

∑Nvar−1
i=0 Emean

tracker

maxj=0,...,Ntest−1 ∑Nvar−1
i=0 Emean

re f

(23)

Here, Nvar is the number of samples in the considered calibration error range, i.e., Nvar = 30 for
I2S orientation errors and Nvar = 20 for I2S position and segment length errors. Moreover, Ntest denotes
the number of tests considered (Ntest = 6 in the evaluation, i.e., three sequences, sim-fast-artificial ,
sim-slow , sim-fast , and two test conditions, w/mag, w/o mag). In Equation (23), the denominator
scales the sum of mean errors, such that Enorm

tracker is formulated relative to a reference Emean
ref . For the

latter, the Chaintracker was chosen, since this was considered as baseline for our work. Hence,
for Enorm

tracker = 1, the performance of the respective method is similar to the Chaintracker . Lower values
indicate a better performance, higher errors indicate a worse performance.

3. Results

3.1. Tracking Performances on Real Data

This section presents the performance results of the different sensor fusion methods on real
data, taking into account the inaccuracies as described in Section 2.6.1. The per segment angular
error statistics (cf. Equation (22)) for the four sensor fusion methods (Chaintracker , Quattracker
segment , Quattracker IMU , Optitracker) on real-slow and real-fast under both test conditions
(w/mag, w/o mag) are summarized in Table 7. The following general tendencies could be observed:
The Optitracker performed best w.r.t. mean errors, standard deviations and maximum errors on both
data sequences and test conditions. The maximum error was 6.78◦ and appeared at the forearm
segment on real-fast . The mean errors were below 2.4◦, and the standard deviations were below
1.4◦ in all cases. Note the comparably low weight of the magnetometer measurements as used in the
Optitracker (cf. Appendix D).
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Table 7. Real data scenario: mean (std; max) angular errors for each segment. Note, the color represents
a linear interpolation of the mean error over all segments between red (maximum error) and green
(minimum error). This helps comparing the performances of the different sensor fusion methods.
Also note, w/mag refers to using the real magnetometer measurements, w/sim. mag refers to using
the simulated magnetometer measurements (cf. Section 2.6.2) and w/o mag refers to dropping the
magnetometer information.

Method Chaintracker Quattracker segment Quattracker IMU Optitracker

real-slow w/mag
4.76◦ (2.24◦, 10.23◦) 4.34◦ (1.85◦, 10.04◦) 4.10◦ (1.65◦, 9.40◦) 1.27◦ (0.81◦, 4.06◦)
8.83◦ (4.64◦, 17.14◦) 8.49◦ (4.63◦, 16.82◦) 8.40◦ (4.42◦, 16.22◦) 2.16◦ (1.35◦, 5.16◦)
4.72◦ (2.61◦, 10.98◦) 4.57◦ (2.63◦, 11.59◦) 4.46◦ (2.47◦, 10.54◦) 2.32◦ (1.37◦, 6.05◦)

real-slow w/sim. mag
1.80◦ (1.04◦, 4.99◦) 1.68◦ (1.01◦, 5.10◦) 1.63◦ (0.92◦, 4.73◦) 1.31◦ (0.80◦, 4.05◦)
2.57◦ (1.94◦, 9.12◦) 2.58◦ (1.93◦, 8.96◦) 2.40◦ (1.76◦, 8.31◦) 2.17◦ (1.35◦, 5.23◦)
2.69◦ (1.86◦, 8.04◦) 2.71◦ (1.90◦, 8.15◦) 2.52◦ (1.66◦, 7.01◦) 2.33◦ (1.38◦, 6.08◦)

real-slow w/o mag
4.18◦ (2.91◦, 11.67◦) 3.45◦ (2.38◦, 10.49◦) 3.61◦ (2.46◦, 10.63◦) 1.31◦ (0.80◦, 4.05◦)
6.52◦ (4.81◦, 19.12◦) 3.25◦ (2.47◦, 10.84◦) 3.66◦ (2.42◦, 10.49◦) 2.17◦ (1.35◦, 5.23◦)
3.37◦ (1.94◦, 8.58◦) 3.51◦ (2.38◦, 12.14◦) 2.74◦ (1.71◦, 8.74◦) 2.33◦ (1.38◦, 6.08◦)

real-fast w/mag
9.38◦ (5.79◦, 23.52◦) 5.31◦ (2.61◦, 14.33◦) 4.66◦ (2.08◦, 11.04◦) 1.88◦ (0.91◦, 4.13◦)

11.91◦ (6.27◦, 22.84◦) 8.10◦ (3.17◦, 15.53◦) 7.34◦ (2.72◦, 13.50◦) 2.22◦ (1.38◦, 6.78◦)
7.37◦ (4.60◦, 17.04◦) 3.67◦ (2.45◦, 13.89◦) 2.91◦ (1.95◦, 10.05◦) 2.28◦ (1.15◦, 6.41◦)

real-fast w/sim. mag
4.24◦ (3.19◦, 13.47◦) 2.98◦ (2.52◦, 10.66◦) 2.27◦ (1.96◦, 8.51◦) 1.87◦ (0.91◦, 4.11◦)
4.01◦ (3.32◦, 14.75◦) 3.27◦ (2.79◦, 14.00◦) 3.28◦ (2.55◦, 11.44◦) 2.23◦ (1.38◦, 6.77◦)
3.64◦ (2.73◦, 12.76◦) 3.98◦ (3.16◦, 14.94◦) 3.75◦ (2.81◦, 11.96◦) 2.29◦ (1.15◦, 6.41◦)

real-fast w/o mag
6.09◦ (2.91◦, 13.36◦) 4.11◦ (2.15◦, 11.22◦) 2.52◦ (2.19◦, 8.48◦) 1.87◦ (0.91◦, 4.11◦)
8.04◦ (5.04◦, 16.03◦) 5.02◦ (2.71◦, 14.27◦) 5.09◦ (3.15◦, 12.55◦) 2.23◦ (1.38◦, 6.77◦)
5.59◦ (2.80◦, 13.37◦) 3.74◦ (2.79◦, 14.93◦) 3.63◦ (2.24◦, 12.37◦) 2.29◦ (1.15◦, 6.41◦)

Compared to the Optitracker , the error margins of all EKF-based methods were considerably
higher, if the real magnetometer measurements were used (Table 7, data rows 1–3 and 10–12, cf. Table 4).
However, the error margins, in particular of the Quattracker IMU , were only slightly higher or
comparable on real-slow , if the simulated magnetic field measurements (sim. mag) were used (data row
4–6). These error margins increased for all EKF-based methods on real-fast , although the mean errors
remained below 4.3◦. However, the maximum errors differed considerably. The Quattracker segment
showed a maximum error of 14.94◦ with the simulated magnetic fields and the Chaintracker showed
a maximum error of 23.52◦ with the real magnetometer measurements on real-fast . Moreover, over
all segments, the Chaintracker had consistently (on both data sequences, w/mag and w/sim. mag)
the highest mean errors and standard deviations, followed by the errors of the Quattracker segment ,
while the Quattracker IMU performed best among the EKF-based methods, indicating a higher
robustness and accuracy for the IMU centered approaches in contrast to the segment centered ones.
Also over all segments, all EKF-based methods showed a mean and maximum error increase on
both data sequences, if the (undisturbed) magnetometer information was dropped. On sim-slow ,
mean errors, standard deviations and maximum errors increased on per segment basis. Note, in
particular the maximum errors of the EKF-based methods increased on real-slow without using
magnetometer information, but comparably less on real-fast . The Optitracker , in contrast, was not
affected by dropping the magnetometer information, neither on real-slow nor on real-fast . In summary,
the following indications could be observed: Under beneficial conditions (moderate motion, no
magnetic disturbances), the EKF-based methods, in particular the Quattracker IMU , performed
comparable or only slightly worse than the Optitracker . However, under fast motion changes (as
present in real-fast ) or magnetic disturbances, or when no magnetometer information was used,
the performances of the EKF-based methods deteriorated, while the Optitracker was not considerably
affected. Again, note the comparably low weight of the magnetometer measurements (cf. Appendix D).
The higher robustness and accuracy of the Optitracker , however, comes at the cost of a considerable
increase in computational complexity (cf. Table 1).
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3.2. Tracking Performances on Simulated Data with Model Calibration Errors

This section presents the performance results of the different sensor fusion methods on the
simulated data sequences with systematically introduced model calibration errors. In order to evaluate
the influence of these errors on the segment orientation estimation accuracy in isolation, perfect
IMU data was here considered (cf. Section 3.3 for an evaluation with noisy data). The normalized
range errors for the four sensor fusion methods on the three sequences (sim-fast-artificial , sim-slow ,
sim-fast ) under both test conditions (w/mag, w/o mag) and for the five calibration error types
(∆palong

I2S ,∆pout
I2S,‖∆S1‖,∆qalong

I2S ,∆qout
I2S) are summarized in Table 8. Moreover, the per segment mean

angular errors for sim-fast are illustrated in Figures 5–7. Here, sim-fast was chosen for a more detailed
presentation, since it was the most challenging human motion considered. The results were analyzed
w.r.t. the following aspects: (1) severity of angular error increases and error propagation from the
affected middle segment S1 to the previous (S0) and subsequent (S2) segments in relation to the error
type; (2) aspect (1) w/o using magnetometers; (3) aspect (1) in relation to the motion agility, i.e., slow
and fast motion and motion changes as available in sim-slow , sim-fast and sim-fast-artificial .

First, the results with magnetometers are described (Table 8a, solid plots in Figures 5–7).
In Table 8a, the highest normalized range error of 0.51 was observed for the Chaintracker on

sim-fast-artificial with error type ∆pout
I2S. Note that this was due to extremely high mean errors when

applying an out-of-bone shift of above 0.18 m. This might exceed expected out-of-bone position errors,
which, however, could be better handled by the other methods.

Besides this effect, the table shows, that I2S orientation errors had a higher influence on the
estimation accuracy of the segment orientations than I2S position and segment length errors. This held
for all data sequences and methods (lower errors in data rows 1–3 compared to 4–5). Moreover, all
EKF-based methods showed an error increase from sim-slow to sim-fast and sim-fast-artificial , for
all error types (data columns 5–8 compared to 9–12 and 1–4), while the Optitracker was not affected
by the motion agility. In the majority of tests (combinations of data sequences and error types),
the Chaintracker showed the highest errors, followed by the Quattracker segment , followed by the
Quattracker IMU .

In addition to Table 8, Figure 5 illustrates the per segment distribution of mean angular errors
for both orientation error types, ∆qalong

I2S and ∆qout
I2S, on sim-fast . As can be seen in Figure 5b,e, I2S

orientation errors propagated at least linearly into the affected segment S1. This held for both error
types, ∆qalong

I2S and ∆qout
I2S, for all methods, and also for all data sequences (i.e., also for sim-slow and

sim-fast-artificial , which are not shown in detail here). Note, a direct (linear) propagation is here
expected, since all joints are modeled with three DoFs, without any explicit correction strategies, such
as joint constraints. However, the different methods varied in the amount of error that was propagated
into the neighboring segments (Figure 5a,c,d,f). While the Optitracker showed no noticeable error
propagation (maximum mean error in S0, S2 on sim-fast : 0.03◦), the EKF-based methods showed
different behaviors. Regarding ∆qalong

I2S , S0 and S2 showed errors that were rather constant over the
whole range at different levels for all EKF-based methods. Regarding ∆qout

I2S, a real error propagation
could be observed for all EKF-based methods, i.e., the mean errors in S0 and S1 varied depending on
the introduced calibration errors. Comparable propagation behaviors were also observed for sim-slow
and sim-fast-artificial , but with different error levels.
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Table 8. Simulation scenario: the normalized range error Etracker
quot (cf. Equation (23)) is shown for the different simulated model calibration errors and sensor fusion

methods. The latter have the following shortcuts: Chaintracker (chain), Quattracker segment (Seg. q.), Quattracker IMU (IMU q.), Optitracker (opti.). Note, for each
table separately, the color represents a linear interpolation of the error from red (maximum error) to green (minimum error).

(a) w/mag

Method→ Chain Seg. q. IMU q. Opti. Chain Seg. q. IMU q. Opti. Chain Seg. q. IMU q. Opti.

Sequence→ sim-fast-artificial sim-slow sim-fast

∆palong
I2S w/mag 0.09 0.10 0.06 0.00 0.04 0.04 0.03 0.00 0.17 0.15 0.15 0.00

∆pout
I2S w/mag 0.51 0.15 0.11 0.00 0.04 0.03 0.03 0.00 0.11 0.12 0.07 0.00

‖∆S1‖ w/mag 0.13 0.10 0.08 0.00 0.04 0.04 0.03 0.00 0.10 0.08 0.07 0.00

∆qalong
I2S w/mag 0.37 0.37 0.34 0.32 0.34 0.34 0.33 0.32 0.39 0.38 0.35 0.32

∆qout
I2S w/mag 0.49 0.44 0.41 0.32 0.36 0.35 0.35 0.32 0.47 0.42 0.42 0.32

(b) w/o mag

Method→ Chain Seg. q. IMU q. Opti. chain Seg. q. IMU q. Opti. Chain Seg. q. IMU q. Opti.

Sequence→ sim-fast-artificial sim-slow sim-fast

∆palong
I2S w/o mag 0.15 0.23 0.17 0.00 0.34 0.14 0.12 0.00 0.46 0.32 0.22 0.00

∆pout
I2S w/o mag 0.53 0.44 0.31 0.00 0.35 0.08 0.06 0.00 0.29 0.28 0.27 0.00

‖∆S1‖ w/o mag 0.21 0.23 0.28 0.00 0.40 0.11 0.19 0.00 0.47 0.65 0.55 0.00

∆qalong
I2S w/o mag 0.40 0.40 0.35 0.32 0.64 0.35 0.34 0.32 0.51 0.40 0.37 0.32

∆qout
I2S w/o mag 0.71 0.55 0.48 0.32 1.00 0.38 0.38 0.32 0.65 0.59 0.49 0.32
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Figure 5. Simulation scenario: Per segment mean angular error distributions on sim-fast for along-bone
and out-of-bone I2S orientation calibration errors (cf. Section 2.6.3).
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Figure 6. Simulation scenario: Per segment mean angular error distributions on sim-fast for along-bone
and out-of-bone I2S position calibration errors (cf. Section 2.6.3).
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Figure 7. Simulation scenario: The upper row shows the per segment mean angular error distributions
on sim-fast for segment length errors. The lower row shows the errors w/o magnetometers splitted
into yaw and pitch/roll errors.

As already indicated above, for all EKF-based methods, the influence of I2S position errors
on the segment estimation accuracy increased with higher motion agility (Table 8, data rows 1–3).
In addition to the normalized range errors in the table, Figure 6 illustrates the per segment distribution
of mean angular errors for both error types, ∆palong

I2S and ∆pout
I2S, on sim-fast . Here, for all EKF-based

methods, a clear influence on the affected segment (Figure 6b,e), as well as, a clear propagation into the
neighboring segments (Figure 6a,c,d,f) could be observed. Note, while this observation held for both
fast sequences, sim-fast and also sim-fast-artificial , the type of I2S position error, which caused the
most severe normalized range error, was sequence dependent. While on sim-fast , ∆palong

I2S caused the
highest errors for all EKF-based methods, on sim-fast-artificial , ∆pout

I2S caused the highest errors (Table 8,
data rows 1–3, data columns 1–3 and 9–11). In contrast to the EKF-based methods, the Optitracker
showed no noticeable error increases in any of the segments (maximum mean error on sim-fast : 0.04◦),
neither on sim-fast , nor on sim-slow or sim-fast-artificial . It could therefore be considered invariant to
I2S position errors in the tested settings.

The same tendencies as for the I2S position errors could also be observed for all EKF-based
methods for segment length errors, i.e., a normalized range error increase from sim-slow to sim-fast
and sim-fast-artificial (Table 8, data row 3), an error propagation on the fast sequences (shown
in Figure 7a–c for sim-fast ), and also a sequence dependent level of influence of this error type.
On sim-fast , ||∆S1|| had a lower or comparable influence than/to both I2S position error types on
the normalized range errors of the EKF-based methods (Table 8, data rows 1–3, data columns 9–11),
and also on the per segment mean angular errors (maximum mean angular error over all segments and
methods on sim-fast : 5.30◦ by the Quattracker segment ). In contrast, on sim-fast-artificial , ||∆S1|| had
a higher or comparable influence than/to ∆palong

I2S (Table 8, data rows 1–3, data columns 1–3). Again,
the Optitracker showed no noticeable error increases in any of the segments (maximum mean angular
error on sim-fast : 0.04◦), neither on sim-fast , nor on sim-slow or sim-fast-artificial .

In summary, in this study, I2S orientation errors (in particular ∆qout
I2S) had the most severe influence

on the accuracy of the estimated segment orientations, for all methods and data sequences. For the
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EKF-based methods, the influence of translational error types (I2S position and segment length errors)
was lower, but increasing with motion agility (i.e., higher for sim-fast and sim-fast-artificial compared
to sim-slow). The specific influences of the different translational error types compared to each other
were consistent between EKF-based methods, however, sequence dependent (different results for
sim-fast-artificial compared to sim-fast ), i.e., depending on the individual motion. The Optitracker
was not considerably affected by those translational model calibration errors, independently of the
data sequence. Over all data sequences, the Quattracker IMU performed best among the EKF-based
methods and the Optitracker performed best among all methods.

In the following, the results without using magnetometer information are described (Table 8,
dashed plots in Figures 5–7). As for the real scenario, the results for the Optitracker were nearly
identical under both test conditions and for all data sequences. Therefore, only the results for the
EKF-based methods are further discussed in more detail.

Table 8 shows an increase of the normalized range errors for all EKF-based methods, when the
(undisturbed) magnetometer information was dropped. This held for all data sequences and error
types and is an expected behavior. An interesting fact is, however, that the error increase due to
introduced I2S position and segment length errors was equally or more severe than the error increase
due to introduced I2S orientation errors, in particular for the Quattracker segment and Quattracker
IMU and for all data sequences (data columns 2–3, 6–7, 10–11). Moreover, Table 8, similarly to
the test condition with magnetometers, showed an error increase from sim-slow to sim-fast and
sim-fast-artificial for Quattracker segment and Quattracker IMU (data columns 6–7 compared to 2–3
and 10–11), while, again, the type of translational error that caused the highest normalized range
error increase was sequence dependent. On sim-fast , segment length errors resulted in even higher
normalized range errors than those caused by I2S orientation errors (data columns 10–11), while on
sim-fast-artificial , ∆pout

I2S had more influence among the translational error types. The Chaintracker , in
contrast to Quattracker segment and Quattracker IMU , seemed to benefit from the agile motions in
sim-fast and sim-fast-artificial , for both I2S orientation error types, but in a complementary manner
for the translational error types (data column 5 compared to 1 and 9).

In addition to the table, Figures 6 and 7 show exemplary for sim-fast that dropping the
magnetometer information not only resulted in increased mean angular errors for the affected
segment, but also in more severe error propagation into neighboring segments. This held for both I2S
position and segment length errors. Concerning the I2S orientation errors (Figure 5), dropping the
magnetometer information resulted in comparable performance for the affected segment (Figure 5b,e),
while a higher propagation could be observed to the neighboring segments (Figure 5a,c,d,f).

A further peculiarity visible in the figures is the asymmetry of most of the error distributions
over the error ranges when dropping the magnetometer information. Similar effects were observed
for sim-fast-artificial and sim-slow . As exemplary shown in Figure 7d–f, the errors and, in particular
the asymmetries, appeared mainly in the yaw direction. This is expected, since the yaw direction is
the variable, where the magnetometer measurements provide reference information. Without this
correcting information, the error in the yaw direction is supposed to be highly dependent on the
individual configuration and motion leading to unpredictable results.

In summary, even on short motion sequences and noise-free IMU data, dropping the
magnetometer information resulted in all EKF-based methods being more severely affected by
model calibration errors. Moreover, translational error types (I2S position and segment length errors)
gained more influence compared to I2S orientation errors, in particular for Quattracker segment and
Quattracker IMU and increasing with motion agility. As for the test condition with magnetometers, the
type of translational error that caused the most severe normalized range error was sequence dependent,
but consistent between EKF-based methods. The Optitracker , in contrast to the EKF-based methods,
was not affected by dropping the magnetometer information.
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3.3. Tracking Performances on Simulated Data without Calibration Errors

When focusing on the results with no (or small) calibration errors in Figures 5–7 (i.e., x around 0
in all graphs), the previously (real data scenario, simulation scenario w/mag) observed performance
ranking (Chaintracker , Quattracker segment , Quattracker IMU , Optitracker) could be confirmed
also for the simulation scenario w/o magnetometers, as exemplary shown in numbers for sim-fast
in Table 9. The table provides the angular error statistics over all segments for the four sensor fusion
methods on sim-fast under both test conditions (w/mag, w/o mag) and on noise-free and noisy IMU
data. Hence, the table complements the results in the previous section for sim-fast by detailing the
case, where no calibration errors were simulated and by providing results with noisy data. Note,
comparable results as described below were obtained from sim-slow and sim-fast-artificial , but with
overall lower error levels.

Table 9. Simulation scenario without calibration errors (sim-fast ): mean (std; max) angular errors over
all segments on the two test configurations (w/mag, w/o mag), both on noise-free (perfect) and noisy
IMU data.

Method Chaintracker Quattracker segment Quattracker IMU Optitracker

Noise-free w/mag 1.42◦ (1.40◦; 8.04◦) 1.19◦ (1.23◦; 6.83◦) 0.66◦ (0.64◦; 3.30◦) 0.01◦ (0.01◦; 0.06◦)
Noise-free w/o mag 3.50◦ (2.57◦; 9.45◦) 1.57◦ (1.45◦; 7.52◦) 0.97◦ (0.65◦; 3.36◦) 0.01◦ (0.01◦; 0.06◦)

Noise w/mag 1.46◦ (1.39◦; 8.09◦) 1.22◦ (1.21◦; 6.83◦) 0.69◦ (0.62◦; 3.28◦) 0.40◦ (0.05◦; 0.49◦)
Noise, w/o mag 3.73◦ (2.68◦; 9.76◦) 1.55◦ (1.40◦; 7.42◦) 0.95◦ (0.65◦; 3.31◦) 0.40◦ (0.05◦; 0.49◦)

With noise-free IMU data (Table 9, data rows 1–2), the errors mainly depend on linearization,
the degree to which the motion model fits the actual motion and the noise settings (cf. Appendix D).
Concerning the former, the Chaintracker is expected to have the highest linearization errors, due to the
angle parametrization, and the Optitracker is expected to have the lowest linearization errors, due to
the nonlinear optimization. This is confirmed in the table. Moreover, the above performance ranking
held for all test configurations and for mean errors, standard deviations and maximum errors. From
the EKF-based methods, the Quattracker IMU provided the best results, with a mean error below 1◦

for all test configurations. The Optitracker performed overall best, with a mean error below 0.4◦ and a
maximum error of 0.49◦ over all test configurations.

For the EKF-based methods, noise did not have a significant influence (data rows 1–2 compared
to 3–4). For the Optitracker , adding noise resulted in the error levels increasing according to the noise
levels, with the above maximum error.

As previously observed, dropping the magnetometer information had no influence on the
Optitracker . Also the Quattracker segment and Quattracker IMU showed an only slight error increase
(mean, std, max) on this rather short sim-fast sequence, both on noise-free and noisy IMU data. Only
the Chaintracker showed a more considerable error increase (mainly mean and std) when dropping the
magnetometer information (data column 1). Note, that this effect might be reduced through specific
tuning or by adding joint constraints (e.g., [20]). Since mainly the biomechanical model representation
(kinematic chain versus free segments) and the rotation parametrization (joint angles vs. quaternions)
differ between the two methods, this finding indicates that the combination of free segment model and
quaternions is potentially more robust in the case of body motion tracking with unconstrained joints
and without using magnetometer information.

4. Discussion and Conclusions

The goal of this work was to develop/identify sensor fusion methods, which robustly handle
model calibration errors (I2S, segment length) and show potential for magnetometer-free operation.
Concerning the latter, the conducted tests served mainly for excluding methods that do not cope well
with missing reference information in the yaw direction, already on the rather short data sequences
considered. Here, the motivation for this investigation was that potentially large model calibration
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errors have to be expected given today’s most widely used calibration techniques based on static
poses, functional movements, manual measurements and assumptions. At the same time, magnetic
disturbances have to be expected in man-made environments.

To this end, two newly developed/adapted sensor fusion methods (Quattracker segment ,
Quattracker IMU , Optitracker) were compared to an existing method (Chaintracker), regarding
segment orientation tracking accuracy on complex moderate and fast captured and re-simulated
human motion, as well as on fast artificial motion, in the presence and in the absence of model
calibration errors, with and without using magnetometer information.

The findings concerning the influence of model calibration errors on the different methods,
which held independently of the considered data sequences, can be summarized as follows:
With (undisturbed) magnetometer information, I2S orientation errors clearly had a higher influence
on segment orientation estimation accuracy than I2S position and segment length errors, which is an
expected behavior. Both tested orientation error types, ∆qalong

I2S and ∆qout
I2S, resulted in at least linear

error propagation into the affected segment. This held for all methods and was also expected, since no
explicit compensation strategies, such as joint constraints were used (cf. [20]). For the EKF-based
methods, different amounts of errors were also propagated into the orientation estimates of the
neighboring segments, in particular for ∆qout

I2S, similarly for I2S position (∆palong
I2S , ∆pout

I2S) and segment
length errors (‖∆S1‖), increasing with motion agility. When dropping the magnetometer information,
the influence of translational calibration error types (I2S position and segment length errors), relative
to the influence of I2S orientation errors, increased considerably. From this, it can be concluded that
I2S orientation errors represent the dominant source of the considered model calibration errors in
magnetic-inertial human motion tracking (assuming undisturbed magnetometer information), while
the importance of accurate I2S position and segment length calibration increases with motion agility
and in the absence of reference information for the yaw direction (w/o mag). Note that in these cases all
translational error types should be kept small, since their influences turned out to be motion dependent.

Further considering the results on real and simulated data without introduced calibration errors
(cf. Sections 3.1 and 3.3), it can also be stated for the newly developed EKF-based methods that
dropping the magnetometer information (at least for the short time duration considered in the tests),
resulted in acceptable accuracy loss, as long as no severe model calibration errors were present at the
same time. The Chaintracker , however, showed the highest dependency on undisturbed magnetometer
information and was overall more fragile.

The Optitracker , in contrast to all EKF-based methods, showed no considerable I2S orientation
error propagation into neighboring segments, independently of the type of orientation error introduced
(∆qalong

I2S , ∆qout
I2S). Moreover, it was nearly invariant w.r.t. I2S position and segment length errors,

independently of motion agility and magnetometer usage. The latter was also confirmed in the real
data scenario and in the simulation scenario without calibration errors. Note, the Optitracker also
turned out to require no intensive tuning (cf. Appendix D).

Among the EKF-based methods, in the majority of test cases, the Chaintracker showed the highest
(mean) errors (over all segments), followed by the Quattracker segment , followed by the Quattracker
IMU . The Optitracker outperformed all EKF-based methods in all test cases, also showing lower
standard deviations and maximum errors.

Hence, the segment centered biomechanical models (used by Chaintracker and Quattracker
segment ), which assume constant angular acceleration in the motion model (cf. [16] and Equation (8)),
were overall outperformed by the IMU centered free segments biomechanical models (used by
both, Quattracker IMU and Optitracker), while in the former case, the free segments model overall
performed slightly better than the kinematic chain model. Moreover, the additional redundancy in
terms of spatial and temporal estimation variables, in combination with the nonlinear optimization
used by the Optitracker provided a considerable gain in robustness, in particular in the presence of
disturbing effects as described above. Obviously, this comes at the cost of a significantly higher
computational complexity, where, however, a parallelized version, similar to the one proposed
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in [32], might give remedy. Concerning the analysis above, the following aspects have to be noted:
(1) the performances of the EKF-based methods could likely be improved through sequence dependent
tuning, which is, however, not preferred for a practical system; (2) there exist other motion models,
e.g., the decaying angular acceleration model [20], which were not investigated here.

Another important finding was that under beneficial conditions (moderate motion, no severe
calibration errors, undisturbed magnetometer information), the Quattracker IMU provided the most
comparable results to the Optitracker , but with considerably lower computational costs. Hence,
the Optitracker might be best invested, if disturbing effects are expected in the considered application
scenario, while, under beneficial conditions, the Quattracker IMU can be a computationally more
efficient solution, which provides comparable performance. Based on this work, long-term magnetometer-free
operation and robust handling of soft tissue artifacts remain parts of our future work.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/
1424-8220/16/7/1132/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

DH Denavit Hartenberg
DoF(s) Degree(s) of Freedom
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
IMU Inertial Measurement Unit
I2S IMU-to-Segment
WLS Weighted Least Squares

Appendix A

A DH transformation is composed of a rotation around the x-axis (angle α), followed by two
translations along the x- and the z-axis (a, d) and, finally, a rotation around the z-axis (angle θ).
This results in the following homogeneous transformation:

DH(θ, d, a, α) =


cos θ − sin θ cos α sin θ sin α a cos θ

sin θ cos θ cos α − cos θ sin α a sin θ

0 sin α cos α d
0 0 0 1

 (A1)

These transformations are composed to a tree of paths:

DHpath({θi, di, ai, αi}n
i=1) :=

n

∏
i=1

Hi =
n

∏
i=1

DH(ai, di, αi, θi) (A2)

A kinematic chain is constructed by having an initial transformation HGW , where W refers to the
local world frame, i.e., the chain root. From there, paths lead to each IMU. Through this structure, each
transformation is represented in the reference frame of its predecessor. Hence, the pose of the kth IMU
in the global frame is given by:

http://www.mdpi.com/1424-8220/16/7/1132/s1
http://www.mdpi.com/1424-8220/16/7/1132/s1
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HGI
k = HGW

k

∏
i=1

(Hi) HSI
k (A3)

According to the DH convention, per transformation, only one parameter may be variable.
In our case, i.e., for human motion capturing with given segment lengths and I2S calibrations,
only (joint) angles are estimation variables. A chain state, xc, (i.e., a state space representing a
kinematic chain) is therefore a set of variable angles. Consequently, the kth IMU pose in the global
frame depends on the angles to its path:

HGI
k = fk(xc) (A4)

where the right-hand side is given by Equation (A3). Note, HGW is here assumed given and fixed.

Appendix B

The following notation is used: A quaternion is a 4-vector q ∈ R, q = (qw, qx, qy, qz)T , where qw is
the scalar part and (qx, qy, qz) is the vector part. Special quaternion sets are: Qv = {q ∈ R4 : qw = 0}
and the set of unit quaternions (representing a rotation) Q1 = {q ∈ R : ‖q‖2 = 1}. The identity
quaternion is denoted as Iq = (1, 0, 0, 0).

The quaternion exponential is defined using a power series:

exp(q) =
∞

∑
n=0

qn

n!
(B1)

where the quaternion power is recursively defined as:

qn = q� qn−1 = qn−1 � q, q0 = 1 (B2)

In the following equations, angular velocity ω and angular acceleration ω̇ are used in their
quaternion formulation, i.e., (0, ω) and (0, ω̇) respectively.

Claim 1. The continuous-time differential equation describing the dynamic model of a unit quaternion rotating
from frame B to A is:

q̇AB
t =

1
2

ωAB
A,t � qAB

t (B3)

Let ωAB
A,t , ω̇AB

A,t be piece-wise constant between t and t + T, then:

qAB
t+T = exp

(
T
2

ωAB
A,t +

T2

4
ω̇AB

A,t

)
� qAB

t (B4)

is a consistent discrete-time dynamic model.

Proof of Claim 1. Note, the frame subscripts and superscripts are omitted here for brevity. First, using
the exponential formula for exp( T

2 (ω + T
2 ω̇)) yields:

exp(
T
2
(ω +

T
2

ω̇)) = Iq +
T
2

ω +
T2

4
ω̇ +

1
2

[
T
2

ω +
T2

4
ω̇

]2

+O(T3) (B5)

To continue, the following multiplications need to be written out, since the binomial formulas do
not hold for quaternions. Note that (0, v)� (0, v) = (−v · v, 03) = (−v2, 03):
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1
2

[
T
2

ω +
T2

4
ω̇

]2

=
1
2

(
−
[

T
2

ω +
T2

4
ω̇

]
·
[

T
2

ω +
T2

4
ω̇

]
, 03

)
=

1
2

(
−T2

4

[
ω +

T
2

ω̇

]
·
[

ω +
T
2

ω̇

]
, 03

)
=

1
2

(
−T2

4

[
ω ·ω + Tω · ω̇ +

T2

4
ω̇ · ω̇

]
, 03

)
=

1
2

(
−T2

4
[ω ·ω]− T2

4

[
Tω · ω̇ +

T2

4
ω̇ · ω̇

]
, 03

)
(B6)

=
1
2

[(
−T2

4
[ω ·ω] , 03

)
+

(
−T2

4

[
Tω · ω̇ +

T2

4
ω̇ · ω̇

]
, 03

)]
=

1
2

[
T2

4
ω2 +

(
−T2

4

[
Tω · ω̇ +

T2

4
ω̇ · ω̇

]
, 03

)]
=

T2

8
ω2 +

(
−T3

8

[
ω · ω̇ +

T
4

ω̇ · ω̇
]

, 03

)
︸ ︷︷ ︸

=v

By insertion into Equation (B5), one gets:

exp(
T
2
(ω +

T
2

ω̇)) = Iq +
T
2

ω +
T2

4
ω̇ +

T2

8
ω2 + v+O(T3) = Iq +

T
2

ω +
T2

8
ω2 +

T2

4
ω̇ +O(T3) (B7)

Note, that v is an error term of third order and is thus part of O(T3). For further considerations,
qt+T needs to be approximated. For this, the following identity is needed [60]:

q̇ =
1
2

ω� q (B8)

The time derivative is:

q̈ =
1
2

ω̇� q +
1
2

ω� q̇

=
1
2

ω̇� q +
1
2

ω� 1
2

ω� q (B9)

=

(
1
2

ω̇ +
1
4

ω2
)
� q

Now, the Taylor expansion of qt+T becomes:

qt+T = qt + q̇tT + q̈t
T2

2
+O(T3)

= qt +
T
2

ωt � qt +
T2

2

(
1
2

ω̇t +
1
4

ω2
t

)
� qt +O(T3)

= qt +
T
2

ωt � qt +
T2

4
ω̇t � qt +

T2

8
ω2

t � qt +O(T3) (B10)

=

[
Iq +

T
2

ωt +
T2

4
ω̇t +

T2

8
ω2

t

]
� qt +O(T3)

=

Iq +
T
2

ωt +
T2

8
ω2

t +
T2

4
ω̇t︸ ︷︷ ︸

=exp( T
2 (ω+ T

2 ω̇))+O(T3)

� qt +O(T3)
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This means, Equation (B4) is a consistent approximation for qt+T .

Appendix C

This Appendix provides two terms (dynamic model, I2S calibration) in Equation (15), which were
already proposed in [19]:

The motion of each IMU Ii ∈ I from time step t to t + T, is modeled by taking the measured
acceleration, ya

i,t, and angular velocity, yω
i,t, as control input [43], yielding ∀Ii ∈ I:

IG
i,t+T = IG

i,t + TİG
i,t +

T2

2 RGI
i,t (y

a
i,t − e p̂

i,t) +
T2

2 gG (C1a)

İG
i,t+T = İG

i,t + TRGI
i,t

(
ya

i,t − e
˙̂p
i,t

)
+ TgG (C1b)

qGI
i,t+T = qGI

i,t � exp
(

T
2 ωGI

I,i,t + eq̂
i,t

)
(C1c)

Moreover, ∀Ii ∈ I:

qGI
i,t = qGS

i,t � qSI
i,t � exp

(
1
2 ecq

i,t

)
(C2a)

IG
i,t = SG

i,t + RGS
i,t

(
IS
i,t + ecp

i,t

)
(C2b)

models the fact that IMU and segment poses are coupled through the I2S calibrations, up to some
uncertainty that might compensate for soft tissue artifacts [19].

Appendix D

This appendix summarizes the settings of all tuning parameters used in the evaluation in Section 3.
Table D1 provides the noise covariances used by all sensor fusion methods throughout all tests.

Note, in order to provide comparable results, for the EKF-based methods, the measurement noise
settings were kept equal and the process noise settings, due to the different motion models, where tuned
per method. Tuning was done manually, first, on sim-fast-artificial , since this provided both slow
and fast motion parts. The tuning parameters were then adapted based on sim-slow and sim-fast .
The Optitracker did not require manual tuning for any parameter other than the magnetometer noise
covariance. The latter was down-weighted, since this provided the best results on the above sequences.
The same settings were then used for all test cases.

Table D1. Noise covariances used by all sensor fusion methods in all tests (cf. Table 1).

Chaintracker Quattracker segment|IMU Optitracker

Σ
¨̂θ 3× 106 Σω̂ 1× 104 I3×3 Σcq I3×3

Σa 0.8 I3×3 Σ ˙̂ω 2× 104 I3×3 Σcp I3×3
Σω 0.03 I3×3 Σ p̂ 3× 106 I3×3 Σ p̂ I3×3

Σm 0.01 Σa 0.8 I3×3 Σ ˙̂p I3×3
Σω 0.03 I3×3 Σq̂ I3×3
Σm 0.01 ΣG I3×3
Σp 1× 10−7 I3×3 Σm 0.001 I3×3
ΣG 1× 10−7 I3×3 Σq0 I3×3

Σp I3×3

For simulating realistic sensor noises, the following settings were used:

ya = ya + ea
sim, yω = yω + eω

sim, ym = ym + em
sim (D1)
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with Σa
sim = 1.515× 10−3, Σω

sim = 1.651× 10−5 and Σm
sim = 0.01.

The window size of the Optitracker was w = 5 and the overlap was ov = 1 throughout all tests.
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