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Abstract: Nowadays improving the accuracy and enlarging the measuring range of six-axis force
sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing
experiments has become an urgent objective. However, it is still difficult to achieve high accuracy
and large measuring range with traditional parallel six-axis force sensors due to the influence of the
gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed
a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to
develop a large measurement range six-axis force sensor. The structural characteristics of the sensor
are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force
transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw
theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The
prototype and loading calibration system are designed and developed. The K value method and least
squares method are used to process experimental data, and in errors of kind I and kind II linearity
are obtained. The experimental results show that the calibration error of the K value method is more
than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results
prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to
be adopted in practical applications.

Keywords: six-axis force sensor; parallel mechanism; flexible joints; calibration experiment

1. Introduction

With the ability of measuring three force components and three torque components, the six-axis
force sensor is one kind of the most important and challenging sensors, used widely in many research
areas such as wind tunnel balances, thrust stand testing of rocket engines, and in robotics, the
automobile industry, aeronautics, etc. [1]. Compared with single-axis sensors, not only the volumes
and prices of multi-axis force sensors are considered, but also their structures, in order to achieve a
balance between the isotropy of force/torque and that of sensitivity [2]. Recently, researchers all over
the world have done a lot of work on six-axis force sensors.

Since the Stewart platform was applied to the measurement of space six-axis forces by measuring
the forces in the six legs with convection elements in 1983 [3], parallel structure have been widely used
in six-axis force sensors [4], stimulated by the advantages of good stiffness, symmetric and compact
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structure, and straightforward mapping expression between the wrenches applied on the platform and
the measured leg forces. Nguyen et al. [5] developed a Stewart platform-based sensor with LVDT’s
mounted along the legs for force/torque measurement in the presence of passive compliance. Durand
changed the traditional Stewart structure and put piezoelectric quartz inside the Stewart structure and
pre-tightened it [6], therefore, the sensor was more compact and could be used to measure tensions.
Dwarakanath et al. [7,8] introduced the usage of ring-shaped sensing element in the Stewart platform
sensor, and presented a simply supported, ‘joint less’ six-axis parallel force sensor. Kim et al. [9] put
forward a six-axis wrist force sensor using FEM for an intelligent robot.

Although research on the traditional Stewart platform-based six-axis force sensor is quite mature,
the sensor with common joints has a lower precision, and the performance of each direction is different.
In comparison, the sensor with flexible joints has features of compact structure, fast response, small
accumulated error, no mechanical friction, and high measurement accuracy because of the use of
integrated design, so it has broad application prospects [10–14]. Kerr [15] suggested that the Stewart
platform with instrumented elastic legs can be used as a six-axis force sensor. Jin et al. [16] proposed a
novel isotropic six-axis force sensor based on a variation of Stewart platform, whose three pairs of elastic
legs are perpendicular to the three orthogonal surfaces of the basic cube. Gao et al. [17] developed a
six-axis controller based on Stewart platform-based force sensor, and introduced the elastic joints to
replace the real spherical joints which made the miniaturization possible. Liang et al. [18] designed
and developed a new six-axis sensor system with a compact monolithic elastic element (EE), which
detected the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the
cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Unfortunately,
most of the sensors mentioned above are used in a small range of applications. Nowadays, the large
measurement range six-axis force sensor is more and more widely needed in applications such as
aircraft landing gear momentum tests, rocket thrust tests, spacecraft docking and wind tunnel tests,
whose precision requirements are also getting increasingly higher. However, when the parallel six-axis
force sensor is used in large measurement range occasions, the traditional joints are difficult to be
processed into flexible joints, and the improvement of measurement accuracy will be affected, so
parallel six-axis force sensors with large measurement range and high accuracy are urgently required.

When the force transmission relation of the sensor is established, the stiffness of each flexible joint
and the whole stiffness which has a direct impact on the measuring accuracy, bearing capacity and
dynamic performance, and is one of the important indexes to measure the performance of sensors must
be considered. Research on stiffness of the sensors based on parallel mechanism began in the 1990s [19],
which gave Gosselin’s minimalist stiffness mapping model of parallel mechanism under no loading.
Then, Griffis and Duffy [20] proposed a kind of parallel mechanism with branches which are assumed
to be wire springs. Under the premise of joints are equivalent, they considered the effect of differential
motion, and established the complete stiffness model by the analytical method. Chakarov [21] analyzed
the effect of external load on the overall stiffness matrix in force redundant parallel mechanism.
Pashkevich et al. [22] proposed a kind stiffness modeling method of the over-constrained parallel
mechanism with flexible branches and flexible drive joints. Zhang and Wei [23] derived the stiffness
model of the mechanism and evaluated the global stiffness using the sum of the diagonal elements of
the stiffness matrix. However, existing institutions to complete stiffness modeling methods are very
complex, and there is little research combining together stiffness and force Jacobian matrix.

In this paper, a kind of six-axis force sensor based on 6-UPUR parallel mechanism with flexible
joints, which has large measurement range and high accuracy is proposed. Meanwhile, the complete
mathematical model considering the flexibility of the joints is established, and the calibration
experiment is completed.

The structure of this paper is as follows: after the introduction, Section 2 concerns the structural
analysis of the sensors, including the intrinsic disadvantages of the traditional parallel sensors based
on the Stewart platform and the structure features of the large measurement range six-axis force sensor
of 6-UPUR parallel mechanism with flexible joints. The measuring principle, mathematical model of
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the structure which included the ideal state and the state of flexibility of each flexible joint is considered
in Section 3. Section 4 introduces the experimental research on static calibration of the sensor prototype.
Section 5 presents the results of the experiment. The paper is concluded in Section 6, summarizing the
work that has been done.

2. Sensor Structure

Figure 1a illustrates the traditional parallel sensor diagram, which is based on the Stewart platform
and composed of a measuring platform, a lower fixed platform and six elastic legs connecting the two
platforms with traditional spherical joints.
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Considering the traditional spherical joints are difficult to processed into flexible joints in a large
measurement range situation, and the measurement accuracy will be affected, which restricts its
application in six-axis force sensors based on flexible parallel mechanism, this paper proposes a kind of
structure model of six-axis force sensor based on a parallel 6-UPUR mechanism. As shown in Figure 1b,
it consists of a measuring platform, a fixed platform and six measuring legs divided into three groups
of legs and two legs in each group are located in a vertical plane. Each measuring leg contains a
single-axis force sensor and connects the fixed platform with flexible universal joint, and connects
the measuring platform with combined spherical joint. Through the improvement of the traditional
Stewart platform mechanism, and the introduction of flexible joints which have the peculiarities of
non-clearance, friction-less and high sensitivity to replace the traditional spherical joints, it is possible
to develop a sensor with a large measurement range.

The characteristic parameters of the parallel 6-UPUR six-axis force sensor include radius R of the
measuring platform, radius r of the lower platform, the positioning angle A, B, C, the center distance l1
of the U joint and location center distance l2 of the R joint, as shown in Figure 2.
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3. Mathematical Model

3.1. Ideal Mathematical Model

3.1.1. Force Analysis

There are reacting forces on measuring legs when an external force loaded on the measuring
platform of the parallel sensor whose surface is assumed to be friction-less and continuous, and the
reacting force is considered along the axis of each measuring leg. According to the space static balance
conditions of the measuring platform, the following equation can be obtained on screw theory [24]:

6
ÿ

i“1

fiSi “ F` P M (1)

where fi represents the reacting force on the measuring legs; Si represents the unit line vector along the
ith measuring leg; F and M, respectively, represent the ith loaded force vector and toque vector on the
center of the measuring platform; P is the dual sign.

Equation (1) can be rewritten in the form of matrix expression as:

Fω “ GF
f f (2)

where Fω “
“

Fx Fy Fz Mx My Mz
‰T is the vector of six-axis external force applied on the measuring

platform; f “ r f1 f2 f3 f4 f5 f6s
T is the vector composed of the reacting forces of the six measuring

legs; GF
f is the first-order static influence coefficient matrix. If GF

f is non-singular matrix, the inverse
mapping between Fω and f is:

f “ Gf
FFw (3)

where, Gf
F “

´

GF
f

¯´1
is the force Jacobi matrix, and it is the mapping matrix from the external force

loaded on the measuring platform of the sensor to the force produced on the six measuring leg. GF
f is

closely related with the geometric structure of the sensor, and the characteristics of GF
f determine

stiffness, isotropy, sensitivity and many other features of the sensor.

3.1.2. Ideal Mathematical Model

Each leg of the parallel 6-UPUR mechanism can be seen as a series open-chain mechanism which
is composed of six links and six joints, and the U joint is equivalent to two joints whose axes are vertical
and intersect. The base is called link 0, which is not included in the six links. The first link is connected
to the base by the first rotational joint; the second link is connected to the first link by the second
rotational joint, and so on.

The coordinate system attached to the base fixedly is referred to as {0}; the coordinate system on
the reference point of the end of the leg is referred to as {P}; coordinate system attached to the ith link
fixedly is referred to as{i}, as shown in Figure 3.
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The differential motion vector of central reference point P which is on the measuring platform is:

DP “
´

δh dP

¯T
“

”

GP
φ

ı .
φ (4)

where: δh “
”

δhx δhy δhz

ı

is the angle variable, dP “
´

dPx dPy dPz

¯

is the displacement variable, GP
φ is

the first-order static influence coefficient matrix,
.
φ “

” .
φ1 . . .

.
φ6

ıT
is the differential motion of the

six legs:

”

GP
φ

ı

“

«

S1 S2 0 S4 S5 S6

S1 ˆ pP´R1q S2 ˆ pP´R2q S3 S4 ˆ pP´R4q S5 ˆ pP´R5q S6 ˆ pP´R6q

ff

(5)

S1 . . . S6 are the directions of joints’ axes of each leg, and they are:

S1 “
!

0 0 1
)T

Sj “ Tj´1

”

0 ´sinαpj´1qj cosαpj´1qj

ıT
(6)

Tj is rotational transformation matrix:

Tj “
”

ajk Sj ˆ ajk Sj

ı

pj “ 1, 2, ¨ ¨ ¨ , 6q (7)

ajpj`1q is the direction of the common normal line between adjacent axes:

a12 “
”

cosθ1 sinθ1 0
ıT

ajpj`1q “ Tj´1

”

cosθj cosαpj´1qjsinθj sinαpj´1qjsinθj

ıT
pj “ 2, 3, ¨ ¨ ¨ , 6q

(8)

P´Rn “

6
ÿ

r“n`1

´

apr´1qrapr´1qr ` drSr

¯

` TjPp6q (9)

where apr´1qr is length of the common normal line between adjacent axes, dr is offset along the axis of

rotation. Pp6q is the representation of the point P in coordinate at the end of the leg, and the left leg and
the right leg are separately expressed as:

Pp6ql “

”

´

b

R2 ´
l2
2
4

l2
2 cos C

2 ´l2sin C
2

ı

Pp6qr “

”

´

b

R2 ´
l2
2
4 ´

l2
2 cos C

2 ´l2sin C
2

ı

(10)

where:

C “ arccos

«

1´

`

R
?

1´ cosA´ r
?

1´ cosB
˘2

l2
2

ff

(11)

According to the above equations,
”

GP
φ

ı

l
and

”

GP
φ

ı

r
can be obtained, separately:

”

GP
φ

ı

l
“

»

—

—

—

—

—

—

—

–

0
0
1

a5 ` yp

a1 ` a4 ` d3 ` d6 ` zp

0

0
1
0
xp

0
´pa4 ` d3 ` d6 ` zpq

0
0
0
1
0
0

0
1
0
xp

0
´pa4 ` d6 ` zpq

0
0
1

a5 ` yp

d6 ` zp

0

1
0
0
0
´xp

´yp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

”

GP
φ

ı

r
“

»

—

—

—

—

—

—

—

–

0
0
1

y1p ´ a5

a1 ` a4 ` d3 ` d6 ` z1p
0

0
´1
0
´x1p

0
a4 ` d3 ` d6 ` z1p

0
0
0
1
0
0

0
´1
0
´x1p

0
a4 ` d6 ` z1p

0
0
1

y1p ´ a5

d6 ` z1p
0

1
0
0
0
´x1p
´y1p

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(12)
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Because the z axis of the fixed coordinate system O-xyz which is on the center of the lower platform
is the direction of S1, and selection of coordinate system has a direct impact on the first-order static
influence coefficient matrix, so it is necessary to take the symmetry of the load platform structure into
account, thus:

O
”

GP
φ

ı

i “

« O
Oi

R 0

S
`OPOiO

˘O
Oi

R O
Oi

R

ff

”

GP
φ

ı

r
pi “ 1, 3, 5q

O
”

GP
φ

ı

j “

« O
Oi

R 0

S
`OPOiO

˘O
Oi

R O
Oi

R

ff

”

GP
φ

ı

l
pj “ 2, 4, 6q

(13)

When movement of the upper platform is known, movement of the joints in each leg can
be written:

.
φ
prq
“

”

GP
φ

ı´1prq
DP pr “ 1, 2, ¨ ¨ ¨ , 6q (14)

When six active members of the mechanism are determined, equations of the six active movements
from the above equations are taken out and expressed as:

.
φ
paq
α “

”

GP
φ

ı´1paq

α:
DP

.
φ
pbq
β “

”

GP
φ

ı´1pbq

β:
DP

...
.
φ
p f q
ζ “

”

GP
φ

ı´1p f q

ζ :
DP

(15)

where
.
φ
paq
α is the differential motion of the six legs, its subscripts are leg’s number and joint’s number

respectively,
”

GP
φ

ı´1paq

α:
represents the α-th line of the inverse matrix

”

GP
φ

ı´1paq
.

Combining the above six equations to constitute a matrix expression, like this:
.
q “

”

Gq
P

ı

DP.

The inverse solution is DP “
”

GP
q

ı .
q,
”

GP
q

ı

“

”

Gq
P

ı´1
.

Furthermore, the first-order static influence coefficient matrix can be obtained:

GF
f “

ˆ

”

O
”

GP
φ

ı

´1
1 p3, :q O

”

GP
φ

ı

´1
2 p3, :q O

”

GP
φ

ı

´1
3 p3, :q O

”

GP
φ

ı

´1
4 p3, :q O

”

GP
φ

ı

´1
5 p3, :q O

”

GP
φ

ı

´1
6 p3, :q

ıT
˙´1

(16)

where O
”

GP
φ

ı´1

i
p3, :q pi “ 1, . . . , 6q represents the third row vectors of the matrix O

”

GP
φ

ı´1

i
pi “ 1, . . . , 6q.

Thus, the force Jacobi matrix is G f
F “

”

GF
f

ı´1
, and that is the mapping matrix from the external

force applied on the measuring platform of the sensor to the force produced on the six elastic legs in
the ideal condition.

3.2. Mathematical Model of the Sensor with Flexible Joints

The six-axis force sensor adopts the structure that all joints are flexible joints with single degree of
freedom, and its 3D model is shown in Figure 4. Each leg is a split structure. The lower part of the leg
is composed of a flexible universal joint with an integral structure and a lower positioning block. Each
elastic leg is connected to the measuring and fixed platforms through the upper and lower positioning
blocks by bolts. Thus, it’s realized that the decomposition of the six-axis external force to the six legs.
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The upper positioning block is composed of two flexible rotation joint, which form a flexible
spherical joint with composite flexible universal joint by assembling relationship. Its front view and
graphic model are shown in Figure 5. By using the knowledge of material mechanics, the rotational
stiffness of the flexible rotary joint is obtained: k1 = 8.592 ˆ 104 (N¨m/rad).
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The lower positioning block is an integral structure, which is composed of two symmetrical
flexible universal joints, with the same structure as the flexible universal joint in the upper part of the
leg. Its front view and graphic model of a single joint are shown in Figure 6. By using the knowledge
of material mechanics, the rotational stiffness of a single joint is obtained: k2 = 4.0852 ˆ 104 (N¨m/rad).
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Figure 7 is the schematic diagram of flexible element coordinate systems’ establishment on a leg.
where, O-xyz is the fixed coordinate system, Oi1-xi1yi1zi1, i = 1,2,3, . . . ,6 is the local coordinate system
which is established on the reference point of the lower positioning block, Oi2-xi2yi2zi2 is the local
coordinate system which is established on the reference point of the standard one-axis force sensor,
Oi3-xi3yi3zi3 is the local coordinate system which is established on the reference point of the flexible
U joint, Oi4-xi4yi4zi4 is the local coordinate system which is established on the reference point of the
integrated positioning block, Oip-xipyipzip is the reference coordinate system which is established on
the reference point of the end of a flexible series leg.
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where ΔXj is deformation vector of the end of leg’s reference point, Xj is the elastic deformation 
vector of the end of the j-th basic flexible unit, Jj is the pose transformation matrix, Fj = [fx, fy, fz, mx, my, 
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When there is the six-axis external force loaded on the end of the flexible series leg, by the principle
of virtual work, the following equation can be obtained:

#

∆Xj “ JjXj “
”

∆xj, ∆yj, ∆zj, ∆αxj , ∆αyj , ∆αzj

ı

Fj “ JFjF
pj “ 1, 2, 3, 4q (17)

where ∆Xj is deformation vector of the end of leg’s reference point, Xj is the elastic deformation vector
of the end of the j-th basic flexible unit, Jj is the pose transformation matrix, Fj = [fx, fy, fz, mx, my, mz]T

is the six-axis non-coplanar force, Fj “
”

fxj , fyj , fzj , mxj , myj , mzj

ıT
is the reaction force on the end of

the j-th basic flexible unit, JFj is the force transformation matrix.
According to the deformation superposition principle of series leg, the total deformation vector of

the end of flexible series leg’s reference point caused by movement and rotation deformation vector of
every basic flexible unit can be obtained:

X “
4
ÿ

j“1

∆Xj “

4
ÿ

j“1

JjXj “ J1X1 ` J2X2 ` J3X3 ` J4X4 (18)

It can be known by the definition of the stiffness matrix, the relationship between the six-axis
external force at the end of the leg reference point and the end deformation of the leg is:

F “ KX (19)

where K is the stiffness matrix of the end of flexible series leg.
Substituting Equations (17) and (20) into Equation (21), the following equation can be obtained:

X “ K´1F “
4
ÿ

j“1

JjXj “

4
ÿ

j“1

JjK
´1
j Fj “

4
ÿ

j“1

JjK
´1
j JFjF (20)
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where Kj (j = 1,2, . . . ,4) is the stiffness matrix of the jth basic flexible element. The end reference point
and the coordinate system of each flexible series leg are established as shown in Figure 8. Op-xpypzp is
the reference coordinate system established on the center point of the upper platform. Oip-xipyipzip,
i = 1,2, . . . , 6 is the reference coordinate system which is established on the reference point of the end
of the flexible series leg.
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where ΔX is displacement vector at the reference point of the upper platform. 
According to the synthesis principle of the space force system, the relationship between the 

external force vector at the reference point of the upper platform and the reaction force vector on the 
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According to the definition of stiffness matrix of flexible parallel mechanism, there is: 
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where ∆X is displacement vector at the reference point of the upper platform.
According to the synthesis principle of the space force system, the relationship between the

external force vector at the reference point of the upper platform and the reaction force vector on the
six flexible series branches is established by the following expression:
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According to the definition of stiffness matrix of flexible parallel mechanism, there is:

F “ K∆X “
6
ÿ

i“1

JFi
Fi “

6
ÿ

i“1

JFi
Ki∆Xi “

6
ÿ

i“1

JFi
KiJ

´1
i ∆X (23)
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The stiffness matrix of the upper platform reference point can be obtained by the above equation:

K “
6
ÿ

i“1

JFi
KiJ

´1
i (24)

The relationship between the end force of each flexible element and the end force of the leg is:

Fij “ JFijFi (25)

The relationship between the end force of each flexible element and the six-axis external force
acting on the sensor’s upper platform is:

Fij “ JFijKiJ
´1
i K´1F (26)

The relationship between the six forces expressed in the local coordinate system and the six
external forces acting on the sensor platform is:

F
Oip
ij “ JOip

JFijKiJ
´1
i K´1F (27)

For Equations (21)–(27), there are: i = 1,2, . . . ,6; j = 1, . . . ,4.
By extracting equations when j = 2, it can be obtained:
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(28)

That is f = [G f
Fs
1F, [G f

Fs
1 is the mapping matrix from the external force/toque applied on the

measuring platform of the sensor to the force produced on the six elastic legs considering elastic
deformation of the flexible joints.

3.3. Comparative Analysis of Numerical Simulation and Mathematical Models

In the above two sections, the mathematical models of the two cases are obtained. By using
the ANSYS finite element simulation software platform, the external force F1 = [5000 0 0 0 0 0 ]T,
F2 = [0 5000 0 0 0 0]T , F3= [0 0 5000 0 0 0]T , F4 = [0 0 0 5000 0 0]T, F5 = [0 0 0 0 5000 0]T,
F6 = [0 0 0 0 0 5000]T are respectively loaded in the geometry center of the measuring platform in
the three-dimensional model of the sensor, and the size of the force produced on the six elastic legs
are obtained by the simulation calculation. The accuracy comparison of the theoretical values and
simulation values is shown in Figure 9 and Table 1. In the ideal case, the theoretical value of the
mathematical model is recorded as the first theoretical value, and the theoretical value considering
elastic deformation of flexible joints is recorded as the second theoretical values.
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Figure 9. (a) Comparison of theoretical values and simulation values loading force along X-axis;
(b) Comparison of theoretical values and simulation values loading force along Y-axis; (c) Comparison
of theoretical values and simulation values loading force along Z-axis; (d) Comparison of theoretical
values and simulation values loading torque along X-axis; (e) Comparison of theoretical values and
simulation values loading torque along Y-axis; (f) Comparison of theoretical values and simulation
values loading torque along Z-axis.

Table 1. Error comparison between numerical simulation and mathematical models.

F1 F2 F3 F4 F5 F6

Fx
IS1(%) 12.5 15.6 14.3 16.7 18.4 20.3
DS2(%) 5.69 2.30 2.46 2.54 2.37 5.47

Fy
IS(%) 13.2 16.4 17.9 20.3 21.5 16.3
DS(%) 2.35 5.67 3.42 3.75 5.48 2.27

Fz
IS(%) 24.3 21.1 15.7 18.2 17.2 14.7
DS(%) 4.55 4.52 4.39 4.41 4.58 4.62

Mx
IS(%) 17.2 18.6 20.5 21.3 12.6 13.5
DS(%) 6.43 4.93 4.87 4.72 4.65 5.78

My
IS(%) 16.8 18.0 16.9 20.5 21.3 15.7
DS(%) 6.18 7.32 6.20 6.44 6.47 6.14

Mz
IS(%) 18.9 19.3 22.1 20.6 14.5 18.2
DS(%) 5.37 5.23 5.64 5.76 5.24 5.16

IS1 (%) is the error between the theoretical and the simulation values in the ideal state; DS2 (%) is the error
between the theoretical and the simulation values in the case of considering the deformation stiffness of
flexure joints.
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As shown in Table 1, the measurement errors of the six elastic legs are reduced to 10% after
considering the deformation stiffness error of flexure joints, which proves that the mathematical model
is effective.

4. Calibration Experiment

4.1. Prototype

In order to prove the superiority of the proposed sensor structure and prove the correctness of
the theoretical analysis, a prototype of the large measurement range six-axis force sensor of 6-UPUR
parallel mechanism with flexible joints was manufactured, as shown in Figure 10. Considering the
manufacturing process and economic cost, the material property of each component was selected as
shown in Table 2. The main structure parameters and the measuring range of the sensor are shown in
Tables 3 and 4.
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Table 2. Material properties of the components.

Components Materials Elastic Modulus Poisson Ratio Density

Force-measuring platform Hard aluminum alloy 70 Gpa 0.30 2700 kg/m3

Flexible joints 40CrNiMoA 206 Gpa 0.30 7830 kg/m3

Fixed platform Q235 210 Gpa 0.25 7850 kg/m3

Table 3. Structure parameters of six-axis force sensor.

A (˝) B (˝) C (˝) R (mm) R (mm) l1 (mm) l2 (mm)

65.6 40.0 40.0 466.7 300.0 300.0 163.6

Table 4. Measuring range of the six-axis force sensor.

Fx (N) Fy (N) Fz (N) Mx (N¨m) My (N¨m) Mz (N¨m) Overload Capacity

˘10,000 ˘10,000 ˘10,000 ˘5000 ˘5000 ˘5000 120%

4.2. Calibration Experiment

To measure the loaded external force accurately, the sensor should be calibrated by using a special
calibration system, which can generate forces and torques in directions of x, y, z separately. In this
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paper the calibration system, which mainly included a hydraulic loading system, calibration platform,
parallel 6-UPUR six-axis force sensor with flexible joints, signal processing device, data acquisition
device, data processor, calibration software system and so on, as shown in Figures 11 and 12, was
designed and manufactured.
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Considering that the structure of the six-axis force sensor of 6-UPUR parallel mechanism with
flexible joints is very complex and the presence of measuring error can’t be ignored because of the
influence of these factors such as the design principles, manufacturing and processing errors, so
multiple point loading in the sensor range and the method of least squares linear fit are needed
in calibration experiments. Thus, the linear relationship between inputs and outputs of the large
measurement range 6-axis force sensor of 6-UPUR parallel mechanism with flexible joints can
be calculated.

Detailed experimental steps are described are as follows:
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(1) Each axis force/torque within the sensor range is divided into 10 load points in two positive
and negative directions, as shown in Table 5;

(2) Select the force/torque component of the load. The load unit is installed in the corresponding
position, and connect the calibration hardware system, as shown in Figure 13;

(3) At each loaded point, conduct loading and unloading experiments in turn, and record the output
voltage of each measuring leg corresponding to each load point;

(4) Repeat Steps (2) and (3), conduct loading and unloading experiments in the opposite direction
and record the experimental data;

(5) Repeat Steps (2)–(4), the calibration experiments of the six axis force sensor are carried out and
all the experimental data are obtained;

(6) Check and process the data. The calibration matrix of the sensor is obtained, and the linearity of
the sensor is determined.
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Table 5. Loading points of calibration force/torque.

Loading Points 1 2 3 4 5 6 7 8 9 10

Force (N)
Positive 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
Negative 10,000 9000 8000 7000 6000 5000 4000 3000 2000 1000

Torque (N¨m) Positive 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Negative 5000 4500 4000 3500 3000 2500 2000 1500 1000 500
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4.3. Experimental Method

In the analysis of experimental data, the forces that are loaded on the prototype during the
experiment can be described as six linearly independent vectors, denoted as:

FS “

»

—

—

—

—

—

—

—

–

Fx 0 0 0 0 0
0 Fy 0 0 0 0
0 0 Fz 0 0 0
0 0 0 Mx 0 0
0 0 0 0 My 0
0 0 0 0 0 Mz

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(29)

When the external forces are loaded on the measuring platform of the sensor, the six single-axis
force sensors will sense the force produced on the measuring legs, and then the change of output
voltage of the Wheatstone bridges can be measured out. We can get a set of relationships:

Fs “ GV (30)

where G is the calibration matrix between the loaded forces and the output voltages; V is the output
voltage matrix.

Thus the calibration matrix between the loaded forces and the output voltages of the six measuring
legs can be calculated:

G “ FsV´1 (31)

Besides, the error matrix evaluating the accuracy of the six-axis force sensor is defined as follows:

Err “
FS ´ F6ˆ6

FFS
(32)

where FFS is the full range of the sensor, F6ˆ6 can be calculated based on the mapping matrix between
the loaded force and the output voltage by Equation (32); the error matrix Err is a comprehensive
evaluation. The diagonal components of the error matrix separately represent the measurement
errors of the six different directions of the loaded external force, and other components represent the
interference errors between different directions.

5. Experiment Results

5.1. Calibration Results and Analysis

Through the calibration system described above, the calibration experiments based on the sensor
prototype are carried out, and the data of the six measuring legs are obtained. Taking a complete static
calibration experimental data and using the K value method and least square method to substitute the
loading forces and the voltages data which are collected from six measuring legs into the corresponding
equation, the static calibration matrix GK, G2C and the error matrix ErrK, Err2C can be obtained by the
analysis and process of the experimental data, therefore, the performance of force-measuring of the
sensor is obtained:

GK “

»

—

—

—

—

—

—

—

–

´0.0694 ´0.2151 0.2443 ´0.4298 ´0.5077 0.2468
´0.5148 0.4170 0.2045 ´0.2858 0.2491 ´0.1535
0.2528 0.2198 0.2476 0.2298 0.2288 0.2653
´0.1336 0.1129 0.1250 0.0064 ´0.0033 ´0.1244
´0.0807 ´0.0332 ´0.0452 0.1647 0.1822 ´0.0460
´0.1247 0.0999 ´0.0879 0.0881 ´0.1108 0.0831

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(33)
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ErrK “

»

—

—

—

—

—

—

—

–

0.0431 0.0240 0.0249 0.0054 0.0117 0.0093
0.0279 0.0264 0.0118 0.0083 0.0082 0.0556
0.0607 0.0216 0.0333 0.0141 0.0038 0.0062
0.0939 0.0291 0.0270 0.0208 0.0230 0.0135
0.0956 0.1340 0.0295 0.0252 0.0163 0.0036
0.0519 0.0174 0.0696 0.0216 0.0219 0.0076

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(34)

From Equation (34), it can be noted that when the K value method is used to decouple, the
calibration error of each axis is: Fx (4.31%), Fy (2.64%), Fz (3.33%), Mx (2.08%), My (1.63%), Mz (0.76%).
The maximum error of the I kind is 4.31%, which appears in Fx ; the maximum error of the II kind is
13.40%, which is appears in Fy, when loaded in My. So the calibration error obtained by this method
is 13.40%.

G2C “

»

—

—

—

—

—

—

—

–

´0.0929 ´0.2095 0.2377 ´0.4204 ´0.5071 0.2437
´0.4518 0.4031 0.1981 ´0.2675 0.2288 ´0.1496
0.2546 0.2748 0.2717 0.2628 0.2603 0.2678
´0.1202 0.1127 0.1251 0.0148 ´0.0137 0.1157
0.0680 ´0.0508 ´0.0380 0.1533 0.1703 ´0.0373
´0.0877 0.0757 ´0.1058 0.1067 ´0.1174 0.0917

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(35)

Err2C “

»

—

—

—

—

—

—

—

–

0.0122 0.0068 0.0124 0.0026 0.0070 0.0071
0.0144 0.0066 0.0111 0.0022 0.0038 0.0061
0.0072 0.0062 0.0089 0.0059 0.0028 0.0039
0.0169 0.0088 0.0203 0.0039 0.0068 0.0063
0.0167 0.0268 0.0074 0.0049 0.0059 0.0038
0.0070 0.0061 0.0112 0.0047 0.0020 0.0042

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(36)

From Equation (36), it can be noted that when the least squares method is used to decouple,
the calibration error of each axis is: Fx (1.22%), Fy (0.66%), Fz (0.89%), Mx (0.39%), My (0.59%),
Mz (0.42%).The maximum error of the I kind is 1.22%, which appears in Fx; the maximum error of the
II kind is 2.68%, which appears in Fy, when loaded in My, so the calibration error obtained by this
method is 2.68%.

From the results of the calibration experiment, the calibration error comparison of the two kinds
of decoupling methods is as shown in Table 6. The results show that the accuracy of least squares
method is much better than that of the K value calibration method.

Table 6. The calibration error comparison of the two kinds of decoupling methods.

Decoupling
Method

Type I Error (%) Type II Error (%)

Fx Fy Fz Mx My Mz Maximum Value Maximum Value

K value method 4.31 2.64 3.33 2.08 1.63 0.76 4.31 13.40
Least squares

method 1.22 0.66 0.89 0.39 0.59 0.42 1.22 2.68

5.2. Linearity Analysis

The input signal and the output signal of the sensor are not completely linear, and there is always
an error. The ratio of the error to the measurement range is called the linearity of the sensor. When
a certain force/torque is loaded to one direction of the sensor, the output voltage of the six legs will
change with the change of the loading force/torque. Figure 11 shows the changing curves between
the sensor’s measuring force and the standard loading force when the force or torque is loaded in
one direction.

Figures 14 and 15 are the variations of the voltage of each leg with the loading force/torque
changing, when the force/torque is loaded in the three directions of X, Y and Z.
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along Y-axis; (c) Voltage curves of legs loading force along Z-axis.
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Figure 15. (a) Voltage curves of legs loading torque along X-axis; (b) Voltage curves of legs loading 
torque along Y-axis; (c) Voltage curves of legs loading torque along Z-axis. 

Table 7 is the linearity of each leg obtained by least square method. As shown in Table 6, the 
linearity of each leg of the sensor is less than 1%, which shows that the sensor has a good linearity. 
  

Figure 15. (a) Voltage curves of legs loading torque along X-axis; (b) Voltage curves of legs loading
torque along Y-axis; (c) Voltage curves of legs loading torque along Z-axis.

Table 7 is the linearity of each leg obtained by least square method. As shown in Table 6, the
linearity of each leg of the sensor is less than 1%, which shows that the sensor has a good linearity.
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Table 7. Linearity of six-axis force sensor.

Items
Linearity (%)

Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6

Fx 0.22 0.18 0.23 0.24 0.08 0.15
Fy 0.20 0.14 0.29 0.22 0.13 0.21
Fz 0.14 0.18 0.71 0.64 0.57 0.97
Mx 0.21 0.19 0.82 0.32 0.39 0.92
My 1.00 0.75 0.51 0.24 0.4 0.4
Mz 0.23 0.39 0.25 0.15 0.15 0.39

6. Conclusions

In this paper, to overcome the influence of the gap and friction of the traditional joints on the
parallel six-axis sensors’ precision and stability, we have successfully demonstrated a kind of six-axis
force sensor based on 6-UPUR parallel mechanism with flexible joints, which has large measurement
range and high accuracy. The force mathematical model of the sensor is established on the screw
theory; according to the relations of the stiffness and deformation compatibility condition, the stiffness
matrix considering flexibility of each flexible joint is built up; then the complete mathematical model is
established. The sensor prototype and the calibration system are manufactured and static calibration
experiments were carried out on the sensor. The results show that the measurement error is less than
2.68%, which shows that the sensor has high measuring accuracy and good linearity. The experimental
results prove the feasibility of the large measurement range six-axis force sensor of 6-UPUR parallel
mechanism with flexible joints. The design and loaded research of the parallel six-axis force sensor has
reference significance.
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