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Abstract: Tracking error estimation is of great importance in global navigation satellite system (GNSS)
receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal
tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error
estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can
be divided into two categories: coherent and non-coherent. This paper focuses on the performance
improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent
integration—which are the basis of tracking error estimation—are analyzed in detail. After that,
the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator
is derived according to the mathematical model of coherent integration. Secondly, the statistical property
of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the
observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure
is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase
error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation
accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated
comprehensively through the carefully designed experiment scenario. The pre-filter outperforms
traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent
pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier
frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter.
The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation
when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation
when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when
carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.

Keywords: GNSS receivers; tracking error estimation; pre-filter design

1. Introduction

A Global Navigation Satellite System (GNSS) is a satellite system to provide autonomous positioning
worldwide [1]. The representative instances of GNSS are the United States’ NAVSTAR Global Positioning
System (GPS), the Russian GLONASS, the Chinese Beidou system (under deployment), and the European
Union’s Galileo (under deployment) [2–4]. It allows electronic receivers that are smaller than a cell phone to
determine their position, velocity and time (PVT) with high accuracy using signals transmitted by satellites
anytime and anywhere around the globe. For instance, the B1I signal of the Beidou system—which offers
open service—can provide a positioning accuracy of 10 meters (m), velocity accuracy of 0.2 meters per
second (m/s), and timing accuracy of 50 nanoseconds (ns) with 95% confidence [5]. GNSS receivers
have been widely used in military and civilian applications; for example, handset navigation, missile
guidance, and aircraft landing [6–8]. It is a prevalent and significant research orientation to improve the

Sensors 2017, 17, 2668; doi:10.3390/s17112668 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17112668
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2668 2 of 23

navigation accuracy of GNSS receivers in harsh environments such as weak signal condition and highly
dynamic scenario.

A classical GNSS signal is composed of a carrier, pseudo-random noise code (PRN code), and binary
navigation message [9]. The GNSS receiver first estimates the PRN code phase, the phase of the carrier,
and the carrier Doppler of the received GNSS signal. These parameters are referred to as GNSS signal
parameters in the following. The estimation for GNSS signal parameters is done by the signal acquisition
and tracking function of the GNSS receiver. The signal acquisition estimates GNSS signal parameters
roughly in an opened-loop manner, while the signal tracking estimates these parameters accurately
through closed-loop control [10]. A GNSS receiver must accomplish the signal acquisition before it
switches to the signal tracking. After that, the GNSS receiver performs the measurement for pseudo-range,
pseudo-range rate, and carrier phase according to the signal parameters estimated by signal tracking
function. The physical meaning of pseudo-range and carrier phase is the relative distance between
the GNSS receiver and navigation satellite, while the physical meaning of pseudo-range rate is the
relative velocity between the receiver and the navigation satellite. The carrier phase, pseudo-range, and
pseudo-range rate are referred to as GNSS measurement in the following. Meanwhile, the navigation
message can also be extracted and demodulated to get the satellite ephemeris which can be used to calculate
the position and velocity of navigation satellites. The above-mentioned signal processing—performed by
GNSS receiver—can be referred to as the GNSS baseband signal processing. Finally, the GNSS receiver
accomplishes the navigation computation to get the PVT parameters of the GNSS receiver itself through
the GNSS measurements and GNSS satellite ephemeris. From the signal processing flow of GNSS receivers,
it can be found that GNSS signal parameters estimation is the first step before the PVT solution can
be obtained. Accurate signal parameters estimation is accomplished by tracking loops in the GNSS
receiver. The tracking loops of the GNSS receiver include the carrier tracking loop and code tracking loop.
Even though the tracking loops are able to accurately estimate the GNSS signal parameters, there still
exits tracking error. The tracking error includes the carrier phase tracking error, carrier frequency tracking
error, and code phase tracking error, which are referred to as carrier phase error, carrier frequency error,
and code phase error for short in the following discussion. On the one hand, tracking error is the error
signal of GNSS tracking loops that can be regarded as a kind of feedback control system. If the tracking
error cannot be estimated accurately, it cannot be eliminated efficiently by the tracking loops. On the other
hand, tracking error should be corrected in the GNSS measurement formulation phase. If the tracking error
cannot be estimated precisely, the accuracy of GNSS measurements will decrease and the accuracy of PVT
solution will subsequently decline. The tracking error estimation is especially crucial for low-cost GNSS
receivers, because tracking error estimation of high accuracy will effectively improve the signal tracking
ability and the accuracy of PVT determination. However, tracking error estimation is often corrupted by
noise. That is because the tracking error is extracted from the noisy coherent integration and non-coherent
integration, which are parts of GNSS baseband signal processing [11].

Generally, tracking error can be estimated by traditional discriminator or Kalman filter (KF)-based
pre-filter. In terms of discriminator, there are a variety of discriminator algorithms that can be used for
tracking error estimation, for example the two-quadrant arctangent (ATAN) discriminator for carrier
phase error estimation, the four-quadrant arctangent (ATAN2) discriminator for carrier frequency error
estimation, and non-coherent early minus late envelope (NC-EMLE) discriminator for code phase
error estimation [9]. These discriminator algorithms are all implemented by the linear or nonlinear
combination of coherent or non-coherent integration results. Unfortunately, there are some flaws for
traditional discriminator. Firstly, the outputs of the traditional discriminator are often very noisy. That is,
real tracking error is buried in noise. This situation becomes even worse in weak signal condition.
Secondly, their effective working ranges are limited. For example, the most popular ATAN discriminator
would only work properly when the input carrier phase error belongs to (−0.25 cycle, 0.25 cycle). If the
carrier phase tracking error exceeds the scope of (−0.25 cycle, 0.25 cycle) (which may be caused by
high dynamic motion), the ATAN discriminator would output the wrong carrier phase error estimation.
Thirdly, not only the internal relationship among tracking error, but also the statistic characteristic of
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estimation noise of discriminator is totally ignored. Accurate tracking error estimation cannot be done by
traditional discriminator.

Using KF-based pre-filter to estimate tracking error has recently received considerable attention in
the design of GNSS scalar tracking loop, vector tracking loop, and GNSS/INS (i.e., Inertial Navigation
System) deep integration navigation system that is of federated structure [12–16]. Compared with
the traditional discriminator, the pre-filter would provide more accurate tracking error estimation
because it fully utilizes the smoothing effect of the system model and the statistical characteristics
of observation noise. The pre-filter in GNSS receivers can be classified into two categories: coherent
pre-filter and non-coherent pre-filter [17]. The coherent pre-filter chooses coherent integration
outputted by correlators as observations. For coherent pre-filter design, the observation vector is
often a nonlinear function of state variables (i.e., tracking error), and hence it is often implemented
by extended Kalman filter (EKF), which results in heavy computation burden. Many theoretical
analyses have demonstrated that the coherent pre-filter can achieve high estimation accuracy in
strong signal condition, but cannot perform well in weak signal condition [13]. However, there is no
comprehensive performance evaluation of their performance in weak signal or high dynamic condition.
The non-coherent pre-filter chooses discriminator outputs as observations. The system model and
observation model of non-coherent pre-filter are all linear, thus a linear Kalman filter is enough for its
implementation. It performs well in both strong signal and weak signal conditions. However, since
it takes the discriminator outputs as observations, the performance of the non-coherent pre-filter is
affected by drawbacks of the traditional discriminator. These drawbacks include the limited effective
working region and unknown observation noise variance.

The coherent pre-filter and non-coherent pre-filter have complementary characteristics, which can
be used to design a hybrid pre-filter structure [18]. An adaptive hybrid coherent/non-coherent GNSS
vector tracking loop has been proposed to adaptively switch the pre-filter type that is working in
tracking channel according to the signal strength [19]. The coherent pre-filter works in strong signal
condition, while the non-coherent pre-filter works in weak signal condition. However, the switching
threshold (24 dB-Hz) is determined by the designer’s experience, instead of comprehensive study.

This paper proposes an enhanced non-coherent pre-filter design and comprehensively evaluates
the performance of coherent pre-filter, non-coherent pre-filter, and traditional discriminator. This paper
is organized as follows: Section 2 provides the necessary basic knowledge about tracking error
estimation, including the relevant baseband signal model, ATAN/ATAN2/NC-EMLE discriminator
algorithms, and coherent/non-coherent pre-filter design. After that, Section 3 puts the emphasis on the
observation noise statistics analysis and fault detection and exclusion (FDE) structure when designing
the non-coherent pre-filter. In Section 4, four experiment scenes are designed to comprehensively
evaluate the performance of enhanced non-coherent pre-filter. The performance of the enhanced
non-coherent pre-filter is compared with that of the ATAN/ATAN2/NC-EMLE discriminator and
coherent pre-filter to show the improvements. The best working conditions for the discriminator,
non-coherent pre-filter, and coherent pre-filter are also analyzed in this section. Finally, Section 5 gives
the conclusions and future work.

2. Tracking Error Estimation

This section first reviews some of the relevant baseband signal models that can be used in the tracking
error estimation phase. In fact, the tracking error is extracted from these baseband signals. After that,
three methods to estimate tracking error are introduced. They are ATAN/ATAN2/NC-EMLE discriminator,
coherent pre-filter, and non-coherent pre-filter. This section is the basis of tracking error estimation.

2.1. Relevant Baseband Signal Model

Figure 1 illustrates the schematic block diagram of the baseband processing of GNSS receivers.
The mixer, correlator, tracking error estimation model, numerically-controlled oscillator (NCO) command
generation model, local carrier generator, and local PRN code generator constitute the basic GNSS



Sensors 2017, 17, 2668 4 of 23

tracking loop. The GNSS tracking loop, together with Bit/Frame synchronization model, navigation data
demodulation model, and GNSS measurements formulation model constitute the intact baseband
processing module. The whole baseband processing flow is described as follows.
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Figure 1. Baseband signal processing flow of GNSS receivers. IF: intermediate frequency;
NCO: numerically-controlled oscillator.

After the GNSS signal passes through the radio frequency (RF) front end and is sampled, the center
frequency of the digitalized signal is located in intermediate frequency (IF). As mentioned above,
signal acquisition is first done to roughly estimate the GNSS signal parameters of all visible satellites.
After that, GNSS tracking loops are employed to process the IF signal and accurately estimate GNSS signal
parameters. The tracking loops include the carrier tracking loop and code tracking loop. The code tracking
loop is often implemented as a delay lock loop (DLL), while the carrier tracking loop implemented as
a phase lock loop (PLL), frequency lock loop (FLL), or FLL-assisted-PLL. In order to accomplish the
GNSS signal tracking, the GNSS IF signal is first mixed with local generated sin/cos carrier signals with
the aim of converting the signal center frequency from IF to baseband, and then correlated with local
generated Early/Prompt/Late (E/P/L) PRN codes whose phase have certain interval to remove the PRN
code modulated in GNSS signals. This correlation process can also be considered as coherent integration,
which often contains the in-phase (I) component and quadrature (Q) component. Non-coherent integration
can be further done by accumulating the auto-correlation amplitude or power which will be discussed later.
The coherent/non-coherent integration contain the real tracking error. Thus, tracking error can be extracted
from the coherent/non-coherent integration through traditional discriminator or pre-filter. After that,
the NCO command generation model generates the carrier NCO and code NCO feedback command
according to tracking error estimation, aiming at decreasing the tracking error. There are tracking loop
algorithms in the NCO command generation model. Loop filter is the traditional method of generating
the NCO feedback command [9–11]. The PLL, FLL, and DLL in this case all have similar structure in
terms of loop filter design. Moreover, the Kalman filter-based tracking loop, the linear-quadratic-Gaussian
(LQG)-based control method, and intelligent control method can also be used in the NCO command
generation [20–25]. The other parts of baseband processing are Bit/Frame synchronization, navigation
data demodulation, and GNSS measurements formulation, which are also shown in Figure 1, and are not
discussed in detail in this paper. Based on the description above, it is coherent/non-coherent integration
in baseband signal processing that are relevant to tracking error estimation. So, we will make a brief
review of the mathematical model of coherent and non-coherent integration in the following part.

The analogy IF signal for all visible GNSS satellites is modeled as:

s(t) =
N

∑
i=1

aiDi(t)xi(t) cos[2π · ( fIF + fd,i)t + ϕ0,i] + n0(t) (1)

where i indicates the i-th visible satellite, t is the signal reception time, a is signal amplitude, D is binary
navigation data bits, x is the PRN code sequence, fIF is analogy IF [Hz], fd is the Doppler frequency
(Hz) caused by relative motion, ϕ0 is the initial carrier phase (rad), n0(t) is additive band-limited
white Gaussian noise. The one-sided power spectral density (PSD) of n0(t) is N0 (Hz). The IF signal
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bandwidth depends on the RF front-end filter bandwidth which is no less than double the PRN code
frequency. When the GNSS receiver tracks a specified GNSS signal in one tracking channel, other
GNSS signals are suppressed and become noise because cross-correlation of different PRN codes is
very little. So, the signal model for a specified GNSS satellite can be written as:

s(t) = aD(t)x(t) cos[2π · ( fIF + fd)t + ϕ0] + n0(t) (2)

After sampled by the analog–digital converter (ADC) of the RF front-end, the signal becomes:

s[m] = aD(mTs)x(mTs) cos[2π · ( fIF + fd)mTs + ϕ0] + n0(mTs) (3)

where m is an integer and indicates the sampling point number, and Ts is the sampling period (s) of
the ADC.

The digitalized IF signal will first be mixed with local generated sin/cos carrier in mixers and
then be correlated with local generated E/P/L PRN codes in correlators. The coherent integration can
be obtained from the six correlators, shown as follows:

IE(i) = Ai · Di · R(δτi − d
2 ) sin c(δ fiTcoh) cos(δϕi) + nIE

QE(i) = Ai · Di · R(δτi − d
2 ) sin c(δ fiTcoh) sin(δϕi) + nQE

IP(i) = Ai · Di · R(δτi) sin c(δ fiTcoh) cos(δϕi) + nIP

QP(i) = Ai · Di · R(δτi) sin c(δ fiTcoh) sin(δϕi) + nQP

IL(i) = Ai · Di · R(δτi +
d
2 ) sin c(δ fiTcoh) cos(δϕi) + nIL

QL(i) = Ai · Di · R(δτi +
d
2 ) sin c(δ fiTcoh) sin(δϕi) + nQL

(4)

where i indicates the i-th coherent integration results, IE, QE, IP, QP, IL, QL are coherent integration
in the six correlators, sin c(δ f Tcoh) = sin(πδ f Tcoh)/πδ f Tcoh, Tcoh is coherent integration time (s),
δτ denotes the code phase error (chip), δ f denotes the carrier frequency error (Hz), δϕ denotes
the mean carrier phase error (rad) in coherent integration time, R(·) denotes the auto-correlation
function of PRN code, d denotes the Early-Late correlator spacing (chip), nIE, nQE, nIP, nQP, nIL,
nQL represent the noise in coherent integration. It should be noted here that the distributions of
nIE, nQE, nIP, nQP, nIL, nQL almost fulfill the additive white Gaussian noise (AWGN) assumption
(i.e., nIE, . . . , nQL ∼ N(0, σnoise

2)). The value of A can be calculated by the following Equation (5) [9]:

A =
√

2(c/n0)Tcohσnoise (5)

where c/n0 is the carrier-to-noise density ratio (Hz) of the corresponding GNSS signal, σnoise is the
standard deviation of nIE, nQE, nIP, nQP, nIL, nQL.

After coherent integration is done, the auto-correlation power and auto-correlation amplitude can
be defined as Equations (6) and (7), respectively:

E2(i) = IE
2(i) + QE

2(i) = Ai
2R2(δτi − d

2 )sin c2(δ fiTcoh) +nE2

P2(i) = IP
2(i) + QP

2(i) = Ai
2R2(δτi)sin c2(δ fiTcoh) +nP2

L2(i) = IL
2(i) + QL

2(i) = Ai
2R2(δτi +

d
2 )sin c2(δ fiTcoh) +nL2

(6)

E(i) =
√

IE(i)
2 + QE(i)

2 = Ai · R(δτi − d
2 )|sin c(δ fiTcoh)| +nE

P(i) =
√

IP
2(i) + QP

2(i) = Ai · R(δτi)|sin c(δ fiTcoh)| +nP

L(i) =
√

IL
2(i) + QL

2(i) = Ai · R(δτi +
d
2 )|sin c(δ fiTcoh)| +nL

(7)
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where
nE2 = nIE

2 + nQE
2 + 2nIE Ai · Di · R(δτi − d

2 ) sin c(δ fiTcoh) cos(δϕ) +

2nQE Ai · Di · R(δτi − d
2 ) sin c(δ fiTcoh) sin(δϕ)

≈ nIE
2 + nQE

2 + nIE

nP2 = nIP
2 + nQP

2 + 2nIP Ai · Di · R(δτi − d
2 ) sin c(δ fiTcoh) cos(δϕ) +

2nQP Ai · Di · R(δτi − d
2 ) sin c(δ fiTcoh) sin(δϕ)

≈ nIP
2 + nQP

2 + nIP

nL2 = nIL
2 + nQL

2 + 2nIL Ai · Di · R(δτi +
d
2 ) sin c(δ fiTcoh) cos(δϕ) +

2nQL Ai · Di · R(δτi +
d
2 ) sin c(δ fiTcoh) sin(δϕ)

≈ nIL
2 + nQL

2 + nIL

(8)

nE =
√

Ai
2R2(δτi − d

2 )sin c2(δ fiTcoh) + nE2 − A · R(δτi − d
2 )|sin c(δ fiTcoh)|

≈
√

Ai
2(1− d

2 )
2
+ nE2 − Ai(1− d

2 )

nP =
√

Ai
2R2(δτi)sin c2(δ fiTcoh) + nP2 − A · R(δτi)|sin c(δ fiTcoh)|

≈
√

Ai
2 + nP2 − Ai

nL =
√

Ai
2R2(δτi +

d
2 )sin c2(δ fiTcoh) + nL2 − Ai · R(δτi +

d
2 )|sin c(δ fiTcoh)|

≈
√

Ai
2(1− d

2 )
2
+ nL2 − Ai(1− d

2 )

(9)

It should be noted that the tracking loops are assumed to be in locking state when we derive
the Equations (8) and (9). That is, tracking error is assumed to be zero. After that, the non-coherent
integration can be obtained by accumulating the auto-correlation amplitude of size Nnc, as shown
in Equation (10). Another form of non-coherent integration is calculated by accumulating the
auto-correlation power of size Nnc, as shown in Equation (11). The carrier frequency error and
signal amplitude are assumed to be constant when we derive Equations (10) and (11).

E =
Nnc
∑

j=1
E(j) = Nnc A|sin c(δ f Tcoh)|

Nnc
∑

j=1
R(δτj − d

2 ) + NncnE

P =
Nnc
∑

j=1
P(j) = Nnc A|sin c(δ f Tcoh)|

Nnc
∑

j=1
R(δτj) + NncnP

L =
Nnc
∑

j=1
L(j) = Nnc A|sin c(δ f Tcoh)|

Nnc
∑

j=1
R(δτj +

d
2 ) + NncnL

(10)

E2 =
Nnc
∑

j=1
E2(n) = Nnc A2|sin c(δ f Tcoh)|2

Nnc
∑

j=1
R2(δτj − d

2 ) + NncnE2

P2 =
Nnc
∑

j=1
P2(n) = Nnc A2|sin c(δ f Tcoh)|2

Nnc
∑

j=1
R2(δτj) + NncnP2

L2 =
Nnc
∑

j=1
L2(n) = Nnc A2|sin c(δ f Tcoh)|2

Nnc
∑

j=1
R2(δτj +

d
2 ) + NncnL2

(11)

Equations (4), (10), and (11) are exactly the baseband signal models that can be used for tracking
error estimation. These baseband signal models are summarized in Table 1, where they are expressed
as the addition of useful signal and noise. The useful signal contains the real tracking error, and the
noise effect cannot be cancelled when the tracking error is estimated using these baseband signals.
We also make a brief comment about the probability distribution of noise in this table.
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Table 1. The mathematical model of coherent/non-coherent integration results.

Signal Useful Signal Noise Noise Distribution

IE Ai · Di · R(δτi − d
2 ) sin c(δ fiTcoh) cos(δϕi) nIE

Gaussian white noise N(0, σnoise
2)

QE Ai · Di · R(δτi − d
2 ) sin c(δ fiTcoh) sin(δϕi) nQE

IP Ai · Di · R(δτi) sin c(δ fiTcoh) cos(δϕi) nIP
QP Ai · Di · R(δτi) sin c(δ fiTcoh) sin(δϕi) nQP
IL Ai · Di · R(δτi +

d
2 ) sin c(δ fiTcoh) cos(δϕi) nIL

QL Ai · Di · R(δτi +
d
2 ) sin c(δ fiTcoh) sin(δϕi) nQL

E2 A2|sin c(δ f Tcoh)|2
Nnc

∑
j=1

R2(δτj − d
2 ) NncnE2

White noise with unknown distributionP2 A2|sin c(δ f Tcoh)|2
Nnc

∑
j=1

R2(δτj) NncnP2

L2 A2|sin c(δ f Tcoh)|2
Nnc

∑
j=1

R2(δτj +
d
2 ) NncnL2

E A|sin c(δ f Tcoh)|
Nnc

∑
j=1

R(δτj − d
2 ) NncnE

White noise with unknown distributionP A|sin c(δ f Tcoh)|
Nnc

∑
j=1

R(δτj) NncnP

L A|sin c(δ f Tcoh)|
Nnc

∑
j=1

R(δτj +
d
2 ) NncnL

2.2. Traditional Discriminator

There is a variety of discriminator algorithms for tracking error estimation. The ATAN discriminator
and ATAN2 discriminator are the research objects for carrier phase error and carrier frequency error
estimation in this paper. Because they are optimal (maximum likelihood estimator) at both high and low
signal to noise ratio (SNR) and their slopes are signal amplitude dependent [11]. As for code phase error
estimation, the most popular NC-EMLE discriminator is the research object.

The ATAN, ATAN2, and NC-EMLE discriminator algorithms are expressed in Equations (12)–(14),
respectively, as follows:

δϕATAN = arctan
QP

IP
(12)

δ fATAN2 =
arctan2(Pcross, Pdot)

2π · Tcoh
(13)

δτNC−EMLE = (1− d)
E− L
E + L

(14)

where δϕATAN is carrier phase error estimation (cycle), δ fATAN2 is carrier frequency error estimation
(Hz), δτNC−EMLE is code phase error estimation (chip), the definitions of Pcross, Pdot are shown in
Appendix A. Plug the mathematical models of coherent/non-coherent integration, which have been
shown in Table 1, into the Equations (12)–(14), these discriminator algorithms can be reformulated as:

δϕATAN = arctan
A · D · R(δτ) sin c(δ f Tcoh) sin(δϕ) + nQP

A · D · R(δτ) sin c(δ f Tcoh) cos(δϕ) + nIP
= δϕ + nATAN (15)

δ fATAN2 =
1

Tcoh
arctan

B(n)B(n− 1) sin(δϕn − δϕn−1) + C1(n)
B(n)B(n− 1) cos(δϕn − δϕn−1) + C2(n)

= δ f + nATAN2 (16)

δτNC−EMLE = (1− d)
A|sin c(δ f Tcoh)|·{

Nnc
∑

j=1
R(δτ− d

2 )−
Nnc
∑

j=1
R(δτj+

d
2 )}+NncnE−NncnL

A|sin c(δ f Tcoh)|·{
Nnc
∑

j=1
R(δτ− d

2 )+
Nnc
∑

j=1
R(δτj+

d
2 )}+NncnE+NncnL

= δτ + nNC−EMLE (17)

where B(n), C1(n), C2(n) are derived and defined in Appendix A, and nATAN, nATAN2, and nNC−EMLE

are estimation noise of corresponding discriminator. It should be noted here that the discriminator
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outputs are expanded in the form of the summation of real tracking error and estimation noise in
Equations (15)–(17). Thus, it is clear that outputs of ATAN/ATAN2/NC-EMLE discriminator contain
the real tracking error and estimation noise (i.e., nATAN, nATAN2, and nNC−EMLE). These discriminator
algorithms make non-linearity processing for useful signal and noise of coherent/non-coherent
integration (e.g., division and arctangent operation). Thus it is difficult to get the analytic solution
for the probability distribution of estimation noise, which is the barrier to implementing the
non-coherent pre-filter.

The estimation noise variance of the ATAN discriminator has been derived in [10], with some
necessary simplification, and is shown in Equation (18). The estimation noise variance of the
ATAN2 discriminator is derived in Appendix B based on Equation (18), and the result is shown
in Equation (19). However, the accuracy of variance estimation of Equations (18) and (19) would
decrease with decreasing C/N0, as will be shown in Section 3.1. Besides, the estimation noise variance
of the NC-EMLE discriminator is difficult to derive.

σATAN
2 = D(nANAN) = (

1
2π

)
2 1

2 · c/n0 · Tcoh
(1 +

1
c/n0 · Tcoh

)[cycle2] (18)

σATAN2
2 = D(nANAN2) = (

1
2π

)
2 1

c/n0 · Tcoh
3 (1 +

1
c/n0 · Tcoh

)[Hz2] (19)

2.3. Non-Coherent Pre-Filter Design

The non-coherent pre-filter is based on a linear Kalman filter. The state variables of non-coherent
pre-filter are code phase error (chip), carrier phase error (cycle), Doppler frequency error (Hz),
and Doppler frequency rate error (Hz/s), respectively. The state variables of non-coherent pre-filter
are shown in the following equation:

XnonCoh = [δτ δϕ δ f
.
δ f ]

T
(20)

The state transition matrix is constructed by assuming a constant acceleration model for carrier
phase error and a constant position model for code phase error. In this transition matrix, the
carrier-aiding for DLL is used so that dynamic stress for DLL is overcome by PLL. Thus, the narrow
bandwidth DLL can be used to decrease the code tracking error. The inherent relationship between
state variables is fully exploited. The state transition matrix is expressed as follows:

AnonCoh =


1 0 βTcoh 0

0 1 T Tcoh
2

2
0 0 1 Tcoh
0 0 0 1

 (21)

where β is the scale factor converting the carrier Doppler frequency to code chip rate.
The process noise vector w1 of non-coherent pre-filter is given by:

w1 = [wcode wclock wdrift waccel]
T (22)

where wcode is the process noise for the code phase error to account for code multipath effects, wclock is
process noise for the clock bias, wdrift is the process noise for the clock drift, and waccel is the process
noise for the phase acceleration (which is related to the receiver dynamics) [23]. The corresponding
covariance matrix of system model for coherent pre-filter is given by

QnonCoh = E[w1w1
T] (23)

The ATAN/ATAN2/NC-EMLE discriminator outputs are directly used as observation vector,
shown as

ZnonCoh = [δτNC−EMLE δϕATAN δ fATAN2]
T (24)
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According to Equations (15)–(17), it is obvious that the observation matrix can be given in a very
simple form as

CnonCoh =

 1 0 0 0
0 1 0 0
0 0 1 0

 (25)

2.4. Coherent Prefilter Design

The coherent pre-filter is based on EKF because of the non-linearity of the observation model. In
this case, the correlator outputs are used directly to estimate the signal amplitude, initial carrier phase
error, initial carrier frequency error, and initial carrier frequency rate error (“initial” in this context
refers to the beginning of coherent integration interval). The state vector and observation vector of
coherent pre-filter are shown as shown in Equations (26) and (27), respectively.

Xcoh = [A δτ δϕ δ f
.
δ f ]

T
(26)

Zcoh = [IE QE IP QP IL QL]
T (27)

The state transition matrix of coherent pre-filter is written as follows:

Acoh =


0 0 0 0 0
0 1 0 β · Tcoh 0

0 0 1 Tcoh
Tcoh

2

2
0 0 0 1 Tcoh
0 0 0 0 1

 (28)

The process noise vector of coherent pre-filter is:

w2 = [wA wcode wclock wdrift waccel]
T (29)

where wA is the process noise for the signal amplitude.
The corresponding covariance matrix of the system model for coherent pre-filter is given by:

Qcoh = E[w2w2
T] (30)

The measurement vector is a nonlinear function of state variables for coherent pre-filter.
Thus, a Jacobian matrix is constructed to accomplish the correction in EKF. Detailed discussion of
Jacobian matrix construction for coherent pre-filter is provided in a great deal of literature, and will
not be shown here [13,17,19,20]. The observation noise variance of coherent pre-filter can be calculated
as Equation (5), as long as the C/N0 estimation is available.

3. Enhanced Non-Coherent Pre-Filter Design

As discussed in Section 2, the non-coherent pre-filter takes the ATAN/ANAT2/NC-EMLE
discriminator outputs as observations. However, there are three problems when we implement
the non-coherent pre-filter. Firstly, as will be shown in the following parts, the Equations (18) and (19)
are not accurate enough to calculate estimation noise variances of ATAN/ATAN2 discriminator in
weak signal condition. Secondly, the estimation noise variance of NC-EMLE discriminator is difficult
to express in analytical form, and thus is difficult to calculate. These two aspects hinder the correct
setup of an observation noise variance matrix for a non-coherent pre-filter. Thirdly, the working range
of a non-coherent pre-filter for carrier phase error estimation is constrained to (−0.25 cycle, 0.25 cycle)
because of the limited effective working range of the ATAN discriminator. To address these three
problems, this section will first analyze estimation noise variances of the ATAN/ANAT2/NC-EMLE
discriminator through Monte Carlo simulation and then discuss the application of FDE structure in
non-coherent pre-filter design.
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3.1. Observation Noise Characteristics Analysis of Non-Coherent Pre-Filter

Considering the complexity of the probability distribution of discriminator’s estimation noise,
Monte Carlo simulation is introduced as the analysis tool. Roughly 40,000 groups of correlation values
are simulated as Equation (4). Each group of correlation values contains six values, which are enough
to execute the ATAN/ ATAN2/NC-EMLE discriminator algorithms. The real tracking error, Tcoh,
C/N0 can be preset before the discriminator works. The values of estimation noise are calculated by
subtracting the discriminator’s outputs from real tracking error. Thus, it is convenient for us to study
the estimation noise characteristics of the ATAN/ATAN2/NC-EMLE discriminator in different Tcoh
and C/N0 without executing the intact tracking loop algorithms. Here we consider the discriminator
and pre-filter as estimators, just a part of the tracking loops.

It also should be noted that the distribution of estimation noise of the ATAN/ATAN2/NC-EMLE
discriminator changes with tracking error changing according to Equations (15)–(17). However, in this
paper, we only analyze the condition where tracking error is zero, because this condition will simplify
the analysis and will always be met when the tracking loop is in locking state.

Figures 2–4 respectively depict the estimation noise distribution of the ATAN/ATAN2/NC-EMLE
discriminator in different C/N0 and Tcoh. The blue histograms in these figures indicate the statistical
results of estimation noise. The statistical results have been divided by the number of simulated
I/Q correlation groups so that units of y-axis can be transformed to probability density. The red
lines in these figures represent the shape of Gaussian probability density distribution function
whose mean and variance are same as those of corresponding statistical results. These figures
imply that there is an obvious difference between the actual estimation noise distribution of the
ATAN/ATAN2/NC-EMLE discriminator and a Gaussian distribution. That is, the estimation noise of
the ATAN/ATAN2/NC-EMLE discriminator does not satisfy Gaussian distribution, which is consistent
with the conclusion that can be given by Equations (15)–(17).

Figures 5–7 show the mean values and standard deviation (STD) values of estimation noise for
the ATAN/ATAN2/NC-EMLE discriminator in different C/N0 and Tcoh. On the one hand, the mean
values of estimation noise, given by statistical analysis, are very close to zero in all conditions. On the
other hand, these figures suggest that the variances of estimation noise of ATAN/ATAN2/NC-EMLE
discriminator decrease with the C/N0, or Tcoh, or both increasing. Above all, these results are obtained
by statistics of roughly 40,000 outputs of ATAN/ATAN2/NC-EMLE discriminator so that they are
more close to the actual statistical characteristics of estimation noise.
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Figure 8a,b shows the difference between the estimation noise variance obtained by Monte-Carlo
simulation and estimation noise variance calculated by Equations (18) and (19). This figure indicates
that these two equations can only provide relatively accurate estimation noise variances for the
ATAN/ATAN2 discriminator when C/N0 is high or Tcoh is long. However, these conditions cannot be
satisfied at all times. Thus, Equations (18) and (19) are not accurate enough to calculate estimation noise
variances of ATAN and ATAN2 discriminators. It also should be reemphasized that the estimation
noise variance of the NC-EMLE discriminator is difficult to express as an analytical form.

Since the non-coherent takes the ATAN/ATAN2/NC-EMLE discriminator outputs as
observations, the estimation noise variances of these discriminators are the elements of the observation
noise variance matrix of the non-coherent pre-filter. However, these parameters cannot be calculated
accurately according to the discussion above. In order to set the observation noise variance matrix
correctly, it is a more realistic and reasonable to create a look-up table (LUT) that stores the relation
among the C/N0, d, Tcoh, and estimation noise variances. Figure 9 shows the generation and usage of
LUT, where ˆC/N0 indicates the estimated C/N0, Rk is the observation noise variance matrix. The LUT
functions for the ATAN/ATAN2/NC-EMLE discriminator are expressed as σLUT

ATAN(·, ·, ·), σLUT
ATAN2(·, ·, ·),

and σLUT
NC−EMLE(·, ·, ·) respectively. As discussed in Section 3.1, the LUTs are obtained by Monte Carlo

simulation. The C/N0, Tcoh, and d are first set to simulate I/Q correlation groups according to
Equation (4). Then, we execute the ATAN/ATAN2/NC-EMLE discriminator algorithms according
to Equations (12)–(14) and calculate the estimation noise variances for ATAN/ATAN2/NC-EMLE
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discriminator through the statistical analysis. After that, estimation noise variances are stored in
the LUTs. The process discussed above is repeated until all the possible combinations of C/N0,
Tcoh and d are used. After these LUTs are constructed, the estimation noise variances of the
ATAN/ATAN2/NC-EMLE discriminator can be found in these LUTs to set the observation noise
variance matrix as long as the C/N0 is estimated correctly. The estimation of C/N0 is shown in
Appendix C.
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3.2. Implementing FDE Structure in the Non-Coherent Prefilter Design

Carrier phase tracking loop is the most vulnerable tracking loop in GNSS receivers. The vulnerability
of carrier phase tracking partly comes from the limited working region of the ATAN discriminator.
The effective working range of the ATAN discriminator is (−0.25 cycle, 0.25 cycle). If the input carrier
phase error is beyond the effective working range, the ATAN discriminator would output the wrong
estimation of carrier phase error. If this wrong estimation is entering the loop filter, the carrier NCO
feedback commands would be adjusted toward the wrong direction and the PLL may lose lock for
carrier phase.
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As the non-coherent pre-filter takes ATAN discriminator outputs as observations, the limited work
range of the ATAN discriminator also affects the non-coherent pre-filter. For recognizing and eliminating
the wrong ATAN discriminator outputs, the FDE structure is introduced in non-coherent pre-filter.

Figure 10 shows the operation flow chart of a non-coherent pre-filter with FDE structure.
The symbols in Figure 10 are explained as follows: k represents the time stamps of Kalman filter,
X̂ is posteriori estimation for XnonCoh, X̃ is priori estimation for XnonCoh, Pk

− is the covariance matrix
of estimation error of X̃, Pk is the covariance matrix of estimation error of X̂, Rk is the observation
noise variance matrix, Res indicates the residuals of observations, Res(2,1) represents the 2nd row, 1st
column element of vector Res and denotes the observation residual corresponding to the carrier phase
error, K is the Kalman gain, I is unit matrix, A is the state transition matrix which is equal to AnonCoh,
and C is the observation matrix which is equal to CnonCoh.
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The FDE structure is aiming at reducing the weight of incorrect carrier phase error observations
from ATAN discriminator outputs. This weight reduction is accomplished by adjusting the observation
noise covariance matrix. If the input phase error is within the working range of the ATAN discriminator,
Res(2,1)is very small. Under such a condition, the observation noise variance matrix is chosen as:

Rk1 =

 σLUT
NC−EMLE

2(C/N0, Tcoh, d)
σLUT

ATAN
2(C/N0, Tcoh)

σLUT
ATAN2

2(C/N0, Tcoh)

 (31)

If the input phase error is beyond the effective working range of the ATAN discriminator, the
discriminator output would jump from −0.25 to 0.25, or from 0.25 to −0.25. Res(2,1) would also jump.
This jump is easy to detect. In this paper, the threshold for detecting the jump is set to 0.25. After the
jump of Res(2,1) is detected, the observation noise variance matrix is chosen as:

Rk2 =

 σLUT
NC−EMLE

2(C/N0, Tcoh, d)
10000

σLUT
ATAN2

2(C/N0, Tcoh)

 (32)
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After the incorrect ATAN discriminator outputs are detected, their weight is decreased in the
process of Kalman filtering. The carrier phase error estimation of the non-coherent pre-filter is mainly
depending on the system model and ATAN2 discriminator output in this case. It also should be noted
here that the non-coherent pre-filter cannot keep the correct estimation of carrier phase error with
constant use of Rk2. The estimation error would accumulate with time because of observation noise of
the ATAN2 discriminator and the error of system model.

4. Performance Evaluation

The performance evaluation presented here was carried out exploiting the simulated correlation value
shown in Equation (4) and executing the discriminator/pre-filter algorithms discussed in Sections 2 and 3.
The tracking error dynamic and signal strength were varied in the carefully designed test scenes (i.e., test
Scenes A, B, C, D) in order to evaluate the algorithms comprehensively. The algorithms evaluated in
this paper include ATAN/ATAN2/NC-EMLE discriminators, the coherent pre-filter, and the enhanced
non-coherent pre-filter. For the sake of brevity, the coherent pre-filter will be abbreviated to “Coh”, and the
enhanced non-coherent pre-filter abbreviated to “Non-coh”. The metric used for evaluation is the root
mean square (RMS) value of estimation error.

The common non-coherent pre-filter without FDE is not chosen as a method to be evaluated.
There are two reasons why we did not do this. Firstly, in previous work, the observation noise variance
matrix of the non-coherent pre-filter is determined by filter tuning [13,16]. Secondly, the advantage
of the enhanced non-coherent pre-filter over ordinary non-coherent pre-filter has been analyzed in
Section 3.2. We would also discuss this advantage in the following experiments.

4.1. Carrier Phase Error/Code Phase Error Step Scene

In test scene A, the C/N0 of the GNSS signal was set to 45 dB-Hz. There was a step input for carrier
phase error at 1500 milliseconds (ms), and for code phase error at 2000 ms. Tcoh was set to 1 ms, d set to
1 chip. This test was used to evaluate the performance of the ATAN/ATAN2/NC-EMLE discriminator
and pre-filter in normal condition.

Figure 11 shows the tracking error estimation results in test scene A. The black line represents the
real tracking error when we simulated I/Q correlation groups. As expected, the coherent/non-coherent
pre-filter were able to estimate the carrier phase error and code phase error accurately. The convergence
time of pre-filter was less than 200 ms when step-input occurred. The estimations of pre-filter were less
noisy than that of the ATAN/ATAN2/NC-EMLE discriminator. The estimation accuracy of the coherent
pre-filter for tracking error was slightly higher than that of the non-coherent pre-filter, as shown in Table 2.Sensors 2017, 17, 2668  17 of 24 
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Table 2. Performance comparison of tracking error estimation methods in test scene A.

Tracking Error
Estimation Method

Root Mean Square of Estimation Error for Tracking Error

Carrier Phase Error (cycle) Carrier Frequency Error (Hz) Code Phase Error (chip)

Discriminator 0.023002 32.4045 0.1715
Coherent pre-filter 0.007829 0.7464 0.0237

Non-coherent pre-filter 0.009757 0.8930 0.0322

4.2. Constant Carrier Frequency Error Scene

In test scene B, the carrier frequency error was set to 10 Hz, which indicates the carrier phase error
would accumulate linearly with time. Tcoh was set to 1 ms, while the C/N0 was set to 45 dB-Hz, d was
set to 1 chip. This test was aimed at showing the power of FDE in the non-coherent pre-filter in the
scene where the carrier phase error is beyond the effective working range of the ATAN discriminator.

Figure 12 shows the carrier phase error estimation in test scene B. The black line represents the
dynamic change of real carrier phase error. It can be seen that the carrier phase error estimated by the
ATAN discriminator would be totally wrong when the real carrier phase error is outside the range of
(−0.25 cycle, 0.25 cycle). The ATAN discriminator outputs are the observations of non-coherent pre-filter,
which indicates that the effective working range of the non-coherent pre-filter without FDE for carrier
phase error estimation is also (−0.25 cycle, 0.25 cycle). If these false observations are not eliminated or
their weight is not reduced, the non-coherent pre-filter’s estimation error will increase. Through the FDE
structure, the work range of the non-coherent pre-filter for carrier phase error estimation is extended from
(−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). The enhanced non-coherent pre-filter has comparable
performance as coherent pre-filter in test scene B, as shown in Table 3.
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Table 3. Performance comparison of tracking error estimation methods in test scene B.

Tracking Error
Estimation Method

Root Mean Square of Estimation Error for Tracking Error

Carrier Phase Error (cycle) Carrier Frequency Error (Hz) Code Phase Error (chip)

Discriminator 0.35206 28.2365 0.08783
Coherent pre-filter 0.05035 0.40724 0.00723

Non-coherent pre-filter 0.05475 0.43523 0.00813

4.3. Varying Carrier Frequency Error Scene

In test scene C, the carrier frequency error was varying as Equation (33),
where K = 20 Hz; α = −1; ω = −2π rad/s. Tcoh was set to 1 ms while C/N0 was set to 45 dB-Hz,
and d was set to 1 chip. This configuration is closer to what really happened in the signal tracking loop
when the GNSS receiver was faced with high dynamic motion. The convergence with oscillation of
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tracking error often occurs in a highly dynamic scene. This test is designed to evaluate the estimation
accuracies of discriminator and pre-filter algorithms in a highly dynamic scenario.

δ f (t) = K · eαt · sin(ωt) (33)

Figure 13 shows the carrier phase/frequency tracking error estimation. Similarly, there are still
estimation outliers for the ATAN discriminator when the real carrier phase error exceeds the ATAN
discriminator’s effective working region. There are also some estimation outliers for the pre-filter.
After 2250 ms, the coherent pre-filter cannot estimate the carrier phase error correctly. The estimation
outliers of the coherent pre-filter appear because the navigation bits cannot be estimated correctly
according to the sign of IE in test scene C. Thus, the state variables of the coherent pre-filter converge
to the wrong value. Even though are there estimation outliers in the non-coherent pre-filter for carrier
phase tracking error estimation, it can estimate the tracking error correctly and accurately most of the
time. The outliers in the non-coherent pre-filter appear because of the constant use of Rk2, as discussed
in Section 3.2. By the time real carrier phase error approaches −0.5 cycle or 0.5 cycle, the non-coherent
pre-filter has worked with Rk2 for a very long time. Thus, the estimation error is relatively large.
The FDE structure cannot switch the Rk from Rk2 to Rk1 quickly in this condition.
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Figure 13. (a) The carrier phase error estimation in test scene C; (b) The carrier frequency error
estimation in test scene C.

The number of estimation outliers of the non-coherent pre-filter is obviously less than that of the
coherent pre-filter. Thus, the robustness of the non-coherent pre-filter is stronger than that of the coherent
pre-filter in a high tracking error dynamic scene. The RMS values of the estimation error of the three
algorithms in scene C are shown in Table 4. It can be concluded that the estimation accuracy of the
enhanced non-coherent pre-filter outperforms the ATAN/ATAN2/NC-EMLE discriminator and coherent
pre-filter in high tracking error dynamic change condition, which often occurs when the tracking loop
suffers from high dynamic movement of GNSS receivers. Compared with the coherent pre-filter, the
enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier
phase error, carrier frequency error, and code phase error estimation, respectively, in test scene C.

Table 4. Performance comparison of tracking error estimation methods in test scene C.

Tracking Error
Estimation Method

Root Mean Square of Estimation Error for Tracking Error

Carrier Phase Error (cycle) Carrier Frequency Error (Hz) Code Phase Error (chip)

Discriminator 0.30656 27.81829 0.08758
Coherent pre-filter 0.26179 2.00818 0.07386

Non-coherent pre-filter 0.15270 1.04078 0.03666
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4.4. Estimation Accuracy Evaluation Under Various C/N0

In test scene D, the estimation accuracies of three algorithms were evaluated in different C/N0.
Tcoh was set to 20 ms in order to test the algorithms in weak signal condition. d was set to 1 chip.
The tracking error was set to zero, assuming that the tracking loop is in locking state.

Figure 14 shows the STD values of estimation error for carrier phase error. The accuracy comparisons
are shown in Table 5. The estimation accuracy of pre-filter for carrier phase error is better than that of the
traditional ATAN discriminator. The non-coherent pre-filter outperforms the other two algorithms when
C/N0 ∈ [26, 50]∪ [15, 23]. The coherent pre-filter outperforms the others when C/N0 ∈ [23, 28].
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Table 5. Accuracy comparison of carrier phase error estimation.

C/N0 (dB-Hz) Accuracy Comparison

[38.7, 50] Non-coh > ATAN > Coh
[26, 38.7] Non-coh > Coh > ATAN
[23, 26] Coh > Non-coh > ATAN
[15, 23] Non-coh > ATAN > Coh

Figure 15 shows the STD values of estimation error for carrier frequency error. The pre-filter
outperforms the ATAN2 discriminator in different values of C/N0. When C/N0 is greater than
20 dB-Hz, the estimation accuracy of coherent pre-filter for carrier frequency error is higher than that
of non-coherent pre-filter. When C/N0 is less than 20 dB-Hz, the estimation accuracy of coherent
pre-filter reduces seriously and the performance of non-coherent pre-filter is better than that of the
coherent pre-filter.
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Figure 16 shows the STD values of estimation error for code phase error. Similarly, the pre-filter
outperforms NC-EMLE discriminator in different C/N0. When C/N0 is greater than 28.8 dB-Hz,
the estimation accuracy of the coherent pre-filter for code phase error is higher than that of the non-coherent
pre-filter. When C/N0 is less than 28.8 dB-Hz, the estimation accuracy of the coherent pre-filter for code
phase error reduces seriously and the non-coherent pre-filter outperforms the coherent pre-filter.
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Overall, the tracking error estimated by coherent/non-coherent pre-filter is less noisy than that
estimated by the ATAN/ATAN2/NC-EMLE discriminator. The non-coherent pre-filter outperforms
the coherent pre-filter for tracking error estimation in weak signal or highly dynamic scene.
The non-coherent pre-filter also outperforms the coherent pre-filter for carrier phase error estimation
in strong signal condition.

5. Conclusions and Future Work

This paper presents an enhanced non-coherent pre-filter design. Firstly, the observation noise
variance of non-coherent pre-filter is analyzed through Monte Carlo Simulation. The LUTs are
subsequently created to store the relationship among Tcoh, C/N0, and the estimation noise variances of
the ATAN/ATAN2/NC-EMLE discriminator. The LUTs provide a method to set the observation noise
variance matrix of non-coherent pre-filter correctly according to estimated C/N0. Secondly, a simple FDE
structure is introduced to overcome the inherent deficiency of the ATAN discriminator, whose outputs
are observations of the non-coherent pre-filter. Through the FDE structure, the effective estimation
range of the non-coherent pre-filter for carrier phase error extends from (−0.25 cycle, 0.25 cycle) to
(−0.5 cycle, 0.5 cycle). This is a significant improvement that makes the non-coherent pre-filter outperform
the coherent pre-filter in highly dynamic scenes.

The performance of the proposed enhanced non-coherent pre-filter is compared with traditional
ATAN/ATAN2/NC-EMLE discriminators and the coherent pre-filter in carefully designed scenarios.
The estimation accuracy and robustness of the enhanced non-coherent pre-filter outperform the
traditional discriminator and coherent pre-filter in weak signal condition and high tracking error
dynamic scene. Additionally, the estimation accuracy of the enhanced non-coherent pre-filter for
carrier phase error outperforms the coherent pre-filter in strong signal scenes. The best operating
conditions of the coherent/non-coherent pre-filter for tracking error estimation are discussed in detail
in the performance evaluation section. This can be the basis of hybrid pre-filter design, where tracking
error would be estimated by coherent and non-coherent pre-filter simultaneously.

The accuracy evaluation of discriminator and pre-filter algorithms is based on the simulated I/Q
correlation signal in this paper. It is also necessary to evaluate the accuracy improvements which
can be obtained by using the enhanced non-coherent pre-filter in the aspect of position fixing and
velocity determination. Besides, the tracking error estimated by pre-filter is less noisy than that of the
ATAN/ATAN2/NC-EMLE discriminator. If the state variables of the pre-filter, instead of discriminator
outputs, are used to generate carrier/code NCO feedback command, the tracking loop is able to track
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weaker signal or higher signal dynamic, or both. However, it is still a question how to generate NCO
command according to state variables of pre-filter. The performance of the pre-filter can be further
improved by adjusting the system noise co-variance matrix, which is not discussed in this paper.
These three aspects can be the future research orientations.
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Appendix A. The Derivation and Definition of Pcross, Pdot, B(n), C1(n), C2(n)

The coherent integration in contiguous epoch, n and n − 1, is redefined as:

IP(n) = A · R(δτn) sin c
(
δ fnTcoh) cos(δϕn) + nIP (A1)

QP(n) = A · R(δτn) sin c
(
δ fnTcoh) sin(δϕn) + nQP (A2)

IP(n− 1) = A · R(δτn−1) sin c
(
δ fn−1Tcoh) cos(δϕn−1) + nIP (A3)

QP(n− 1) = A · R(δτn−1) sin c
(
δ fn−1Tcoh) sin(δϕn−1) + nQP (A4)

After that, the Pcross and Pdot contained in ATAN2 discriminator algorithm are defined as
Equations (A5) and (A6).

Pcross(n) = IP(n− 1)QP(n) + IP(n)QP(n− 1) (A5)

Pdot(n) = IP(n− 1)IP(n) + QP(n− 1)QP(n) (A6)

Inserting Equations (A1)–(A4) into Equations (A5) and (A6), Pcross and Pdot can be expressed as:

Pcross(n) = B(n)B(n− 1) sin(δϕn − δϕn−1) + C1(n) (A7)

Pdot(n) = B(n)B(n− 1) cos(δϕn − δϕn−1) + C2(n) (A8)

where
B(n) = A · R(δτn) sin c(δ fnTcoh) (A9)

C1(n) = nIPB(n) sin δϕn + nQPB(n− 1) cos δϕn−1 + nQPB(n) cos δϕn + nIPB(n− 1) sin δϕn−1 + 2nIPnQP

= nIP[B(n) sin δϕn + B(n− 1) cos δϕn−1 + B(n) cos δϕn + B(n− 1) sin δϕn−1] + 2nIP
2 (A10)

C2(n) = nIPB(n) cos δϕn + nIPB(n− 1) cos δϕn−1 + nQPB(n) sin δϕn + nQPB(n− 1) sin δϕn−1 + nIP
2 + nQP

2

= nIP[B(n) sin δϕn + B(n− 1) cos δϕn−1 + B(n) cos δϕn + B(n− 1) sin δϕn−1] + 2nIP
2 (A11)

It should be noted here that the noise terms, nIP and nQP, are dependent and of the same
distribution when we derive Equations (A10) and (A11).

Appendix B. Derivation of Estimation Noise Variance of ATAN2 FLL Discriminator

In order to derive the estimation noise variance of the ATAN2 discriminator, we assume this
estimation noise is white noise. Hence, Equation (A12) is established as follows:

E(nATAN) = 0
D(nATAN) = E([nATAN − E(nATAN)]

2) = E(nATAN
2) = σATAN

2

E[nATAN(n)nATAN(n− 1)] = 0
(A12)
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where E(nATAN) is the mean value of nATAN. D(nATAN) is the variance of nATAN. According to
Reference [9], the ATAN2 algorithm is equivalent to Equation (A13):

δ fANAN2(n) =
δϕANAN(n)− δϕATAN(n− 1)

Tcoh
(A13)

Plug Equation (15) into Equation (A13), the δ fANAN2(n) can be reformulated as follows:

δ fANAN2(n) =
δϕ(n)−δϕ(n−1)

Tcoh
+ nATAN(n)−nATAN(n−1)

Tcoh

= δ f + nATAN(n)−nATAN(n−1)
Tcoh

= δ f + nATAN2
(A14)

where nATAN2 = nATAN(n)−nATAN(n−1)
Tcoh

.
This conclusion gives us an instruction that we can derive D(nATAN2) according to the statistical

property of nATAN. D(nATAN2) is calculated as follows:

D(nATAN2) = E([nATAN2 − E(nATAN2)]
2) = E(nANAT2

2)− E2(nATAN2) (A15)

The first term of D(nATAN2) can be derived as:

E(nANAT2
2) = E[(

nATAN(n)− nATAN(n− 1)
Tcoh

)
2

] =
2

Tcoh
2 E(ϕ2

ATAN) (A16)

The second term of D(nATAN2) is

E2(nATAN2) = E2(
nATAN(n)− nATAN(n− 1)

Tcoh
) = 0 (A17)

Plug Equations (A16)–(A18) into Equation (A15), we can get the analytical solution of D(nATAN2)

as Equation (A18).

D(nATAN2) =
2

Tcoh
2 E(ϕ2

ATAN) =
2

Tcoh
2 σATAN

2 = (
1

2π
)

2 1
c/n0 · Tcoh

3 (1 +
1

c/n0 · Tcoh
) (A18)

Appendix C. C/N0 Estimation of GNSS Signals

The power ratio method is used to estimate C/N0 in this paper, which involves the comparison
between wideband power Pw and narrowband power Pn. The estimation of C/N0 is shown as follows:

Pw =
M

∑
n=1

(IP(n)
2 + QP(n)

2) (A19)

Pn = (
M

∑
n=1

IP(n))2 + (
M

∑
n=1

QP(n))2 (A20)

Pn/w =
1
N

N

∑
r=1

PN,r

PW,r
(A21)

c/n0 =
1

Tcoh
(

Pn/w − 1
M− Pn/w

) (A22)

C/N0 = 10lg(c/n0) (A23)

where M and N are parameters of power ratio method, c/n0 is the carrier-to-noise density ratio in the
unit of Hz, and C/N0 is the carrier-to-noise density ratio in the unit of dB-Hz.
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