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Abstract: Color image demosaicking for the Bayer color filter array is an essential image processing
operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based
algorithms have demonstrated superior demosaicking performance over conventional color difference
interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI)
that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and
selecting a suitable iteration number at each pixel. These are performed based on a unified criterion
that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard
color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than
0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based
on training images. We further extend ARI for a multispectral filter array, in which more than three
spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also
for the task of multispectral image demosaicking.

Keywords: image sensor; Bayer color filter array; multispectral filter array; demosaicking; residual
interpolation

1. Introduction

A single image sensor with a color filter array (CFA) is widely used in current color digital cameras,
in which only one pixel value among RGB values is recorded at each pixel [1]. The other two missing
pixel values are estimated from the recorded mosaic data of RGB values by an interpolation process
called demosaicking (or demosaicing) [2–5]. Figure 1a illustrates the demosaicking process, which plays
a crucial role in acquiring high-quality color images using a color digital camera.

The most widely used CFA is the Bayer CFA [6] (Figure 1b), for which numerous demosaicking
algorithms have been proposed [2–5]. Figure 2 shows the color peak signal-to-noise ratio (CPSNR)
performance of representative algorithms on a standard color image dataset [4]. The CPSNR
performance has continuously been improved, suggesting the ongoing demand for more highly
accurate demosaicking algorithms.
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Figure 1. (a) Color image demosaicking process; (b) Bayer CFA [6]; (c) five-band MSFA [7].
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Figure 2. CPSNR performance of representative Bayer demosaicking algorithms on standard IMAX
and Kodak 30 color images [4]. The publication year is primarily based on the journal publication
except for recent algorithms presented at conferences.

As a recent trend, residual interpolation (RI)-based algorithms have demonstrated superior
demosaicking performance [8–12]. A key feature of the RI-based algorithms is to perform interpolation
in a residual domain, where the residual is defined as the difference between a tentatively estimated
pixel value and a corresponding observed pixel value. The papers [10,12] show that the residuals
generally become smoother than conventional color differences, contributing to more accurate
interpolation. The RI was originally proposed in [8] (denoted as original RI (In Section 1 and 2,
the bold typeface is used to represent the abbreviated name of the algorithms compared in Figure 2.
Hereafter, we might omit full notations of the names for the simplicity of the notations.)) and then
extended in a minimized-Laplacian version (MLRI [9,10]) or an iterative version (IRI [11,12]). Recent
algorithms such as ECC [13] and fused regression (FR) [14,15] also use an RI-based algorithm to assist
in improving demosaicking performance. The framework of the RI-based algorithms will be reviewed
in Section 3.

In this paper, we first propose adaptive residual interpolation (ARI) for the Bayer CFA.
ARI improves the existing RI-based algorithms by introducing adaptive aspects as follows. (i) ARI
adaptively combines RI and MLRI at each pixel, and (ii) ARI adaptively selects a suitable
iteration number for each pixel, instead of using a common iteration number for all of the pixels,
as conducted in IRI. These are performed based on a unified criterion that evaluates the validity of an
RI-based algorithm. Figure 2 demonstrates that ARI can improve the existing RI-based algorithms by
more than 0.6 dB in CPSNR and can outperform state-of-the-art algorithms based on training images,
such as LSSC [16] and FR [14,15].

We next consider the task of multispectral image demosaicking. The CFA and demosaicking
technologies are extensible for multispectral imaging with a single image sensor [17]. The only
modification required in hardware is to replace the CFA with a multispectral filter array (MSFA),
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in which more than three spectral bands are arrayed. Figure 1c shows a representative five-band MSFA,
consisting of typical RGB bands and additional orange and cyan bands (denoted as Or and
Cy bands, respectively) in the visible spectrum [7]. The multispectral extension of the CFA has
attracted increasing attention because of its potential for compact and low-cost multispectral image
acquisition. However, the demosaicking process for an MSFA poses a challenging problem owing to
the very sparse sampling of each spectral band in the MSFA. To address this challenge, we extend our
proposed ARI for multispectral image demosaicking, considering the five-band MSFA of Figure 1c.
Experimental comparisons using several multispectral image datasets demonstrate that ARI can
achieve state-of-the-art performance also for the task of multispectral image demosaicking.

An earlier version of this paper was published in [18]. This paper provides three major extensions.
First, we improve the demosaicking accuracy of the R and B bands in color image demosaicking by
incorporating ARI into not only the G band interpolation (as performed in [18]), but also the R and B
bands’ interpolation. Second, we extend ARI for multispectral image demosaicking and demonstrate
that ARI can achieve state-of-the-art performance. Third, we include the detailed explanation of our
algorithm and extensive experimental comparisons with existing algorithms.

The rest of this paper is organized as follows. Section 2 briefly reviews existing Bayer and
multispectral demosaicking algorithms. Section 3 outlines the framework of RI-based algorithms.
Section 4 explains our proposed ARI for the Bayer CFA. Section 5 extends ARI for multispectral image
demosaicking. Section 6 presents experimental results, and Section 7 concludes the paper.

2. Related Works

2.1. Bayer Demosaicking Algorithms

Numerous demosaicking algorithms have been proposed for the Bayer CFA. While referring to
the well-categorized review in [19], we classify existing algorithms into several categories.

Interpolation-based algorithms first interpolate the G band, which has a sampling density double
that of the R and B bands. Then, the R and B bands are interpolated in a color ratio [20–22] or a color
difference domain [23,24] based on the assumption that the color ratios (i.e., R/G and B/G) or the color
differences (i.e., R-G and B-G) are smooth within a local area of an image. In practice, color differences
are used more often than color ratios because of their stable properties [25].

The interpolation-based algorithms mainly focus on improving the interpolation accuracy
of the G band using directional interpolation that combines two interpolation results along the
horizontal and vertical directions. The two results are combined (or one result is selected) effectively
based on such a primary-consistent soft-decision (PCSD [26]), homogeneity metrics on the CIE Lab
color space (AHD [27]), directional linear minimum mean square-error estimation (DLMMSE [28]),
variance of color differences (VCD [29]), directional filtering and a posteriori decision (DFPD [30]),
heterogeneity-projection hard-decision (HPHD [31]), local polynomial approximation (LPA [32]),
integrated gradients (IGD [33]), gradients of color differences (GBTF [34]) and multi-scale color
gradients (MSG [35]). Some algorithms update interpolated pixel values once or iteratively (SA [25],
HEID [36] and ESF [37]). Non-local self-similarities (SSD [38,39], NAT [40] and AICC [41,42]) or
more than two directions (CS [43]) are also used. The algorithm (ECC [13]) effectively combines
band-independent and color difference interpolation results.

RI-based algorithms have shown superior demosaicking performance in recent years.
The RI-based algorithms also interpolate the G band first. Then, they generate tentative estimates of
the R and B bands (denoted as Ř and B̌, respectively) from the interpolated G band. Then, the residuals
(denoted as R-Ř and B-B̌, respectively) are calculated and interpolated. The RI-based algorithms are
motivated by the observation that the residuals generally become smoother than the conventional
color differences (i.e., R-G and B-G), contributing to more accurate interpolation. After the original RI
was proposed (RI [8]), several extensions were introduced using minimized-Laplacian (MLRI [9,10]),
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iteration (IRI [11,12]) or four directionality [44]. The RI-based algorithms will be further reviewed
in Section 3.

Frequency-domain algorithms first transform the mosaic CFA image into the frequency domain,
where the CFA image is expressed as a combination of luminance and chrominance components.
These components are then separated by frequency filtering and finally converted into the RGB
components (FD [45,46]). In this category, researchers focus on designing effective frequency
filtering algorithms such as adaptive filtering [47] and least-squares luma-chroma demultiplexing [48]
(The source code of this algorithm is publicly available. However, we excluded this algorithm from
comparison in Figure 2 because the necessary trained filters are provided only for the Kodak dataset.).

Wavelet-based algorithms perform a sub-band analysis of the RGB or luminance image.
The alternative projection algorithm (AP [49]) decomposes initially interpolated R, G and B images
into sub-bands and iteratively updates the high-frequency sub-bands of the R and B images in
accordance with those of the G image. This algorithm is accelerated using one-step implementation
without iteration (OAP [50]). In another algorithm, a wavelet analysis of the luminance component is
performed to estimate interpolation weights for the horizontal and vertical directions (WA [51]).

Reconstruction-based algorithms solve the demosaicking process as an optimization problem
with a proper regularization or prior. A regularization approach (RAD [52]) uses prior knowledge
regarding natural color images, such as smoothness and inter-band correlations. Other algorithms are
based on dictionary learning with non-local sparse models (LSSC [16]) or the theory of compressed
sensing [53].

Regression-based algorithms learn efficient regressors based on training images [14,15].
Directional difference regression (DDR [15]) learns the regressors that estimate directional color
differences of the training images (as ground truths without mosaicking) closest to those calculated
from the input mosaic CFA data. To improve performance, fused regression (FR [15]) fuses the DDR
and the other regressors that estimate the RGB values of the training images (as ground truths without
mosaicking) closest to the RGB values initially interpolated using MLRI [9,10].

Short summary: Generally, demosaicking algorithms based on training images, such as LSSC [16],
DDR [15] and FR [15], can offer high performance results, as demonstrated in Figure 2. In contrast,
interpolation-based algorithms are flexibly applicable to any kind of input data without relying on
training images. This property is important in fields such as medical and multispectral imaging,
because obtaining high-quality and sufficient training images is laborious. In this paper, we focus on
improving the RI-based algorithms as will be explained in Section 4. We refer to the survey papers [2–5]
for complementary information.

2.2. Multispectral Demosaicking Algorithms

While the study of Bayer demosaicking algorithms has a long history, that of multispectral
demosaicking algorithms has attracted attention only in recent years. Because there is no wide-spread
MSFA currently, research on multispectral demosaicking algorithms has been conducted in conjunction
with the design of an MSFA.

Miao et al. proposed a generic algorithm for designing an MSFA with an arbitrary number of
spectral bands [54]. They also proposed a general binary tree-based edge-sensing (BTES) demosaicking
algorithm [55] for the MSFA designed by the generic method. The BTES algorithm recursively performs
edge-sensing interpolation based on a binary tree. Although the generic and the BTES algorithms
are useful in providing a general framework, the performance of classical edge-sensing interpolation
is limited.

Monno et al. proposed a five-band MSFA [7], as shown in Figure 1c. This five-band MSFA consists
of typical RGB bands and additional Or and Cy bands in the visible spectrum. The advantage of this
MSFA lies in keeping the sampling density of the G band in the MSFA as high as that in the Bayer CFA.
Based on that advantage, several efficient demosaicking algorithms have been proposed [7,56–60].
These algorithms first interpolate the most densely-sampled G band, which is effectively used as a



Sensors 2017, 17, 2787 5 of 21

guide for interpolating the other bands. In [56], adaptive kernel upsampling (AKU) was proposed
to generate an interpolated five-band image using the interpolated G band as a guide for estimating
interpolation directions of the other bands. In [7,57], guided filtering (GF) [61] is applied to obtain an
interpolated result. In [58], an RI-based algorithm was incorporated into the interpolation of both the
G band and the other bands. In [59,60], the high-frequency component of the G band was effectively
exploited for interpolating the other bands based on the inter-band correlation analysis.

Recently, multispectral demosaicking algorithms for other types of MSFA have also been proposed,
such as the algorithm based on linear minimum mean square errors for an eight-band MSFA [62] and
the algorithm using a pseudo-panchromatic image for a 16-band MSFA [63]. We refer to the paper [17]
for a comprehensive review, in which other MSFAs, such as uniform MSFAs [64,65] and a seven-band
MSFA [66], and demosaicking algorithms for those MSFAs are introduced.

In this paper, we propose a multispectral demosaicking algorithm for the five-band MSFA of
Figure 1c, as will be described in Section 5. We consider that the use of that MSFA is a reasonable choice
for three reasons. (i) As reported in [7], the considered MSFA has demonstrated better performance
in comparison with other five-band MSFAs generated by the generic algorithm. (ii) The considered
MSFA has already been realized in hardware as a prototype sensor [7]. (iii) Jia et al. have also used the
same MSFA arrangement and have reported its effectiveness by the frequency domain analysis of the
MSFA [67,68]. These facts suggest the potential of the considered MSFA.

3. Residual Interpolation Framework

In this section, we review the RI framework and three specific RI-based algorithms: RI [8],
MLRI [9,10] and IRI [11,12].

3.1. General Processing Flow

Figure 3 outlines the RI framework. Here, we assume that the G band interpolation is already
completed and take the R band interpolation as an example to explain the framework. The RI
framework consists of four steps. (i) Tentative estimates of the R band (denoted as Ř) are generated
from the interpolated G band by guided upsampling of the observed R values. (ii) Residuals (denoted
as R-Ř) are calculated by taking the differences between the tentative estimates and the observed R
values. (iii) The residuals are interpolated. (iv) The tentative estimates are added to the interpolated
residuals to obtain the interpolated R band (denoted as R̃). The key effect of the RI framework is
that the residuals become smoother than the conventional color differences (i.e., R-G) by effectively
generating the tentative estimates [10,12]. This property increases the interpolation accuracy. A similar
procedure can be applied for the G band interpolation, as will be detailed in Section 4. In the following,
we explain three RI-based algorithms, which are different regarding tentative estimates generation.

+

Tentative 
estimates

�

�

Residuals

�-��

Interpolated R

�

�

Guided
upsampling

Interpolation

Interpolated 

residuals
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Figure 3. The RI framework.
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3.2. Original RI

Original RI [8] generates the tentative estimates using GF [61]. For each local image window,
GF generates the tentative estimates as a linear transformation of a guide. Here, the interpolated G
band is used as the guide. The tentative estimates in a local window ωp,q around a pixel (p, q) are
expressed as:

Ři,j = ap,qGi,j + bp,q , ∀i,j ∈ ωp,q , (1)

where Ři,j represents the tentative estimate at a pixel (i, j) in the window and (ap,q, bp,q) is the pair of
linear coefficients assumed to be constant in the window.

The cost function for (ap,q, bp,q) to be minimized is expressed as:

E
(
ap,q, bp,q

)
= ∑

i,j∈ωp,q

(
Mi,j

(
Ri,j − Ři,j

))2 ,

= ∑
i,j∈ωp,q

(
Mi,j

(
Ri,j − ap,qGi,j − bp,q

))2 ,
(2)

where Mi,j is a binary mask at the pixel (i, j) that takes the value one for the observed R pixels and zero
for the others (Original GF [61] has a smoothness term εa. For our purpose, the smoothness parameter
ε is set as a very small value just to avoid division by zero, and thus, we omit the smoothness term
from the cost function in Equations (2) and (3).). The above cost function indicates that the original RI
minimizes the residuals (i.e., R-Ř) themselves. Since the linear coefficients are calculated in a sliding
window, the overlaps of the windows are averaged uniformly or with weights [10].

3.3. Minimized-Laplacian RI

MLRI [9,10] generates the tentative estimates by minimizing the Laplacian energy of the residuals,
instead of the residuals themselves. For this purpose, GF is modified as follows. For each local window,
the cost function for the gain component ap,q is expressed as:

E
(
ap,q
)
= ∑

i,j∈ωp,q

(
Mi,j∇̃2 (Ri,j − Ři,j

))2
,

= ∑
i,j∈ωp,q

(
Mi,j∇̃2 (Ri,j − ap,qGi,j − bp,q

))2
,

= ∑
i,j∈ωp,q

(
∇̃2
(

RM
i,j

)
− ap,q∇̃2

(
GM

i,j

))2
,

(3)

where ∇̃2(·) represents an approximate Laplacian value, and RM
i,j and GM

i,j are the R and the G values
masked by Mi,j, respectively. The approximate Laplacian value is calculated from the masked mosaic
data by convolving the following sparse Laplacian filter:

0 0 −1 0 0
0 0 0 0 0
−1 0 4 0 −1
0 0 0 0 0
0 0 −1 0 0

 . (4)

Although the bias component bp,q does not affect the minimization of the Laplacian energy (i.e.,
∇̃2(bp,q) = 0), bp,q is determined by minimizing Equation (2) under a given ap,q.
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3.4. Iterative RI

IRI [11,12] introduces an iterative manner to the RI framework. The iterative manner is indicated
by the dashed line in Figure 3, where the interpolated R band is used as the guide in the next iteration.
In [11], the iteration is stopped based on a criterion that is defined by the magnitude and the
smoothness of the residuals at the k-th iteration (i.e., R-Řk) to assess how effectively the tentative
estimates fit the observed values. In [12], a different stopping criterion is used to assess whether
the new interpolation result becomes sufficiently close to the previous iteration result with a proper
threshold (i.e., |R̃k − R̃k−1| < γ). Both in [11,12], the iteration is stopped in a global manner, which
means that a common iteration number is used for all pixels based on the criterion combined for
all pixels.

4. Proposed Bayer Demosaicking Algorithm

4.1. Interpolation of the G Band

Our proposed algorithm first interpolates the G band. The overall flow of the G interpolation is
illustrated in Figure 4. Here, we only explain the G interpolation for the R pixels. The G interpolation
for the B pixels is performed in the same manner.

Step (i)

Iterative directional interpolation

Step (ii)

Adaptive selection of 

iteration at each pixel

Iterative horizontal

RI of G

Iteration 

k Adaptive selection

of iteration number

Iterative horizontal

MLRI of G

Iteration 

k
Adaptive selection

of iteration number

Iterative vertical

RI of G

Iteration 

k Adaptive selection

of iteration number

Iterative vertical

MLRI of G

Adaptive selection

of iteration number

Iteration 

k

Combining

at R pixels

Interpolated G

�

�

Step (iii)

Adaptive

combining

�

�

����

�

�

����

�

�

����

�

�

����

Observed

R

Observed

G

Figure 4. Overall flow of the G interpolation at R pixels using ARI.

Our proposed G interpolation algorithm consists of three steps. (i) The G interpolation at the
R lines, which represent the pixel rows that contain the R pixels, is performed in the horizontal and
vertical directions. For each direction, RI and MLRI are applied in an iterative manner, respectively.
As a result of each directional interpolation, a set of directionally-interpolated G results, where each
result corresponds to one iteration, is generated. (ii) For each directional interpolation, a suitable
iteration number is selected adaptively at each pixel from the set of directionally-interpolated G results.
(iii) All directional results are adaptively combined by a weighted averaging at each R pixel to obtain
the final G interpolation result. The sequence of the above steps is called ARI in the sense that it
adaptively combines RI and MLRI and selects the iteration number at each pixel. Each step is detailed
as below.

Step (i): Iterative directional interpolation. In this step, RI and MLRI are applied for iterative
directional interpolation. Figure 5 illustrates the flow of the G interpolation at the R lines in the
horizontal direction. The G interpolation in the vertical direction is performed in the same manner.

First, horizontal linear interpolation (HLI) of the R and the G bands is performed at the R lines to
obtain initial interpolation results as:
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R̃h
(i,j),0 = (R(i−1,j) + R(i+1,j))/2 , at a G pixel in an R line,

G̃h
(i,j),0 = (G(i−1,j) + G(i+1,j))/2 , at an R pixel,

(5)

where R̃ and G̃ represent the interpolated pixel values, the subscript (i, j), 0 indicates the initial
interpolation result at a pixel (i, j) and the superscript h represents the horizontal direction.

R

R
GFHLI

HLI

Guide
Initial interpolated R

�

�

�

�

Observed

R

Observed

G

HLI

HLI

k=2,3,…

k=1

k=2,3,…

Initial interpolated G

�

�

�

�
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Tentative estimates

�

�

�

�

Tentative estimates

�

�

�

�

Residuals

�

�
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�

�

�
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�

�

�

�

Interpolated G

�

�

�

�

k=1

Interpolated

residuals

Interpolated

residuals

Figure 5. Flow of the iterative horizontal G interpolation at the R lines by RI or MLRI.

Then, at each k-th iteration, tentative estimates of R and G are generated by linear transformations
of the previous interpolation results (if k = 1, the initial interpolation results are used) as:

Řh
(i,j),k = ar

(i,j),kG̃h
(i,j),k−1 + br

(i,j),k ,

Ǧh
(i,j),k = ag

(i,j),kR̃h
(i,j),k−1 + bg

(i,j),k ,
(6)

where Ř and Ǧ represent the tentative estimates and (ar, br) and (ag, bg) are the linear coefficients.
As described in Sections 3.2 and 3.3, RI and MLRI calculate the linear coefficients using GF [61] and
its modified version, respectively. Here, G̃ is used as the guide for generating Ř and vice versa.
At each local window, RI and MLRI calculate the linear coefficients by minimizing the following
costs, respectively.

eRh

(i,j),k =


Řh
(i,j),k − R̃h

(i,j),k−1 , in RI,

∇̃2(Řh
(i,j),k)− ∇̃

2(R̃h
(i,j),k−1) , in MLRI,

(7)

eGh

(i,j),k =


Ǧh
(i,j),k − G̃h

(i,j),k−1 , in RI,

∇̃2(Ǧh
(i,j),k)− ∇̃

2(G̃h
(i,j),k−1) , in MLRI,

(8)

where eRh
and eGh

represent the costs for the tentative estimates of R and G, respectively.
After generating the tentative estimates, the residuals are calculated as:

∆̃Rh

(i,j),k = R(i,j) − Řh
(i,j),k , at an R pixel,

∆̃Gh

(i,j),k = G(i,j) − Ǧh
(i,j),k , at a G pixel in an R line.

(9)

Then, the residuals are interpolated by the HLI as:
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∆̃Rh

(i,j),k = (∆̃Rh

(i−1,j),k + ∆̃Rh

(i+1,j),k)/2 , at a G pixel in an R line,

∆̃Gh

(i,j),k = (∆̃Gh

(i−1,j),k + ∆̃Gh

(i+1,j),k)/2 , at an R pixel.
(10)

Finally, the tentative estimates are added to obtain the k-th horizontally interpolated results as:

R̃h
(i,j),k = ∆̃Rh

(i,j),k + Řh
(i,j),k ,

G̃h
(i,j),k = ∆̃Gh

(i,j),k + Ǧh
(i,j),k .

(11)

In the iterative manner [11,12], the tentative estimates are updated in accordance with Equation (6)
using the obtained interpolation results. In [11,12], the iteration is stopped globally based on the
criterion described in Section 3.4, meaning that a common iteration number is used for all of the pixels.
In contrast, ARI generates a set of directionally-interpolated results, in which each result corresponds
to one iteration, and adaptively selects a suitable iteration number for each pixel in the next step.

Step (ii): Adaptive selection of iteration number. In this step, for each directional interpolation, a
suitable iteration number is adaptively selected at each pixel. This is performed based on a criterion
similar to that in [11]. Here, we only explain the criterion for the horizontal direction. The criterion for
the vertical direction is calculated in the same manner.

We define the criterion in a pixel-by-pixel manner, instead of the global manner in [11], based on
the following differences.

dRh

(i,j),k = Řh
(i,j),k − R̃h

(i,j),k−1 ,

dGh

(i,j),k = Ǧh
(i,j),k − G̃h

(i,j),k−1 ,
(12)

where dRh
and dGh

represent the differences between the k-th tentative estimates and the previous
interpolation results. These differences assess how effectively the tentative estimates converge at the
k-th iteration. The criterion value for a pixel (i, j) at the k-th iteration is defined based on the magnitude
and the smoothness of the above differences as:

ch
(i,j),k = (dh

(i,j),k)
m · (δdh

(i,j),k)
n , (13)

where dh
(i,j),k = |d

Rh

(i,j),k|+ |d
Gh

(i,j),k| and δdh
(i,j),k = |d

Rh

(i−1,j),k − dRh

(i+1,j),k|+ |d
Gh

(i−1,j),k − dGh

(i+1,j),k|. The above

criterion value becomes small if the magnitude of the differences (minimized in RI) or the smoothness
of the differences (minimized in MLRI) is small. The parameters (m, n) are set empirically as (2, 1),
the same parameter values as used in [11].

Based on criterion values corresponding to each pixel, the suitable iteration number kbest is
adaptively selected at each pixel as:

kbest = arg min
k

g(ch
(i,j),k) , (14)

where the function g(·) represents spatial Gaussian smoothing. We empirically chose σ = 2 for
the spatial Gaussian smoothing of criterion values and k = 11 for the maximum iteration number.
Although our iteration strategy does not guarantee theoretical convergence at each pixel, the selection
of the most suitable iteration number based on the minimal criterion value performs well. Hereafter,
we remove the subscript k, indicating that the suitable iteration number kbest has already been selected
at each pixel.

Step (iii): Adaptive combining of all directional results. In this step, directional interpolation
results of RI and MLRI are combined by the weighted averaging as:
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G̃(i,j) =
wh,ri
(i,j)G̃

h,ri
(i,j) + wh,ml

(i,j) G̃h,ml
(i,j) + wv,ri

(i,j)G̃
v,ri
(i,j) + wv,ml

(i,j) G̃v,ml
(i,j)

wh,ri
(i,j) + wh,ml

(i,j) + wv,ri
(i,j) + wv,ml

(i,j)

, (15)

where h and v represent the horizontal and the vertical directions and ri and ml represent the results of
RI and MLRI, respectively. Each weight is calculated based on the smoothed criterion value as:

wh,ri
(i,j) = 1/g(ch,ri

(i,j)) , wh,ml
(i,j) = 1/g(ch,ml

(i,j) ) ,

wv,ri
(i,j) = 1/g(cv,ri

(i,j)) , wv,ml
(i,j) = 1/g(cv,ml

(i,j) ) ,
(16)

where a small criterion value contributes to a large weight.

4.2. Interpolation of the R and B Bands

In IRI [11,12], iteration is performed only for the G interpolation, while the R and B interpolations
are performed without iteration. In contrast, we fully incorporate ARI not only into the G interpolation,
but also into the R and B interpolations.

Figure 6 shows the flow of the R interpolation. We take a progressive approach [55] as follows.
(i) The R values at the B pixels are interpolated using ARI along the diagonal directions. (ii) The
R values at the G pixels are interpolated using ARI along the horizontal and vertical directions. In ARI,
the interpolated G band is fixed throughout the process and is used as the guide for generating the
tentative estimates of the R band at each iteration. The B interpolation is performed in the same
manner. In our experiments, a maximum of two iterations provides sufficiently high performance
results for the R and B interpolations. This iteration process improves the demosaicking performance
by approximately 0.13 dB in PSNR of the R and B bands and 0.1 dB in CPSNR.

Interpolated G

ARI of R

at B pixels

ARI of R

at G pixels

Guide Guide
Interpolated RObserved R

GF window for 

diagonal direction

(3�3 in this case)

Figure 6. Flow of the R interpolation for the Bayer CFA. A window of GF for the diagonal direction is
shown in the left.

4.3. Window Size of GF

In our implementation, we empirically set the window size of GF in Equation (6) as follows.
Here, we explain the window size for the horizontal interpolation. The window size for the vertical
interpolation is set symmetrically.

In the G interpolation, the window size of GF (denoted as height (H) × width (W)) is initially
set as 3× 5 for horizontal RI and 1× 9 for horizontal MLRI. As conducted in [11], the window size
is gradually enlarged at each k-th iteration as Hk = Hk−1 + 2 and Wk = Wk−1 + 2. In the first step
of the R and B interpolations, the GF window is set as shown in the left of Figure 6. We initially
use the diagonal 5× 5 window for diagonal RI and the diagonal 1× 5 window for diagonal MLRI.
The window size is then diagonally enlarged in the same manner as the horizontal G interpolation.
In the second step of the R and B interpolations, the window size of GF is initially set as 5× 5 for
horizontal RI and 1× 5 for horizontal MLRI. The window size is then enlarged as Hk = Hk−1 + 2
and Wk = Wk−1 + 2. The window enlargement greatly affects the demosaicking performance and
improves the CPSNR by more than 1 dB compared with the case without the enlargement.
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5. Multispectral Extension

In this section, we extend our proposed ARI for multispectral image demosaicking with the
five-band MSFA of Figure 1c. Our proposed multispectral demosaicking algorithm using ARI first
interpolates the G band, which is the most densely sampled in the five-band MSFA. Then, the other
four bands are interpolated using the G band as a guide.

Figure 7 shows the flow of the G interpolation for the five-band MSFA. The G interpolation
is decomposed into four streams, which correspond to the G interpolation at the R, Or, Cy and B
pixels, respectively. In each stream, the G interpolation is performed in the same manner as that for
the Bayer CFA (Figures 4 and 5), considering the differences in the sampling patterns. A notable
difference is that the linear interpolation is performed using the filter [1/4, 1/2, 3/4, 1, 3/4, 1/2, 1/4]
for the horizontal direction and the filter [1/4, 1/2, 3/4, 1, 3/4, 1/2, 1/4]T for the vertical direction.
The interpolation of the other four bands is performed in the progressive approach, as explained in
Section 4.2. For the five-band MSFA, three steps of Figure 8, in which the R interpolation is taken as an
example, are performed.

ARI of G

at R pixels

MSFA data Interpolated G

G

G R

G Or

G Cy

G B

G at R pixels

G at Or pixels

G at Cy pixels

G at B pixels

ARI of G

at Or pixels

ARI of G

at Cy pixels

ARI of G

at B pixels

Figure 7. Flow of the G interpolation for the five-band MSFA.

Interpolated RFirst step Second step Third step

Figure 8. Three steps of the R interpolation for the five-band MSFA.
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6. Experimental Results

6.1. Performance of Bayer Demosaicking Algorithms

To evaluate the performance of Bayer demosaicking algorithms, we used two standard color
image datasets, the IMAX and the Kodak datasets. These two datasets are used for the benchmark
comparison in the representative survey paper [4]. The IMAX dataset contains 18 images of size
500 × 500 pixels [40]. The Kodak dataset contains 12 images of size 768 × 512 pixels [4].

Our proposed ARI (Code available at http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html.) was
compared extensively with 29 algorithms that were briefly reviewed in Section 2. The source codes are
publicly available or executable at their authors’ websites. Only for IRI [11,12], we asked the authors
to send us the resulting images, because the source code is not publicly available. We used a default
set of parameters provided by the authors for the evaluation. DDR [15] and FR [15] have two sets
of parameters, in which each set is optimized for each dataset. To evaluate all algorithms under a
common parameter condition in both datasets, we selected a better set of parameters for DDR and FR
in terms of the average CPSNR performance on both datasets. We also included the previous version
of ARI (denoted as ARI (Previous)) [18] as a reference. We omit ten border pixels from the evaluation
to discount implementation errors in those pixels.

Table 1 summarizes the average PSNR and CPSNR performance. For the IMAX dataset, our
proposed ARI outperforms all existing algorithms in the CPSNR performance. The regression-based
algorithms based on training images, i.e., DDR and FR, follow ARI. The existing RI-based algorithms
such as MLRI and IRI, also offer reasonably high performance results.

Table 1. Average PSNR and CPSNR performance for the standard IMAX and Kodak datasets. The bold
typeface represents the best performance.

Algorithm
IMAX Kodak IMAX + Kodak

R G B CPSNR R G B CPSNR R G B CPSNR

AP [49] 32.91 35.15 32.37 33.27 39.99 43.24 39.69 40.69 35.74 38.39 35.30 36.24
PCSD [26] 34.61 38.10 33.44 34.90 39.61 41.62 39.13 39.98 36.61 39.51 35.72 36.94

SA [25] 32.73 34.73 32.10 32.98 39.99 43.37 39.55 40.65 35.63 38.18 35.08 36.05
AHD [27] 33.00 36.97 32.16 33.49 38.81 40.84 38.42 39.22 35.32 38.52 34.66 35.78

DLMMSE [28] 34.03 37.99 33.04 34.47 41.17 43.94 40.51 41.62 36.89 40.37 36.03 37.33
FD [45] 33.12 35.86 32.56 33.58 40.57 44.10 39.98 41.20 36.10 39.15 35.53 36.63

HEID [36] 31.63 34.40 31.26 32.16 40.44 43.73 39.88 41.02 35.16 38.13 34.71 35.70
VCD [29] 34.15 37.18 33.43 34.58 40.93 43.92 40.45 41.51 36.86 39.88 36.24 37.35
LPA [32] 34.36 37.88 33.30 34.72 41.66 44.46 41.00 42.12 37.28 40.51 36.38 37.68

DFPD [30] 33.80 37.21 33.00 34.27 40.26 42.54 39.86 40.72 36.39 39.34 35.74 36.85
WA [51] 33.25 36.81 32.61 33.82 40.68 43.41 40.29 41.24 36.22 39.45 35.68 36.79

HPHD [31] 35.33 39.39 34.30 35.73 40.55 42.28 39.97 40.82 37.42 40.55 36.57 37.77
SSD [39] 35.02 38.27 33.80 35.23 38.83 40.51 39.08 39.40 36.54 39.17 35.91 36.90
RAD [52] 33.46 37.15 33.28 34.26 39.74 43.81 40.06 40.83 35.97 39.82 35.99 36.89
LSSC [16] 36.03 38.84 34.73 36.17 42.42 45.79 41.64 42.93 38.59 41.62 37.49 38.87
GBTF [34] 33.98 37.34 33.07 34.38 41.74 44.84 41.04 42.23 37.09 40.34 36.25 37.52
OAP [50] 32.94 35.16 32.31 33.26 40.13 43.26 39.78 40.79 35.81 38.40 35.30 36.27
IGD [33] 34.33 37.38 33.46 34.70 41.72 44.85 41.10 42.26 37.29 40.37 36.51 37.72
NAT [40] 36.31 39.82 34.50 36.27 38.35 40.50 37.95 38.79 37.13 40.09 35.88 37.28
CS [43] 35.56 38.84 34.58 35.92 41.01 44.17 40.12 41.43 37.74 40.97 36.80 38.12
ESF [37] 33.45 36.36 32.67 33.83 41.48 44.81 40.84 42.04 36.66 39.74 35.94 37.11

MSG [35] 34.38 37.65 33.39 34.72 42.14 45.31 41.40 42.63 37.48 40.72 36.59 37.89
RI [8] 36.11 39.99 35.38 36.50 39.72 42.17 38.88 40.03 37.55 40.86 36.78 37.91

AICC [42] 35.41 39.11 34.00 35.60 41.52 44.60 41.03 42.09 37.86 41.30 36.81 38.20
ECC [13] 36.69 39.99 35.32 36.79 39.94 42.17 39.01 40.17 37.99 40.86 36.80 38.14

MLRI [10] 36.72 40.23 35.59 36.92 40.24 42.31 39.51 40.52 38.13 41.06 37.16 38.36
IRI [11] 36.62 40.28 35.79 36.98 40.27 43.48 39.72 40.85 38.08 41.56 37.36 38.53

DDR [15] 37.09 40.33 35.62 37.15 40.71 42.63 39.89 40.92 38.54 41.25 37.33 38.66
FR [15] 37.48 41.00 35.81 37.47 40.55 42.40 39.75 40.75 38.70 41.56 37.38 38.79

ARI (Previous) 37.37 40.68 36.05 37.49 40.87 43.75 40.25 41.37 38.77 41.91 37.73 39.04
ARI (Ours) 37.45 40.68 36.21 37.60 41.06 43.75 40.32 41.47 38.90 41.91 37.86 39.14

http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html
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For the Kodak dataset, the algorithm based on dictionary learning, i.e., LSSC [16], offers the best
performance. The interpolation-based algorithm with multiscale gradients, i.e., MSG [35], follows LSSC.
For the average of all images for both datasets, our proposed ARI improves IRI by approximately 0.6 dB
in CPSNR and outperforms all existing algorithms, including state-of-the-art algorithms based on
training images, such as LSSC and FR. Let us note that FR uses MLRI as a source of initial interpolation
to learn efficient regressors. Therefore, the integration of our proposed ARI into FR has the potential to
further improve the performance. Table 2 summarizes the average structural similarity (SSIM) [69]
performance, which demonstrates results similar to those of the PSNR performance in Table 1.

Table 2. Average structural similarity (SSIM) performance for the standard IMAX and Kodak datasets.
The bold typeface represents the best performance.

Algorithm
IMAX Kodak IMAX+Kodak

R G B Ave. R G B Ave. R G B Ave.

AP [49] 0.9237 0.9420 0.8860 0.9172 0.9845 0.9906 0.9822 0.9857 0.9480 0.9614 0.9245 0.9446
PCSD [26] 0.9397 0.9649 0.9040 0.9362 0.9782 0.9844 0.9753 0.9793 0.9551 0.9727 0.9325 0.9535

SA [25] 0.9200 0.9346 0.8780 0.9109 0.9844 0.9909 0.9816 0.9856 0.9458 0.9571 0.9195 0.9408
AHD [27] 0.9268 0.9614 0.8836 0.9239 0.9786 0.9854 0.9750 0.9796 0.9475 0.9710 0.9201 0.9462

DLMMSE [28] 0.9339 0.9647 0.8944 0.9310 0.9853 0.9913 0.9822 0.9863 0.9545 0.9753 0.9295 0.9531
FD [45] 0.9248 0.9481 0.8868 0.9199 0.9840 0.9919 0.9811 0.9856 0.9485 0.9656 0.9245 0.9462

HEID [36] 0.9043 0.9294 0.8615 0.8984 0.9855 0.9914 0.9827 0.9865 0.9368 0.9542 0.9100 0.9336
VCD [29] 0.9335 0.9570 0.9017 0.9307 0.9798 0.9864 0.9786 0.9816 0.9520 0.9688 0.9325 0.9511
LPA [32] 0.9402 0.9652 0.9021 0.9358 0.9876 0.9924 0.9848 0.9883 0.9592 0.9760 0.9352 0.9568

DFPD [30] 0.9352 0.9618 0.8983 0.9318 0.9842 0.9893 0.9816 0.9850 0.9548 0.9728 0.9316 0.9531
WA [51] 0.9272 0.9558 0.8875 0.9235 0.9858 0.9913 0.9835 0.9869 0.9506 0.9700 0.9259 0.9489

HPHD [31] 0.9488 0.9736 0.9188 0.9471 0.9822 0.9870 0.9790 0.9827 0.9621 0.9790 0.9429 0.9613
SSD [39] 0.9509 0.9730 0.9169 0.9469 0.9767 0.9826 0.9755 0.9783 0.9612 0.9768 0.9403 0.9595
RAD [52] 0.9288 0.9588 0.8997 0.9291 0.9834 0.9915 0.9825 0.9858 0.9506 0.9719 0.9328 0.9518
LSSC [16] 0.9555 0.9737 0.9278 0.9523 0.9882 0.9934 0.9845 0.9887 0.9686 0.9816 0.9504 0.9669
GBTF [34] 0.9370 0.9618 0.8986 0.9325 0.9876 0.9927 0.9848 0.9884 0.9572 0.9742 0.9331 0.9548
OAP [50] 0.9225 0.9418 0.8837 0.9160 0.9845 0.9906 0.9823 0.9858 0.9473 0.9614 0.9231 0.9439
IGD [33] 0.9406 0.9623 0.9054 0.9361 0.9874 0.9926 0.9847 0.9882 0.9594 0.9744 0.9371 0.9570
NAT [40] 0.9560 0.9749 0.9219 0.9510 0.9769 0.9841 0.9726 0.9779 0.9643 0.9786 0.9422 0.9617
CS [43] 0.9563 0.9755 0.9306 0.9541 0.9858 0.9915 0.9821 0.9864 0.9681 0.9819 0.9512 0.9671
ESF [37] 0.9326 0.9570 0.8935 0.9277 0.9869 0.9924 0.9843 0.9879 0.9543 0.9712 0.9298 0.9517

MSG [35] 0.9395 0.9630 0.9027 0.9351 0.9882 0.9931 0.9855 0.9889 0.9590 0.9751 0.9358 0.9566
RI [8] 0.9597 0.9797 0.9404 0.9599 0.9822 0.9886 0.9770 0.9826 0.9687 0.9833 0.9550 0.9690

AICC [42] 0.9586 0.9763 0.9288 0.9546 0.9866 0.9920 0.9841 0.9876 0.9698 0.9826 0.9509 0.9678
ECC [13] 0.9639 0.9797 0.9417 0.9618 0.9822 0.9886 0.9766 0.9825 0.9713 0.9833 0.9557 0.9701

MLRI [10] 0.9640 0.9811 0.9420 0.9624 0.9843 0.9888 0.9801 0.9844 0.9721 0.9842 0.9572 0.9712
IRI [11] 0.9634 0.9816 0.9430 0.9627 0.9832 0.9902 0.9791 0.9842 0.9713 0.9850 0.9575 0.9713

DDR [15] 0.9566 0.9752 0.9340 0.9553 0.9794 0.9831 0.9758 0.9794 0.9657 0.9784 0.9507 0.9649
FR [15] 0.9588 0.9768 0.9360 0.9572 0.9785 0.9823 0.9747 0.9785 0.9667 0.9790 0.9515 0.9657

ARI (Previous) 0.9666 0.9828 0.9434 0.9643 0.9832 0.9895 0.9791 0.9840 0.9733 0.9855 0.9577 0.9721
ARI (Ours) 0.9679 0.9828 0.9465 0.9657 0.9831 0.9895 0.9795 0.9840 0.9740 0.9855 0.9597 0.9730

Figure 9 shows the visual comparison of demosaicking results on the IMAX number 3 image.
In the figure, the results of the top nine algorithms, which offer average CPNR performance greater than
38 dB in Table 1, are shown. One can see that ARI can generate a high quality image without severe
zipper artifacts. FR also can generate a comparable result. Figure 10 shows the visual comparison of
demosaicking results on the Kodak number 12 image. One can see that ARI can reduce severe color
artifacts that appear in the results of existing algorithms other than LSSC. Both the numerical and
visual comparisons validate that our proposed ARI can achieve state-of-the-art performance for the
color image demosaicking with the Bayer CFA.



Sensors 2017, 17, 2787 14 of 21

IMAX number 3

Ground truth

MLRI [10]

LSSC [16]

IRI [11]

CS [43]

DDR [15]

AICC [42]

FR [15]

ECC [13]

ARI (Ours)

Figure 9. Visual comparison of the demosaicking results on the IMAX number 3 image. The results of
the top nine algorithms for the average CPSNR in Table 1 are shown.

Kodak number 12

Ground truth

MLRI [10]

LSSC [16]

IRI [11]

CS [43]

DDR [15]

AICC [42]

FR [15]

ECC [13]

ARI (Ours)

Figure 10. Visual comparison of the demosaicking results on the Kodak number 12 image. The results
of the top nine algorithms for the average CPSNR in Table 1 are shown.

Figure 11 shows the computational time versus CPSNR performance plot of state-of-the-art
algorithms, in which the average computational time of the IMAX and Kodak 30 images is measured
using a desktop PC (Intel Xeon CPU E5-1603 v3 2.80-GHz processor with 80-GB RAM). Note that the
computational time of IRI was extracted from [12] because the authors only provide result images,
and we cannot run IRI in our computation environment. The other algorithms were executed using
MATLAB R2016b. DDR and FR exploit parallelized implementation (four cores in our environment).
One can see that the computational time and the CPSNR performance are positively correlated.
IRI takes more time than RI because IRI iterates RI. ARI takes more time than IRI because ARI iterates
both RI and MLRI and combines them. The computational time of DDR and FR is between that of IRI
and that of ARI. Because each directional interpolation in Figure 4 can be parallelized, our future work
is to reduce the computation time of ARI with parallelized implementation.
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Figure 11. Computational time versus CPSNR performance plot of state-of-the-art algorithms, in which
IMAX and Kodak 30 images are used. The computational time is averaged for the 30 images.
Note that the computational time of IRI was extracted from [12] because IRI was not executable
in our computation environment. DDR and FR exploit parallelized implementation (four cores in
our environment).

6.2. Performance of Multispectral Demosaicking Algorithms

To evaluate the performance of multispectral demosaicking algorithms for the five-band MSFA of
Figure 1c, we conducted the same comparisons as performed in [58] and [7].

The first comparison was performed on the five-band image dataset used in [58]. The dataset
contains 16 scenes of size 1824 × 1368 pixels. The five-band images were mosaicked according
to the five-band MSFA of Figure 1c and demosaicked using compared demosaicking algorithms.
Our proposed ARI (Code available at http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata.html.) was
compared with four existing algorithms, BTES [55], AKU [56], GF [57] and RI [58]. The RI algorithm is
one of the current state-of-the-art algorithms. We evaluated the PSNR performance of the five-band
images and the PSNR and the CIEDE2000 [70] performance of the standard RGB (sRGB) images. The
sRGB images were generated from the five-band images using a calibrated color transformation matrix
from the five bands to the sRGB.

Table 3 shows the average PSNR and CIEDE2000 performance of all 16 scenes. One can see
that ARI outperforms all existing algorithms in the numerical evaluation. Figure 12 shows visual
comparisons of the demosaicking results for the Or and the Cy band images. One can see that ARI can
sharply generate the images without the severe zipper artifacts and blurring that appear in the results
of the existing algorithms.

Table 3. Average PSNR and CIEDE2000 [70] performance of all 16 scenes in the five-band dataset. The
bold typeface represents the best performance.

Algorithm
PSNR

CIEDE2000R Or G Cy B s R sG sB

BTES [55] 49.38 45.00 48.60 42.78 44.93 34.46 42.95 36.36 2.91
AKU [56] 52.19 47.80 48.78 45.38 48.06 38.14 44.20 39.53 2.34
GF [57] 53.12 51.06 49.61 47.94 48.89 40.75 45.73 40.51 2.06
RI [58] 54.93 52.31 51.08 49.42 49.86 42.49 47.19 41.26 1.88

ARI (Ours) 55.45 52.81 51.63 49.82 50.15 43.00 47.74 41.52 1.79

http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata.html
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sRGB Ground truth Or BTES [55] AKU [56] GF [57] RI [58] ARI (Ours)

sRGB Ground truth Cy BTES [55] AKU [56] GF [57] RI [58] ARI (Ours)

Figure 12. Visual comparisons of the demosaicking results on the five-band image dataset.

The second comparison was performed on three 31-band multispectral image datasets, the CAVE [66],
the TokyoTech [7] and the NUS [71] datasets. The CAVE and the TokyoTech datasets were captured
using a monochrome camera with a liquid crystal tunable filter [72]. The NUS dataset was captured
using a Specim’s hyperspectral camera (http://www.specim.fi/products/pfd-65-v10e/). The CAVE
dataset contains 32 scenes of size 512 × 512 pixels. The TokyoTech dataset contains 30 scenes of size
500 × 500 pixels. The NUS dataset contains 66 scenes (training 41 scenes and testing 25 scenes for
the purpose of [71]) of different pixel resolutions. In the NUS dataset, we used the testing 25 scenes
for evaluation.

Figure 13 shows the flow of experimental comparison using the 31-band datasets. As shown in
the bottom row of Figure 13, ground truth sRGB images were simulated from the 31-band images
based on the XYZ color matching functions and the XYZ-to-sRGB transformation matrix with a correct
white point. As shown in the top row of Figure 13, ground truth five-band images were simulated from
the 31-band images using the spectral sensitivity of the five-band MSFA as described in [7]. To generate
the five-band images, we used the CIE D65 illumination for the CAVE and the TokyoTech datasets.
For the NUS dataset, we used given illumination spectrum for each scene. Then, the ground truth
five-band images were mosaicked according to the five-band MSFA of Figure 1c and demosaicked
using compared demosaicking algorithms. Finally, the demosaicked five-band images were converted
to sRGB images using a linear model-based spectral reflectance (31-band image) estimation [73] and a
rendering process from the spectrum to the sRGB with the XYZ color matching functions. The ground
truth and the estimated images were compared in the five-band and the sRGB domains. Our proposed
ARI was compared with three existing algorithms, BTES [55], GF [7] and RI [58]. We evaluated the
PSNR performance of the five-band images and PSNR, CPSNR, DeltaE (Euclidean distance in the CIE
Lab space) and CIEDE2000 performance of the sRGB images.

31-band

image

Five-band 

sensitivity

functions

Mosaicking Demosaicking
Spectral 

estimation

Estimated

sRGB

image

Estimated

31-band

image
Color matching functions and 

XYZ to sRGB transformation

Ground-truth

five-band image

Estimated

five-band image

Ground-truth

sRGB

image

Color matching functions and 

XYZ to sRGB transformation
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Figure 13. Flow of experimental comparison using 31-band multispectral datasets.
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Table 4 presents a summary of numerical performance. One can see that ARI generally
outperforms the existing algorithms and yields results with lower colorimetric errors. Figure 14
shows visual comparisons of the demosaicking results for the R band image of the CAVE dataset, the B
band image of the TokyoTech dataset and the Or band image of the NUS dataset. One can see that ARI
can significantly reduce the zipper artifacts that are apparent in the results of the existing algorithms.
Both the numerical and visual comparisons validate that our proposed ARI can achieve state-of-the-art
performance for the task of multispectral image demosaicking. As demonstrated in the above results,
our proposed ARI is very effective when (i) one of spectral channels has a higher sampling density and
(ii) each spectral channel is regularly sampled in horizontal/vertical directions or diagonal directions.

sRGB (CAVE) Ground truth R BTES [55] GF [7] RI [58] ARI (Ours)

sRGB (TokyoTech) Ground truth B BTES [55] GF [7] RI [58] ARI (Ours)

sRGB (NUS) Ground truth Or BTES [55] GF [7] RI [58] ARI (Ours)

Figure 14. Visual comparisons of the demosaicking results on CAVE, TokyoTech and NUS datasets.

Table 4. Average PSNR, CPSNR, DeltaE and CIEDE2000 [70] performance on the CAVE, TokyoTech
and NUS datasets. The bold typeface represents the best performance.

Light Dataset Algorithm PSNR
R

PSNR
Or

PSNR
G

PSNR
Cy

PSNR
B

5band
PSNR
Ave.

sRGB
PSNR
Ave.

CPSNR DeltaE CIEDE
2000

D65 CAVE

BTES [55] 42.60 39.41 46.54 37.83 40.46 41.37 36.94 35.81 2.85 3.81
GF [7] 45.36 44.76 48.06 44.68 43.96 45.36 40.00 39.38 2.35 3.09
RI [58] 46.21 46.22 49.77 45.84 45.92 46.79 40.76 40.07 2.38 3.19

ARI (Ours) 47.04 46.65 49.66 45.82 46.48 47.13 40.84 40.18 2.33 3.12

D65 TokyoTech

BTES [55] 38.27 37.05 45.51 36.34 39.11 39.26 35.58 34.28 2.07 2.58
GF [7] 43.82 43.28 46.57 42.92 43.62 44.04 39.00 38.07 1.56 1.88
RI [58] 44.59 44.96 48.23 44.39 44.90 45.41 40.08 39.03 1.46 1.74

ARI (Ours) 45.65 45.82 48.84 45.16 46.05 46.30 40.63 39.63 1.36 1.63

Given NUS

BTES [55] 49.36 46.41 58.06 51.72 55.81 52.27 39.10 36.39 1.73 2.87
GF [7] 52.36 51.46 56.90 57.01 56.51 54.85 40.11 37.40 1.68 2.78
RI [58] 53.77 53.22 59.35 57.96 57.98 56.46 40.47 37.72 1.65 2.73

ARI (Ours) 54.79 54.07 59.52 58.36 58.60 57.07 40.57 37.82 1.63 2.71

7. Conclusions

In this paper, we proposed a novel algorithm for both color and multispectral image demosaicking.
Our proposed algorithm is based on a new interpolation technique called ARI that improves existing
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RI-based algorithms by the adaptive combination of two RI-based algorithms and the adaptive selection
of a suitable iteration number at each pixel. Experimental comparisons using standard color image
datasets demonstrated that ARI can improve existing RI-based algorithms by approximately 0.6 dB
in CPSNR performance and can outperform state-of-the-art algorithms based on training images.
Experimental comparisons using multispectral image datasets demonstrated that ARI can achieve
state-of-the-art performance also for the task of multispectral image demosaicking.
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