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Abstract: Intelligent Transportation Systems (ITSs) can be applied to inform and incentivize
travellers to help them make cognizant choices concerning their trip routes and transport modality
use for their daily travel whilst achieving more sustainable societal and transport authority
goals. However, in practice, it is challenging for an ITS to enable incentive generation that is
context-driven and personalized, whilst supporting multi-dimensional travel goals. This is because
an ITS has to address the situation where different travellers have different travel preferences
and constraints for route and modality, in the face of dynamically-varying traffic conditions.
Furthermore, personalized incentive generation also needs to dynamically achieve different travel
goals from multiple travellers, in the face of their conducts being a mix of both competitive and
cooperative behaviours. To address this challenge, a Rule-based Incentive Framework (RIF) is
proposed in this paper that utilizes both decision tree and evolutionary game theory to process travel
information and intelligently generate personalized incentives for travellers. The travel information
processed includes travellers’ mobile patterns, travellers” modality preferences and route traffic
volume information. A series of MATLAB simulations of RIF was undertaken to validate RIF to show
that it is potentially an effective way to incentivize travellers to change travel routes and modalities
as an essential smart city service.

Keywords: intelligent transportation system; incentive; evolutionary game theory; decision tree

1. Introduction

If we are to achieve more beneficial and cohesive personal, business and societal goals, in the face
of increasing global challenges such as an increasing sedentary lifestyle for citizens, the promotion of
physical environment sustainability, a reduction in poverty, better physical and social living conditions,
etc., we need to change our behaviour and consider how to do this more effectively. One plausible
approach to achieve this is to consider incentivizing behaviour shifts. An incentive is something that
motivates us as society members to select and perform specific actions, usually to achieve beneficial
personal, business and societal goals. As our application and focus are on the use of transport as an
action, we consider how incentives can beneficially improve the use of transport.

A lack of exercise is a major cause of heart disease [1]; hence, a good example of a personal
transport incentive is to choose how to use human-powered transport between home and work more
effectively. For example, in a study in Australia, men who cycled to work were found to be significantly
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less likely to be overweight and obese compared with those driving to work [2]. A common use of
incentives in business is to facilitate economic gain by an individual or via competition or cooperation
within an organization. To help improve the attainment of organization goals, such as increased
productivity, prizes of pre-paid travel for MICE (meetings, incentives, conferences and exhibitions)
in an exotic location can be offered [3]. A beneficial transport incentive for society is to promote the
use of off-peak travel and hence to lower the peak air quality and high-carbon emissions pertaining
to peak-time commuting [4]. Whilst many aspects of transport use are predictive or deterministic
in nature in terms of being circadian or daily, weekly and seasonally driven, some transport use
characteristics may be more dynamic and less temporally deterministic, e.g., road traffic congestion
can be more effectively modelled if we handle not just the deterministic temporal aspect, but also
the non-deterministic temporal aspects [5]. These time-driven aspects begin already to illustrate
the need for a multi-dimensional, context-driven, individualized or personalized, design for travel
incentives. We can also consider that a higher daily travel cost for peak-time public transport coupled
with over-crowding versus a lower daily cost for off-peak travel with less crowding can be perceived
as both a penalizing incentive for using peak travel versus a reward incentive for using off-peak travel.

Hence, one of the challenges when designing incentives for off-peak versus peak travel is how to
effectively leverage the use of the temporal context when organizing travel. There are several additional
dimensions that need to be considered when designing incentives. Different travellers have different
(personal) preference restrictions based on their location context that affect their dominant transport
mode use, e.g., numerous studies have demonstrated that living in higher density, mixed transport
use neighbourhoods is associated with less car use compared to living in low density, suburban
environments [6]. Hence, offering a global, or the same incentive, to each participant, e.g., to maximize
the use of public transport to reach an end destination, by the shortest time and at an affordable cost
appears disadvantageous for rural travellers. Often, the goal to reach an end destination is to travel by
the shortest time at an affordable cost. If we consider the effectiveness of personalized travel incentives
in isolation, and to be static, new secondary-order effects can arise, i.e., the increased demand for
the use of inexpensive public travel routes with respect to time and location may lead to additional
overcrowding at specific times and locations because the service supply resources cannot meet the
demand [7]. Thus, we need to also consider the cooperative and competitive behaviours of travellers
as a collective when proposing travel incentives, else new, second-order less desirable norms could
arise such as overcrowding on certain peak travel routes that may violate some travellers’ personal
preferences to use these even though societal sustainable travel goals are achieved. The authors in [3]
have noted that for the area of incentivized travel, it is particularly lacking in academic research
and remains without a strong theoretical foundation. One promising approach to achieve a balance
between multiple goal dimensions taking into account group participants” behaviour is to model the
use of transport using game theory and machine learning methods.

Numerous Intelligent Transport Systems (ITS) have been researched and developed that support
that personalized travel plans is advantageous. For example, common personalization preferences are
to choose the start and end destination, the transport mode and for route and destination information
to be adapted and to be presented in this way according to these preferences [8,9]. However, it is
challenging to design incentives to shift travellers” behaviours, for example to use more sustainable
transport, away from their preconceived or default transport usage. For example, if by default we
offer the same universal or global incentive to shift their use of their habitual travel plan to use more
sustainable transport modes, some travellers may feel less inclined to do so because of their temporal,
local or personal constraints and preferences. This is a complex problem. We also often tend to have
more than one personal transport use goal [10], so we need to consider how we need to more effectively
design multi-dimensional incentives, e.g., ones that use multiple modes and that are context driven,
as well as personalized ones with respect to travellers’ preferences and location and the real-time
travel situation.
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There exists numbers of ITSs designed as part of the smart city initiative to incentivize travellers to
use efficient and eco-friendly transportation [11]. However, when generating incentives for travellers,
few ITSs take individual travellers’ preferences and incentive multi-dimensional goals into consideration.
Some ITSs simply broadcast traffic signals, state information or non-personalized travel guidance to
travellers [12]. Some systems, such as the Advanced Traveller Information Systems [13] and Cooperative
Multi-agent Transportation Management and Route Guidance System [14], were proposed to meet the
incentive challenge. However, in [13,14], the incentives are mostly based on traffic state information,
and the authors did not fully take travellers’ preferences combined with traffic state information into
consideration to achieve multi-dimensional travel goals. To the best of our knowledge, little or no work
has been undertaken within ITS to generate personalized, situation-aware travel incentives that also
model and account for social or group behaviour.

The use of machine learning and game theory has been proposed as a promising candidate
to solve the computing intelligence and multi-dimensional goal problem [15,16]. Following this
trend, we designed a Rule-based Incentive Framework (RIF) to intelligently generate context-driven
incentives for travellers, while considering the multi-dimensional goals. RIF supports personal
incentives through the use of the Iterative Dichotomiser 3 (ID3) algorithm [15] as its classical machine
learning-based decision tree algorithm and evolutionary game theory [17] as its game theory method.
Through the generation of personalized incentives, RIF can intelligently and efficiently re-allocate
traffic route capacity over time and space while adhering to any individual traveller’s preferences for
transport modality and route, according to multi-dimensional incentive goals. RIF utilizes personal
mobility patterns [4], traffic volume information and traveller’s modality preferences as three of the
main sources of real-time inputs for the utility calculations and the decision tree-related processing.
In summary, the primary contributions of this paper are to:

1. Propose a rule-based incentive framework to solve the personalized context-driven incentive
problem, whilst achieving personalized travel preference, travel efficiency and eco-friendly global
transportation as the multi-dimensional goals.

2. Apply the decision tree as a machine learning algorithm to help generate personal incentives for
travellers in RIF, in part based on the historical travel information.

3. Apply Population Evolution (PE) theory as a classic evolutionary game theory to address the
personal incentive problem in RIF. By PE, the best fit personal incentives are generated for
travellers based on the output of the Analytic Hierarchy Process (AHP) and the comparisons of
the incentive utilities.

4. Provide a theoretical and numerical analysis and comparisons of the decision tree and population
evolution-based incentive solutions in RIF.

The remainder of this paper is organized as follows. In Section 2, we give the background and
related work. In Section 3, we describe the problem formulation. In Sections 4 and 5, we present the
RIF based on the use of the decision tree and PE to solve the personal incentive problem. In Section 6,
we discuss and analyse the pros and cons of using the decision tree and PE methods. Our simulation
results are presented in Section 7. In Section 8, we present our conclusions and future work.

2. Background and Related Work

2.1. The Context-Driven and Multi-Dimensional Incentives for ITS

In practice, an efficient travel incentive is context-driven, situation-aware and personalized.
In this paper, we specify incentives that propose travel route and modality changes to travellers at
specific time points. Travel route and modality can be chosen by a traveller based on a traveller’s
personal preferences and route real-time volume information. For example, a traveller’s preference for
a travel route may be a combination of the shortest, fastest and picturesqueness route [18]. Meanwhile,
a traveller’s preference for travel modality could be car or bus, etc. Furthermore, personal preferences
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may change on-route and need to be dynamic. Therefore, it is a complex challenge to generate effective
incentives for travellers in an ITS.

From the travellers’ perspective, an incentive can be classified as a reward incentive or a penalty
incentive [4]. A reward incentive intends to change traveller’s traffic behaviours through a positive
stimulation either physically or psychologically. For example, SUNSET: a sustainable social networking
sevices for transport in Europe [4], INSINC: a platform for managing peak demand in public transit in
Singapore [19] and INSTANT: an incentive mechanism for decongesting the roads in Bangalore [20]
all employ reward incentives. All of these projects offer travellers rewards (reward points, cash,
gifts or traffic ticket discounts) when they finish travel challenges or goals, such as taking trains
pre-peak time and changing the route to avoid congestion. For penalty incentives, traffic managers can
issue congestion tax, fuel tax and use tolls to reduce traffic congestion and to achieve a designated
modality bias. In reality, penalty incentives appear relatively easy to realize and are widely used, e.g.,
to use higher peak time versus far lower off-peak travel fares, whilst the use of reward incentives
seems to date to be somewhat still in its infancy [21].

With respect to their issue conditions, incentives can be classified into proactive incentives and
reactive ones [4]. A proactive incentive is designed to influence travellers’ behaviours before their traffic
activity happens. In contrast, a reactive incentive is designed to influence travellers’ behaviours during
their journey. To aid travellers to satisfy their individual goals and to meet global societal goals such as
reducing traffic congestion, we focus on the design of incentives to be proactive and reward based.
An incentive is linked to transport use or selection, e.g., to the use of a specific route and transport mode
at a specific time point. To promote a reward-type incentive, projects such as SUNSET, INSINC and
INSTANT grant points or gifts to travellers, if they accept the incentives. Similarly, the authors in [22]
considered the incentives to be offered to location-tracked private car users to change their departure
time during daily commute in order to reduce congestion and their travel time. In [23], they considered
personalized incentives provision in a multimodal transport system based on the travellers with eight
attitudinal profiles to change their route to a less congested one, where users” smartphones act as
mobile sensors and message distributors. In [24], they looked at what monetary incentives would
cause commuters to change their daily commute in San Francisco, CA, USA. The authors in [25]
considered the application of gamification to get more users to switch to use more sustainable travel
options. None of this work considers how one person’s travel strategy is dependent on the strategic
travel choices of others, i.e., the application of game theory. Without this, new, less optimal overall
system states can more easily arise, such as congestion on previously un-congested routes.

2.2. Decision Tree

Decision trees have been comprehensively studied in [26] and further applied to solve a variety
of ITS problems [27-29]. In theory, a decision tree can effectively help RIF to support personalized
incentives, i.e., to find a best fit discrete function for a Decision Support System (DSS). The discrete
function can be expressed in the form of a tree using a conjunction and disjunction mixed formula.
Using a discrete function, a specific decision making problem can be solved according to its input
parameters. To the best of our knowledge, there is no current work that investigates the application
of a decision tree to model and solve the personalized travel problem. In this paper, we apply the
decision tree as part of RIF to model personalized travel incentives according to travellers” historical
travel information.

In practice, many currently-used decision tree algorithms tend to be variants of the ID3 algorithm,
which is a classic algorithm, as proposed in [26]. By learning travellers” historical sample data,
ID3 constructs a top-down decision tree, i.e., a discrete function, by evaluating which criterion is the
best one to be put at a specific node in the decision tree to work as the decisional criterion. In Section 4,
the ID3 algorithm will be applied to help solve the personal incentive problem.
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2.3. Game Theory Used for ITS

Although a machine learning algorithm such as a decision tree can help solve the personalized
incentive problem, it heavily depends on the amount of historical travel data and uses complex
computation processes, which may cause performance bottlenecks. Fortunately, game theory provides
a better alternative solution. In practice, although game theory and gamification may be used
interchangeably, these are not the same thing. Game theory analyses strategic situations where
one person’s strategy is dependent on the strategic choices of others, e.g., the classic Prisoner’s
dilemma. In contrast, gamification uses game play mechanics to get people more involved in an
activity and for example uses rewards to encourage particular behaviours. Our focus is on the
application of game theory rather than gamification applied to ITS. Game theory provides a powerful
means for an ITS, by which it can act on behalf of travellers and perform a negotiation between
travellers. Specifically, by game theory, a traveller or his/her travel agency can learn and manage
his/her optimum strategy by observing the actions of other travellers, leading to an equilibrium
state where most of the travellers receive a maximum possible payoff. Game theory has been
comprehensively studied in [16,30]. Based on the survey, games can be classified into different
types such as: non-cooperative and cooperative games. In [31-33], classic game theories, including
Nash equilibrium and Stackelberg equilibrium, have been applied to transportation management,
normally in a non-cooperative approach, which focuses on the benefits of individual travellers or
traffic agents. However, because all travellers as game players are selfish, it is difficult for classic
games to find a systematic transportation optimization that can benefit not only a single traveller,
but also the global transportation goals, such as reducing congestion in a region, maximizing public
transportation use and energy efficiency, etc. In [34], cooperative game theories have been discussed
including stochastic games (Q-learning) and evolutionary games in order to avoid a non-optimal traffic
equilibrium. Compared to classic games, evolutionary game theory [35] applies principles in evolving
populations of life forms in biology to fields such as the economy, network engineering and social
sciences. Evolutionary game theory can easily find an optimization that guarantees each player’s
payoffs to reach a global optimal equilibrium. Thus, evolutionary game theory potentially is more
able to help ITSs to realize sustainable transportation in smart cities. Conversely, little work has so far
applied evolutionary game theory to enable incentive-based ITSs.

In this paper, we propose to employ a well-known evolutionary game theory, more specifically
Population Evolution (PE) [17], coupled with an Analytic Hierarchy Process (AHP) [36] method to
help make real-time incentive decisions in RIF. With PE, the personal incentives can be generated for
travellers based on the outputs of AHP and the comparison of real-time incentive utilities (i.e., payoffs).
In theory, a PE-based incentive solution could give a better performance compared to a decision tree.
This will be discussed in the analysis part of this paper.

2.4. Population Evolution

PE is a well-known evolutionary game theory, which has been applied in various fields.
For example in [17,37,38], the authors utilized PE to solve a network selection and an adaptive
routing issue. PE basically simulates the population growth of species, such as travellers of a
route, in a physical region. It follows in principle that if there are more resources (a higher utility),
the population will grow (as more individuals join). Equation (1) is used to formulate this principle.

5§ = o xaf x (Uf - ) ¥

Equation (1) indicates that for each period, the individuals observe the overall utility of choosing
strategy k, ll;f in group g, and the average utility of the entire population, Ug in group g. In the next
step, xf as the utility of an individual choosing strategy k is adapted for xf accordingly. The higher
the utility of strategy k, the more individuals will choose it in the group. A strategy k could be for
leaving this group versus staying in the group or for joining the group. The utility adaptation is carried
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out with the help of replicator dynamics where ¢ is the gain for the rate of strategy adaptation. It is
obvious that PE is normally used for decision making based on utility comparisons.

PE is applicable to the personal incentive problem of this paper. This is because we can take
an incentive with related traffic route and modality as a block of traffic resources. For an incentive,
its related traffic route can handle a number of travellers” use of transportation modalities. If the
route is less congested for travellers using one kind of modality, it supports an incentive with a high
utility to persuade more travellers to join this route using that modality. This incentive principle can
be modelled by Equation (1). In Section 5, we will apply PE to solve the personal incentive problem
coupled with the use of the AHP method.

3. Problem Formulation

3.1. User Scenario and Incentive

In this paper, we introduce a typical user scenario for RIF to work with, which is shown in Figure 1.
Then, the problem formulation is presented based on this scenario. In Figure 1, there are two traffic
points A and B connected by N candidate routes grouped as V' = 1,2, ..., N. Travellers at one time can
travel in one of the routes from group N using one of the M possible modalities, e.g., foot, cycle, car,
bus, etc., from group M = 1,2, ..., M. For a travel route i, its traffic volume is composed of its incoming
travellers and existing traffic V;, and the maximal capacity of the route i is denoted as V;""**. In practice,
through RIF, a traveller ¢ with specific travel route and modality preferences could compete for the
available capacity resources within the candidate routes from A while using a specific modality from
M between traffic points A and B.

Lj=@)vie NvjeM
Lyj=@)VjeEM
N =12,..,N

M =12,..,.M

Lj=@)vjeM

Figure 1. Rule-based Incentive Framework (RIF) model: travellers competing to select incentives
between two traffic points.

According to the user scenario shown in Figure 1, RIF should work as an intelligent traffic
instructor for the travellers between traffic points A and B. In this paper, RIF shapes a series of
incentives issued to travellers to suggest to them a less congested route and a better modality to
save travel time, cost and pollution. In order to do so, RIF has to consider travellers” preferences
and real-time traffic situations, which will be summarized as incentive criteria later. Two important
incentive design issues are first when and under what conditions will RIF shape and issue incentives to
travellers and, second, what real-time traffic information is available to travellers. As discussed before,
the incentive considered in this paper is of the proactive type. Therefore, RIF will shape incentives to
those travellers when they start travelling from traffic point A to B (or from B to A) at a designated
time point. Of course, there are other cases where incentives could be shaped and issued to travellers
either proactively or reactively in a temporary or un-predictable manner, like a route change becomes
more preferable than sticking with a problematic route. In order to illustrate the use of RIF, we consider
the case given in Figure 1.
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Accordingly, we use I;; = (i, ), Vi € N,Vj € M to denote the incentives to be issued to travellers
in RIF. An incentive [;; suggests its recipient traveller to travel through route i by modality j between
traffic points A and B at a specific time point. Obviously, for a specific route k, its involved incentives
could be Iy; = (k,j),Vj € M. The objective of RIF therefore is to guide any traveller ¢, grouped as
T =1,2,..., T, to find his/her best fit incentive Iij between traffic points A and B following certain
incentive criteria at a time. We use a;;; to denote whether an incentive [;; is issued to traveller # (ay;; = 1)
or not (a4;; = 0) in RIF. Therefore, & = [wtij]T. N-M is the output that RIF tries to reach. In this paper, we
think about the personal incentive issuing at a specific, i.e., static time point, therefore, in rest part of
this paper, we will not mention time any more.

3.2. Incentive Criteria and Weighting

When RIF generates incentives to travellers, the incentive criteria under consideration in this
paper include:

1. Atraveller’s preference for a route that indicates the traveller’s willingness to take up a suggestion
for an alternative route.

2. A traveller’s preference for a modality that indicates the traveller’s willingness to take up a
suggestion for an alternative modality.

3. Current route traffic volume that determines whether a traveller is in congested traffic or not.

Such incentive criteria, i.e., travel route, modality and traffic volume, were selected with the aim to
balance between the need for guiding traffic travellers to select other travel options (route and modality)
in the event of congestion while maintaining the overall traveller satisfaction. If a traveller has a high
willingness to change travel route or modality, a suggestion to change the route will not adversely
affect the traveller’s satisfaction. On the other hand, suggesting a change to less willing travellers
will lower their satisfaction. In reality, travellers can be provided with a smartphone application or
related device that tracks their personal mobility and travel patterns. For instance, the system can
gain an insight into one traveller’s personal mobility profile by referring to the traveller’s frequent
locations, habitual routes and modalities. In addition, the system can acquire personal preferences from
a traveller, such as one’s modality and route preferences and his/her tolerance towards congestion,
using an appropriate Human-Computer Interaction (HCI) design, such as a questionnaire. In practice,
measurements of traffic volume can be taken in real time using appropriate sensors such as inductive
loop detectors under the road surface at traffic lights. For traffic that exhibits daily, seasonal or other
patterns, historical data can be analysed to provide short-term traffic predictions.

To solve the personal incentive problem, we can weight each criteria to represent the importance of
a criterion to a traveller, which is according to the sensitivity of the traveller to the criterion using AHP.
AHP is a methodology that has been widely used for complex decision support in different fields such
as government, business, industry, healthcare and education [36]. In this paper, the incentive-related
decision making can be a very complex process, particularly when a number of dependent elements,
i.e., criteria, including travel route, modality and route volume, are involved. These elements are
dependent because they are co-related highly in transportation model. For example, there might not
be a public transport route between the origin and destination, so no bus modality is associated with a
specific route. Same goes for volume and modality, etc. In practice, it is complicated and difficult to
make correct incentive decisions considering the dependent elements, even when these elements in
ITS are tangible, carefully estimated, and well understood for the personal incentive problem at hand.
As each element has a different influence on the final incentive decision, there is no absolute or correct
personal incentive decision. Fortunately, AHP can help the personal incentive decision making to find
one that best suits the ITS goal and the problem involved.

According to AHP, whether an incentive decision is suitable or not to the problem is reflected
by the incentive utility with respect to the weight of each incentive element and the historical and
real-time sensor readings for each elements from travellers’ previous and current trips. Here, we first
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apply AHP to weight the incentive element, i.e., criteria, then calculate the incentive utility based on
those weights. Using the reasonable weights calculated by AHP, the contributions of each element to
the final decision, made by utility comparisons, can be rationally modelled.

To apply AHP to weight the incentive criteria, the process is closely related to travellers’ sensitivity
to a criterion. Specifically, if a traveller is highly sensitive to a criterion, e.g., traffic route, then this
means that this traveller has a strong preference on his/her habitual choice with respect to this criterion,
i.e., a strong preference for his/her habitual route. We measure the sensitivity of a traveller to a criterion
by using a commonly-used scale between one and nine, where ‘1’ indicates the lowest sensitivity and ‘9’
is the highest [17,38]. Table 1 gives the sensitivity measurements based on whether any traveller from
T is sensitive to each of the criteria or not as listed in Table 2. According to Table 1, the sensitivity of
the emphasized criterion, such as “travel modality” for Travellers 1, 3, T in Table 2, is rated within the
scale between six and nine and the sensitivity of a less-emphasized criterion, such as “travel volume”,
for Travellers 1, 3 in Table 2 is rated within the scale between one and five.

Table 1. Travellers’ sensitivity measurements.

Travellers’ Sensitivity Measurements

Criteria
Traveller1 Traveller2 Traveller3 .. Travellert .. TravellerT
Travel Route 6 4
Traffic Volume 1 7
Travel Modality 9 2 8 5 7
Table 2. Is a traveller sensitive to a criterion?
Traveller Sensitive to Each Criterion?
Criteria
Traveller1 Traveller2 Traveller3 .. Travellert .. TravellerT
Travel Route Yes No Yes Yes No
Traffic Volume No Yes No Yes Yes
Travel Modality Yes No Yes No Yes

Based on the scaled sensitivity of a traveller to a criterion, pairwise comparisons are carried out
between all pairs of criteria for each traveller to evaluate the relative importance of one criterion over
another to the traveller. For example, considering traveller ¢, the pairwise comparisons result in a
square matrix ¢ of 3 X 3, where c;; denotes the pair comparison between criteria i and j as shown in
Equation (2).

11 €12 €13 6/6 6/7 6/5
c=|cp1 €2 C3|=1|7/6 7/7 7/5 2)
€31 €32 €33 5/6 5/7 5/5

Based on Equation (2), for the given traveller t, the eigenvector for each criterion, say criterion k,
can be calculated using the geometric mean method as:

e = %/(Ck,l X Ca X Ck,3)/ k=1,2,3; (3)

According to Equation (3), the normalization of ¢, will determine wf as the weight of criterion
k for the traveller t, which is formulated as:

k Ck
wif = —4—, k=1,2,3;
t Z£:l ex (4)
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3.3. Incentive Utility and Optimization Problem

On the historical and real-time data of travellers and the weights of incentive criteria, we define
the utility of a traveller t choosing an incentive [;; as:

Ryj Vi | . ,
+wfRT;x + @i (1= ) 1EN, JEM; (5)
]

Wl Ryi
t Rmax
t

Uyij =

where Ry; is the historical times traveller t travels through route i and R}** is the maximal times of
a traveller in group 7 travelling through one route in group A. R;; is the historical time of traveller
t taking modality j, and R?]?”x is the maximal times of a traveller in group 7 taking one modality in
group M. V; is the existing traffic volume of route i, and V""** is the maximal traffic volume out of
all the candidate routes. The utility formulated in Equation (5) denotes that if a traveller receives
an incentive suggesting a less congested route or their habitual route or modality, the utility of this
incentive to the traveller will be relatively high.

The optimization problem in this paper therefore is to maximize the overall incentive utilities of
all the travellers in 7, which is formulated as:

T N M
max
P YN ) - Uy (6)
& i=imj=
T M
s.t. (Z Z Atj + Vz) < Vl-max,Vi eN (7)

t=1j=

—
—_

where P is subject to the fact that the traffic volume of each route should not exceed its maximal
allowed capacity, e.g., V""", as formulated in Equation (7).

4. The Decision Tree Method

The ID3 algorithm as the classical decision tree algorithm can help travellers make incentive-based
decisions more effectively and solve problem P. ID3 carries out a data mining-based training using
objective travellers” historical sample data to learn a pattern as the output. The pattern could reflect
travellers” common sense behaviours. The learnt pattern is denoted as an incentive decision tree in
this paper, which therefore answers the question in which case a traveller tends to be prone to select a
specific incentive. With the incentive decision tree, any traveller can easily make his/her incentive
decision according to his/her future adopted values of related incentive criteria. The usability of the
incentive decision tree is highly related to the design of ID3 and the historical sample data of all the
objective travellers used in the training.

4.1. Entropy and Information Gain Used in ID3

The key problem here is how ID3 builds the incentive decision tree by learning the pattern
incentive issued to a traveller, which is indirectly reflected by the sample data. To solve the problem,
ID3 utilizes the entropy of the groups and sub-groups of sample data and the information gains
of incentive criteria to decide which criterion to be put at a specific node to work as the decisional
criterion to classify sample data in the incentive decision tree. ID3 will successfully build the decision
tree after all the branches of each incentive criteria have been considered and the sample data have
been classified into a number of relative consistent sub-groups by these incentive criteria.

In order to explain this methodology, we present Table 3 with examples of the sample data
of travellers, which have route, modality and route volume as the incentive criteria and travellers’
co-related historical decisions (i.e., to travel or not) as the labels. As an example, in Table 3, we define
that the route criterion has three candidate routes, i.e., Routes 1, 2, 3 as the optional values, the modality
criterion has three modalities, i.e., car, bus and bike as the optional values, and the route volume
criterion has three states, i.e., sparse, medium and congest as the optional values. Accordingly, for the
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problem formulation given earlier, each criterion in Table 3 could have somewhat more optional values
in practice. However, in order to explain how ID3 helps travellers to make an incentive decision in a
relatively simple manner, we only need to consider those limited numbers of optional values as shown
in Table 3.

Table 3. The sample data of travellers (grouped as S) applied in the ID3 algorithm.

Incentive Criteria
Samples Travel or Not?
Traffic Volume Traffic Modality Traffic Route

S1 sparse car route 1 Yes
S2 medium bus route 3 No
S3 medium bike route 2 Yes
S4 sparse car route 3 No
S5 medium bus route 2 Yes
S6 congest car route 3 No
S7 sparse car route 2 Yes
S8 medium bus route 3 Yes
S9 congest bike route 1 No
510 sparse car route 1 Yes
S11 congest bike route 1 Yes
512 congest bus route 3 No
513 sparse car route 2 Yes
S14 medium bus route 3 Yes
S15 congest bike route 1 No
S16 medium car route 2 No

In ID3, entropy is used to evaluate the consistency of a group. Considering the sample data
group S in Table 3, the entropy is formulated as:

Entropy(S) = —pe - logaps — pe - log2pe; 8)

where pg is the ratio of the number of data entries with a positive label, i.e., Yes to travel, for the total
number of the data entries in group S. pg is the ratio of the number of data entries with a negative
label, i.e., No to travel, for the total number of the data entries in group S. Specifically, as shown in
Table 3, there are nine data entries with a positive label and seven data entries with a negative label.
Therefore, pg to group S is 9/16, and pe to group S is 7/16; and Entropy(S) = Entropy([9+,7—]) =
—(9/16)10g2(9/16) — (7/16) - log2(7/16) = 0.9887. Generally, the higher the entropy is, the lower
the consistency of a sample data group is. For the worst case, where a sample data group having
half of the data entries with a positive label and another half of the data entries with a negative
label, the group will have the highest entropy reflecting the group having the lowest consistency, i.e.,
Entropy(S) = —(1/2)log2(1/2) — (1/2) - loga(1/2) = 1.

Based on the entropy of sample data group S, we define the information gain of an incentive
criterion, e.g., route, modality or route volume in Table 3, to denote how capable this incentive criterion
is at classifying group S. Generally, if an incentive criterion can classify S to have a substantial amount
of decrement for substantially decreasing the expected entropy of group S, the information gain of the



Sensors 2017, 17, 2874 11 of 19

incentive criterion will be high. The information gain of an incentive criterion A considering sample
data group S is formulated as:

Gain(S, A) = Entropy(S) — ) MEnt‘ropy(sv); )
veValues(A) |S‘

where Values(A) is the group of all the optional values of incentive criterion A. S, is the sub-group
of group S, in which the data entries all have an incentive criterion A for optional value v,
ie., Sy = {s € S|A(s) = v}. In Equation (9), the first part is the entropy of group S, while the second
part is the sum of the weighted entropies of the sub-groups classified by incentive criterion A with

known optional values from group Values(A). The weight of each sub-group is the number of the
R
Therefore, Gain(S, A), as the information gain of incentive criterion A for group S, is the expected

entropy decrement caused by incentive criterion A classifying group S.

data entries in the sub-group, e.g., S, for the total number of the data entries in group S, e.g.,

4.2. ID3 Working Procedure

According to the definition of entropy and information gain, we can carry out ID3 to build the
incentive decision tree through a recursive method. Specifically, at the beginning of the ID3 algorithm,
the information gain of each incentive criteria to group S can be calculated according to Equation (9),
which is shown in Figure 2a. Based on this information gain, obviously the route volume incentive
criterion should be picked as the best fit decisional incentive criterion to classify group S at the first
node, as shown in Figure 2b. This is because the route volume incentive criterion has the highest
information gain, i.e., 0.1932 compared to the route and modality incentive criterion. For the route
volume incentive criterion, group S is then classified into three sub-groups, i.e., Ssparses SMedium and
Scongest, €ach of which co-relates to one of the optional values of the route volume incentive criterion,
i.e., sparse, medium and congest, as shown in Figure 2b. In the next step, ID3 has to decide the next
incentive criterion to further classify each of those sub-groups. As shown in Figure 3a, for group
S Sparser it has to decide which as yet unprocessed incentive criterion, i.e., modality or route, is to be
put forward at the following node to further classify Ssqs.. In order to do so, ID3 has to recursively
carry out the same procedure as for group S to pick the un-processed incentive criterion with the
highest information gain to be the next decisional incentive criterion of group Sgparse. For example,
in Figure 3a, the route incentive criterion which has the highest information gain is put at the following
node of Sgparse- Then, Sgpayse is further classified into three sub-groups co-relating to the three optional
values of the route incentive criterion, i.e., Routes 1, 2 and 3. The recursive procedure is also carried
out for sub-group Sptedium and Scongest to further classify their sample data.

’/ Gain(S, Route) = 0.1153;  Gain(S, Modality) = 0.0042 \\

Gain(S,Volume) = 0.1932;

S:[9+,7 -] S:[9+,7 -] S:[9+,7 -]
E=0.9887 E=0.9887 E=0.9887
Route 1 Route2  Route 3 Car Bus Bike Sparse Medium  Congest
- - _ [4+,3-] [3+,2-] [2+,2-] [44,1-] [44,2 -] [1+,4-]
[szo ?;7 1]0 [éj[j i? |]x) [ffoﬁl 813 E=0.9852 E=0.9710 E=1.00 E=0.7219 E=0.9183 E=0.7219
Gain(S, Route)=0.9887- (5/16)*0.9710- Gain(S, Modality)=0.9887- (7/16) Gain(S, Modality)=0.9887- (5/16)
( (5/16)%0.72196/16)* 0.9183 *0.9852-(5/16)* 0.9710-(4/16)¥1.00 *0.7219-(6/16)* 0.9183-(5/16)*0.7219 |
\ 0.1153 =0.0042 =0.1932 /
(a)

Figure 2. Cont.



Sensors 2017, 17, 2874

S:[9+,7 —]
Entropy=0.9887

Sparse Medium

[4+,1-] [4+,2-]

Ssparse=[81,84,87.810,813]);E=0.7219
Gain(Sgyqrser Route)=0.7219- (2/5) *0- (2/5)%0-(1/5)*1=0.4719
Gain(Sspqrse: Modality)=0.7219- (5/5)%0.7219-0-0=0

Ssparse=1S1.54,87.810.S13]  Syeqinm ~[52.53.55,58,514,516]

Congest

S~

SCongest=[S6,Sg,s 11,S12,S15]

[1+,4-]

(b)

12 0of 19

Figure 2. ID3 is used to build the incentive decision tree according to the sample data for group S (Step 1).
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Figure 3. ID3 is used to build the incentive decision tree according to the sample data for group S (Step 2).

ID3 will finish, i.e., converge and get the complete incentive decision tree after all the branches of
each incentive criteria have been considered and the sample data have been classified into a number
of relative consistent sub-groups by those incentive criteria after a finite number of recursive steps.
That means each final sub-group should have a relatively low entropy value. For example, in Figure 3a,
after group Sspas is classified using the route incentive criterion, the obtained sub-groups are all
consistent, each of which either has its data entries all having positive labels or negative labels. With the
final incentive decision tree, further travellers can make incentive decisions according to their adopted
values for their related incentive criterion. For example, according to Figure 3b, if a traveller takes
an incentive suggestion for Route 2 with bus as the modality, this incentive will be selected by the
traveller if Route 2 has a medium volume. Another example is that if a traveller takes an incentive
suggesting Route 1 with any modality, the incentive will be selected by the traveller if Route 1 has a
sparse volume. These two examples are demonstrated as the decision making roadmaps shown as the
dashed lines in Figure 3b. Hence, this ID3-based incentive decision making can help the RIF solve the
incentive problem.

5. The PE Method

To solve problem P apart from the decision tree method, we designed another PE-based algorithm
for personal incentive generation as Algorithm 1, which is based on a series of comparisons of incentive
utilities, instead of data mining on a large amount of historical traffic data. Algorithm 1 carries out the
incentive generation for all the travellers in group 7. In the beginning of the algorithm, it employs a
greedy approach such that each traveller selects an incentive out of all the candidate incentives that
have the highest utility (Steps 3-8). The incentive utilities are calculated according to Equation (5).
Then, the travellers with the same incentive selected will form an incentive population (Step 6).
For example, Cj; is the incentive population formed by all of the travellers selecting incentive I;;.
Afterwards, the incentive utility of each traveller and average utility of each incentive population,
e.g., l:l,'j of Ci]-, will be updated and calculated using Steps 9 and 10. Obviously, the greedy incentive
selection will lead to traffic congestion and cause the incentive utilities to drop down.

After the greedy incentive selection, Algorithm 1 runs a finite loop to obtain the optimized
incentive results from Step 12 to 23. As shown in Step 12, if an incentive population C;; has
homogeneous utility l:lij smaller than its previous average utility, i.e., Uij < Ujj, then this means
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the population C;; is not in its optimal situation and some travellers in C;; are not satisfied with an
incentive ;. Unsatisfied travellers could be those being affected by a congested traffic route i or
the ones not taking route i or modality j as their preferred choices. The homogeneous utility of an
incentive population lvlij represents the minimal utility, i.e., payoff of the entire incentive population.
According to PE, if an incentivized population has a higher homogeneous utility, the incentivized
population is more attractive to travellers. On the contrary, in the case of I:Iij < Ujj, Algorithm 1 has
to adjust population C;; and search the travellers in population Cj; to find specific travellers to be
moved to another population, which will potentially benefit population C;; while not jeopardizing
the incentive utilities of the receiving population. The travellers to be moved are the ones that have
a higher incentive utility in the receiving population than in the current population. For example,
if traveller ¢ in incentive population C, » has Uy;j < U, , (Step 15), then traveller ¢ will be moved to the
alternative incentive population: Ci’j/ (Steps 16 and 17). After the travellers are relocated, the incentive
utilities of all travellers and the homogeneous utilities of all incentive populations will be updated
(Steps 20 and 21). Algorithm 1 will finish, i.e., the PE game converges to an equilibrium, when the
homogeneous utilities are higher than the average utilities of all the incentive populations or the
algorithm runs out of its allowed steps S™**. Then, ay;; (Vt € T,Vi e N,Vj € M) as the result of the
algorithm is obtained, which allocates incentives to the right travellers.

Algorithm 1: The PE-based Algorithm for personal incentive generation.
1y =0, (VteT,Vie N,Vje M)

2 Cj=[]; (Vi eN,VjeM);S=0;

3 whileVt € T do

1 Calculate Uy, (Vi € N, Vj € M) by Equation (5);

5 (t,i*,j*) = argmax(VieN,vjeM)(t, i,7)(U;);

6 Cisje = Cixjr U {+};

7 Dét*l‘*j* = 1,

8 end

9 Update Uyj (Vt € T,Vi € N, Vj € M) by Equation (5);
_ Lviec;; Usij . )

10 Ul]: TI]‘,(VZGN,V] GM),

11 l:[l] :0,(Vi GN,Vj S M),

12 while (3C;—U;; < U;j) N (S < 5™) do

| Oy= =i, (Vi€ N, vj € M);

14 for VvVt € T do

15 if (maxi/ GN&j/EMuti/j, > llti]-) then

16 Cij = Cij — {t}; 4y = 0;

17 Ciry = Cyy + {thawy=1;

18 end

19 end

20 | Update Uy (Vt € T,Vi € N, Vj € M) by Equation (5);
21 Lvli]- = minweci],(lltij) ,(Vie N,Vje M)

22 S=5+1;

23 end
24 return: ay;(Vt € T,Vi € N, Vj € M);
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6. Analysis of the Decision Tree and PE Methods

This paper provides two different solutions to the personal incentive problem. In this section,
we discuss their pros and cons with respect to usability, scalability and computation complexity.

In theory, the decision tree method can effectively provide a solution to the personal incentive
problem. In practice, the ID3 algorithm as a classical decision tree algorithm takes travellers” historical
travel data into account to explore travellers’ common sense behaviours. Through ID3, the incentive
distribution for each traveller is not based on a heuristic searching algorithm such as the PE method,
but is based on data mining of a large amount of travellers” historical data. As long as the historical
data used in the training are at the big data level, the ID3 algorithm will help each traveller to select the
best fit incentive, instead of by random attempts. This enables the ID3 algorithm to closely reach the
global optimization and not fall into a backwards or forwards dilemma. However, the ID3 algorithm
relies heavily on travellers” historical data and behaviour. According to [26], the ID3 algorithm applied
to the incentive problem still faces the problem of overfitting, false data, etc. Considering scalability
and computational complexity, the time complexity of ID3 algorithm is O(n), where # is the number of
sample data used in the training. If the sample data reach a big data level, the algorithm execution time
will be enormous and require distributed computing to guarantee finishing the computation in a short
time. This will limit the scalability for the use of the ID3 algorithm. This paper only considers a simple
scenario with two traffic points, where the ID3 algorithm is affordable for RIF. However, when applying
the ID3 algorithm at the smart city level with a large number of pairs of traffic points to be considered,
the requirement of heavy computing will limit the application of the decision tree method.

According to Algorithm 1, the main activities of the PE method are to carry out heuristic searching
to make sure each incentive population has member travellers with relatively high utilities. The PE
method does not depend on a large amount of historical data, but works out the personal incentive
problem using an evolutionary game with a series of utility comparisons. It involves less computation
and training time compared to the decision tree method, but gives a better result, which is validated
by simulations in the next section. However, there are two challenges concerning the PE method. First,
there is a possibility that the heuristic search cannot find the optimal solution, but only find a local
optimization. This is because the heuristic searching is for each traveller, out of the travellers’ incentive
population, without looking at the global problem P. Even through the PE game itself tries to reach a
global equilibrium to benefit all of the travellers, this issue still exists. Second, the heuristic search may
cause the travellers’ incentive population regrouping to fall into a backwards versus forwards dilemma,
where a traveller may be regrouped back to its previous incentive population without reaching an
optimization. Those two challenges will escalate if the traveller group 7, route group N and modality
group M are large, leading to Algorithm 1 not being able to converge after a long time of running.
The time complexity of Algorithm 1 is O(n?), where 7 is the size of the travellers under consideration.
Compared to the decision tree method, the PE method requires much less computation, as the number
of travellers between two traffic points is relatively low. This makes the PE method more suitable to
work as part of a smart city initiative.

7. Simulations

To validate the decision tree and PE methods in RIF, we apply a series of MATLAB-based
simulations with the configurations listed in Table 4. Based on the configurations, we run the ID3
algorithm and Algorithm 1 a finite number of times and list the overall incentive utilities of all the
travellers as the outputs in Table 5. We implement the greedy method mentioned in Section 5 as a
baseline solution to validate our personal incentive solutions. For the greedy method, each traveller
will always choose the incentive that suggests his/her habitual route and modality. The greedy method
is prone to cause a travel bias without promoting its effectiveness and green transportation use.
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Table 4. Configurations for the simulation validation.

Parameter Value
Number of candidate routes: N’ 10
Number of candidate modalities: M 5
Number of travellers: 7 in Traveller Scenario 1 100
Number of travellers: 7 in Traveller Scenario 2 300
Number of travellers: T in Traveller Scenario 3 500
Capacity of each route 75-100
Existing traffic of each route 10-90
Sensitivity measurements for sensitized incentive criteria 69
Sensitivity measurements for non-sensitized incentive criteria 1-5
Portion of travellers sensitive to route 50%
Portion of travellers sensitive to modality 50%
Portion of travellers sensitive to traffic volume 100%
S™4% in Algorithm 1 20

Number of entries of a traveller’s sample data 1000-2000

Table 5. Performance comparisons of different personal incentive solutions.

Overall Incentive Utilities of All the Travellers (Traveller Scenarios 1/2/3)

Time of Running

Greedy Method Decision Tree Method PE Method
1 45.31/129.15/188.38  57.71/150.93/215.35 70.31/170.55/284.88
2 43.93/106.43/208.68  47.00/118.73/216.85 71.13/160.35/290.22
3 49.02/141.33/185.33  57.61/173.27/207.75 74.88/188.97/271.80
4 51.11/134.49/213.11  64.41/164.53/280.10 74.95/176.71/287.78
5 44.77/122.87/177.50  54.93/137.37/187.59 68.18/172.69/273.47
6 46.43/130.33/202.37  55.04/154.25/210.75 72.33/177.83/285.04
7 49.69/138.63/207.96  65.19/147.09/256.82 74.40/189.28/317.79
8 50.11/136.73/203.51  58.29/142.00/284.15 75.94/191.03/290.26
9 42.38/136.70/176.91  51.90/158.81/195.06 64.99/184.28/280.25
10 53.85/135.71/204.07  66.11/140.65/227.70 79.55/184.74/306.97

According to the outputs in Table 5, it is obvious that the PE method gives the best performance,
while the decision tree method gives more of a mediocre performance. For the greedy method,
because every traveller takes a selfish approach without cooperation, it causes route congestion and a
modality bias that worsens the performance. The PE method outperforms the decision tree method
because it utilizes a sophisticated evolutionary game theory and the use of recent historical data of
travellers to more effectively, in real time, work out a traveller’s strategy. In contrast, the decision tree
method depends heavily on a large amount of historical data and lacks timeliness and cooperation.

To better demonstrate the outputs, Figure 4 demonstrates the average utility of each incentive
population provided by different methods, considering different traveller scenarios respectively.
Figure 4 demonstrates the same numerical results as summarized in Table 5. According to the outputs,
it is clear that the average utility of all the members in an incentive population is improved mostly by
the PE method, then medially by the decision tree method, compared to the greedy method.
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Figure 4. Comparisons of the average utility of incentive using different methods. (a) Traveller
Scenario 1; (b) Traveller Scenario 2; (c) Traveller Scenario 3.

8. Conclusions and Future Work

This paper provides a Rule-based Incentive Framework (RIF) implemented using the decision tree
and PE methods. By solving the personal incentive problem, RIF can enable each traveller to pursue
more effective and green transportation choices as part of a smart city initiative. The decision tree
and PE methods both have their pros and cons. Generally, the PE method gives a better performance
through the use of evolutionary game theory and real-time travel information. However, the PE
method may not reach the best optimization. The decision tree method depends heavily on the
historical data, but it will give effective results if a large amount of sample data is provided.

For future work, we aim to combine the merits of the machine learning methodology, such as
decision tree, with game theory, like PE, to come up with more effective intelligent personal incentive
solutions, under more complicated system scenarios. In the meantime, we will consider the timeliness
of RIF and the acceptance of personalized incentives by travellers, which will make RIF more applicable.
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