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Abstract: Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of
rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry
due to failure of rotary machines. Though widely investigated in the past couple of decades,
continued advancement is still desirable to improve upon existing fault diagnosis techniques.
Vibration acceleration signals collected from machine bearings exhibit nonstationary behavior due
to variable working conditions and multiple fault severities. In the current work, a two-layered
bearing fault diagnosis scheme is proposed for the identification of fault pattern and crack size for
a given fault type. A hybrid feature pool is used in combination with sparse stacked autoencoder
(SAE)-based deep neural networks (DNNs) to perform effective diagnosis of bearing faults of multiple
severities. The hybrid feature pool can extract more discriminating information from the raw
vibration signals, to overcome the nonstationary behavior of the signals caused by multiple crack sizes.
More discriminating information helps the subsequent classifier to effectively classify data into the
respective classes. The results indicate that the proposed scheme provides satisfactory performance
in diagnosing bearing defects of multiple severities. Moreover, the results also demonstrate that the
proposed model outperforms other state-of-the-art algorithms, i.e., support vector machines (SVMs)
and backpropagation neural networks (BPNNs).

Keywords: autoencoders; bearing fault diagnosis; fault diagnosis; fault severity; hybrid features;
multi crack size; stacked autoencoders

1. Introduction

In the case of rotating machines, bearings are vital and common parts of the machine systems that
are used in a variety of industries [1]. Because these parts are extensively used, bearings are prone to
health degradation, which contributes to approximately 50% of the failures in electrical machines [2–4].
The health degradation of bearings results in unexpected failures of machines, which can lead to
long downtimes, large economic losses, and human injuries [5–7]. Such issues can be mitigated
with the help of fault diagnosis that assures the smooth operation of the systems by predicting their
health states [8–11]. Bearing fault diagnosis, with the help of data obtained via vibration signals,
acoustic emissions, electric currents, and temperature monitoring, has been a key area of research
over the last few decades [12–14]. Bearing fault diagnosis is helpful in reducing the operational and
maintenance costs and enhancing the reliability of a machine [15–21]. Vibration acceleration signals,
which can be collected with an accelerometer, are extensively used in bearing fault diagnosis. Defective
bearings add weak fault signatures to vibration signals whenever a rolling element strikes the fault
location and can be explored via suitable signal processing techniques such as envelope analysis [22].
In general, a fault diagnosis pipeline has three stages: data acquisition, feature extraction, and fault
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type classification. Most recent studies related to bearing fault diagnosis have focused on identifying
appropriate features of the raw vibration signals. The signals measured from the operational bearings
are nonstationary and nonlinear in nature due to the variable operating conditions and multiple fault
severities. Therefore, in such conditions, analysis of the measured signals by means of classical signal
processing techniques alone, like the fast Fourier transform, is considered to be insufficient because
they provide a global transformation that is unable to properly capture the local time–frequency
properties of a signal [23]. The nonstationary behavior can be explored by various time–frequency
analysis techniques, including the Wigner Ville distribution (WVD) [24], short time Fourier transform
(STFT) [25–27], and wavelet packet transform (WPT) [28,29]. The WPT is more practical in fault
diagnosis schemes because of its better time–frequency resolution. Numerous studies investigating the
time domain, frequency domain, and time–frequency domain features have been carried out to design
fault diagnosis schemes using vibration signals in collaboration with machine learning (ML) methods
(e.g., regression models, support vector machines, and artificial neural networks (ANNs)) [30–36].
Huo et al. [37] presented a multi-speed fault diagnosis scheme with the help of self-adaptive wavelet
transform components. Particle swarm optimization (PSO) and Broyden–Fletcher–Goldfarb–Shanno
(BFGS)-based quasi-Newton minimization algorithms were considered in their scheme. The aim of
their work was to determine the optimal parameters for impulse modeling the continuous wavelet
transform (IMCWT). The scheme could discriminate signatures for four different health conditions.
In [38], time-domain (TD) statistical features were preprocessed instead of preprocessing the vibration
signal prior to implementing a classifier. Preprocessing the features helped in removing the effects
of possible fluctuation and random impulses in the vibration signals. An advantage of feature
preprocessing, in contrast to the traditional approach where the raw vibrational signal is preprocessed,
is its computational efficiency. To achieve enhanced dimensionality reduction and improve the fault
diagnosis performance, an improved manifold learning scheme based on the Mahalanobis distance
(MD) was proposed in [39]. Time and frequency domain analyses were performed in the scheme
to construct a high-dimensional feature set. The results of the proposed scheme were found to be
better than those of the traditional manifold algorithms. The authors in [40] presented a frequency
domain analysis of low-speed bearings by employing time varying and multiresolution envelope
analysis (TVMREA) in combination with genetic algorithm (GA)-based discriminative feature analysis
(GADFA). The proposed method effectively identified combined faults in low-speed bearings.

In recent years, deep learning has made a remarkable impact on pattern recognition, image
processing, and natural language processing. Deep learning mimics the learning process of the human
brain in artificial networks and has displayed superior ability in capturing useful information from the
input data via non-linear transformations. In contrast to conventional machine learning algorithms,
deep networks can extract highly representative features via multiple layered architectures, simplifying
the learning task. In addition, deep networks keep only the most representative information in each
layer and discard the rest, thereby reducing the dimensionality. Hence, due to the simplified learning
capability and built-in feature reduction mechanisms, deep networks can be used for fault diagnosis of
complex rotary machine bearings.

Despite the existence of several state-of-the-art bearing fault diagnosis schemes, there is still room
for improvement in machine fault diagnosis; for instance, dealing with the bearing signals that exhibit
nonstationary behavior due to variable working conditions and multiple fault severities. Fault pattern
identification and crack size identification are two key aspects of bearing fault diagnosis. Fault pattern
identification is essential as it can allow the localization of faults on a given component, whereas
determining the fault severity is vital because it can highlight the urgency of repairing or replacing
a damaged component. A fault diagnosis scheme that can perform both fault pattern identification
and fault severity classification can be very challenging; it requires better feature representation and a
strong classifier. Existing fault diagnosis schemes are vulnerable to fault misidentification due to the
presence of fluctuations and random amplitudes in the vibration signals caused by multiple crack sizes.
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To solve this issue, we present a two-layered fault diagnosis scheme that uses a set of hybrid
features and a sparse stacked autoencoder (SSAE)-based deep neural network (DNN). The fluctuations
and random amplitudes caused by multiple crack sizes cannot be overcome by analyzing the signal in
just the time or frequency domain. However, a hybrid feature pool that is constructed after analyzing
the vibration signal in different domains can provide sufficient information to effectively segregate
bearings of different health conditions. Sparse stacked autoencoders (SSAEs) are deep neural networks
(DNNs) that can extract intrinsic information from the input hybrid feature pool effectively, due to the
highly nonlinear activation function used in the hidden layers. The first layer of the proposed scheme
is for fault pattern identification, whereas the second layer identifies the crack size in each fault type.

The rest of the paper is organized as follows: Section 2 presents the proposed methodology.
Section 3 describes the data set used for the experiments. Section 4 details the experimental results of
the proposed scheme, and Section 5 concludes the paper.

2. Methodology

The workflow of the proposed scheme is presented in Figure 1. The scheme can be divided into
three phases. The first phase consists of hybrid feature pool generation, which involves combining
time domain features, envelope power spectrum features, and wavelet energy features. In the next
phase, the hybrid feature pool is provided as input to the stacked autoencoders to perform fault pattern
identification (i.e., identifying inner raceway, outer raceway, and roller element faults). The last phase
of the pipeline is to predict the crack size for a given fault.
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The main idea of the work is to utilize a hybrid feature pool in combination with an SSAE-based
DNN to extract high-level representative features, which would enhance the performance of the
fault diagnosis model in the presence of multiple crack sizes. The hybrid feature pool provides more
discriminating information about the raw vibrational signals and can overcome the nonstationary
behavior of the input signal to boost the performance of the subsequent SSAE-based DNN. To create
the hybrid feature pool, various feature extraction paradigms, including envelope power spectrum
analysis, time domain analysis, and wavelet packet energy features, are used together.

2.1. Statistical Features

The representative set of statistical time domain features used in [41] was adopted in our study.
The time domain statistical features that are included in the hybrid feature pool are the root mean
square value (RMS), kurtosis value (KV), square root of the magnitude (SRM), peak-to-peak value
(PPV), standard deviation (SD), skewness value (SV), margin factor (MF), crest factor (CF), impulse
factor (IF), kurtosis factor (KF), and mean value (MV). The given representative features are listed in
Table 1 with their respective mathematical formulations.

Table 1. Time domain statistical features (x is the vibrational signal).

Features Equations Features Equations Features Equations

Mean value
(MV) x = 1

N

N
∑

i=1
xi

Standard
deviation

(SD)
σ2 = 1

N−1

N
∑

i=1
(xi − x)2

Root mean
square
(RMS)

RMS = ( 1
N

N
∑

i=1
x2

i )

1
2

Peak-to-peak
value (PPV) PPV = max(xi)−min(xi)

Skewness
value (SV) SV = 1

N

N
∑

i=1
( xi−x

σ )
3 Margin

factor (MF)
MF = max(|xi |)

( 1
N

N
∑

i=1

√
|xi |)

2

Crest factor
(CF)

MF = max(|xi |)

( 1
N

N
∑

i=1
x2

i )
1
2

Impulse
factor (IF)

IF = max(|xi |)
1
N

N
∑

i=1
|xi |

Square root
of the

magnitude
(SRM)

SRM = ( 1
N

N
∑

i=1

√
|xi|)2

Kurtosis value
(KV) KV = 1

N

N
∑

i=1

(
xi−x

σ

)4 Kurtosis
factor (KF) KF =

1
N

N
∑

i=1
(

xi−x
σ )

4

( 1
N

N
∑
1

x2
i )

2

2.2. Envelope Power Spectrum

A typical bearing found in a motor has four components: the outer raceway (OR), inner raceway
(IR), cage (C), and the rolling elements (RE). At a constant speed, when a bearing has a defect on any
of these components, periodic vibrations are generated. There are four fundamental defect frequencies:
the ball spin frequency (BSF), the ball pass outer raceway frequency (BPFO), the ball pass inner raceway
frequency (BPFI), and the cage frequency (FC). According to [42], the BPFI , BPFO, and BSF can be
mathematically formulated as shown in Equations (1)–(3), respectively:

BPFI =
NbS

2

(
1 +

Bd
Pd

cos φ

)
, (1)

BPFO =
NbS

2

(
1− Bd

Pd
cos φ

)
, (2)

BSF =
Pd

2Bd
S

[
1−

(
Bd
Pd

cos φ

)2
]

. (3)

Theoretically, if the defect is on the inner or outer raceway, an impulse is added to the vibration
signal whenever the rolling element strikes the defective component. These impulses can be visualized
from the associated defect frequencies, i.e., BPFI and BPFO, respectively. If the defect is on a rolling ball,
each time it strikes the inner raceway or outer raceway an impulse will be generated; theoretically,
this will be twice the BSF. These fundamental defect frequencies can be useful for identifying faults
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on the inner raceway, outer raceway, and the rolling element. These impulses at the associated defect
frequencies can be explored via envelope spectrum analysis.

The envelope of a vibration signal s(t) can be calculated by using the Hilbert transform.
The Hilbert transform is a convolution between the Hilbert transform operator 1

πt and the original
signal s(t) [43]. It can be represented as

H[s(t)] = s(t)• 1
πt

, (4)

H[s(t)] =
1
π

∫ ∞

−∞

s(t)
t− τ

dt, (5)

where • is the convolution operator in (4) and H[s(t)] is an analytical signal of the original signal
s(t). By taking the square of the fast Fourier transform of abs(H[s(t)]), a one-sided spectrum in the
frequency domain can be obtained; this is the desired envelope power spectrum. The envelope power
spectra of three fault types can be seen in Figure 2. Features extracted from the envelope spectra of the
given example are presented in Table 2.
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Figure 2. Envelope power spectrum: (a) inner raceway fault; (b) outer raceway fault, and (c) roller
element fault.

Table 2. Statistical features extracted from the envelope power spectrum.

Feature Equation

RMS frequency RMS f = ( 1
K

K
∑

i=1
yK

2)

1
2

Frequency center FC = 1
K

K
∑

i=1
yK
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f = 1
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Root variance frequency RVF = ( 1
K

K
∑
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1
2

Spectral kurtosis K f =
1
K

K
∑
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(yK−FC)4

(σ2
f )

2



Sensors 2017, 17, 2876 6 of 16

2.3. Wavelet Packet Transform (WPT)

The wavelet packet transform (WPT) is a variation of the basic wavelet transform (WT) that
decomposes the input signal into j levels. The WPT splits both the high-pass and low-pass filters,
creating 2j nodes at each level. The WPT overcomes the poor resolution of the WT by providing
comprehensive time–frequency analysis of the signal at both low and high frequencies. Each level of
the WPT provides a frequency range that is half as wide as the preceding level and twice as wide as
the proceeding level. A three-level WPT tree structure can be seen in Figure 3.
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The WPT coefficients can be formulated as

c2k
j+1(n) = ck

j × h(−2n), 0 < k < 2j − 1, (6)

d2k+1
j+1 (n) = dk

j (n)× g(−2n), 0 < k < 2j − 1, (7)

where h and g are the low-pass and high-pass filters associated with the mother wavelet, respectively.
These are predefined scaling factors. In the WPT, the scale parameter (level) is represented by j, and the
frequency parameters (nodes) are represented by 2k and 2k + 1.

Existing methods based on the WPT for bearing fault diagnosis consider the entropy, standard
variation, and energy as input features to the subsequent classifier. Among these, using the wavelet
packet energy is an intuitive approach to differentiating the fault types. The WPT nodes contain an
abundance of information about the fault types and energy fluctuations in a specific node and can be
useful in specifying the fault type.

In the current work, signals are decomposed up to j = 4 levels, as described in [44], which results
in 2j = 24 = 16 nodes. After decomposition of the signals into different sub-bands, the WPT energy is
computed by

E = (

M
∑

p=1
(ck

j (p)2)
1
2

M
). (8)

In the equation above, M is the number of samples at the nodes. All the energies acquired from
j = 4 level nodes are combined to form the vector V, which can be given as

V = [E1
j , E2

j , ..., E2j

j ]. (9)

The maximum value of the vector is selected for each input signal and included in the hybrid
feature pool. The extracted wavelet energy features can be seen in Figure 4. In the figure, wavelet
energies for four different health conditions of the bearing are given. For each health condition,
four signals are available—one for each motor load and rotational speed (i.e., 1722 to 1797 r/min).
We notice that there is a variation in the wavelet energy levels for different health conditions, which
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can be of benefit to SSAEs in learning distinctive high-level features for a given health condition.
On the other hand, there is also variation within the wavelet energy levels of a specific health condition,
which can lead to confusion among the instances of different health conditions and can result in
misclassification of the instances. To minimize the misclassification of the instances due to the variation
in either the values of statistical features from the time domain, envelope power spectrum, or wavelet
energy levels, a hybrid feature pool is formed by including the extracted time domain statistical
features, envelope power spectrum, and WPT energy features. The hybrid feature pool can provide
detailed intrinsic information about the nonstationary and nonlinear signals obtained from bearings
with multiple fault severities. The length of the resulting hybrid features’ vector is 6 + 6 + 1 = 13.
After creating the hybrid feature pool, it is provided as an input to the SAE-based DNN to learn
high-level representative features and perform fault pattern recognition and fault severity classification.
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2.4. Sparse Stacked Autoencoders (SSAEs)

A simple autoencoder is basically a variation of an artificial neural network (ANN) with a
minimum of three layers that uses an unsupervised learning process. The structure of a basic
autoencoder is presented in Figure 5.

The first layer of the autoencoder is the input layer, which receives the input data. The intermediate
layer tends to extract high-level representative features (i.e., latent codes) from the input data. The latent
codes are, in essence, the result of principal component analysis (PCA) of the inputs and reduce the
representation of the original data. The dimensionality of the latent codes depends on the number
of nodes used in the hidden layer. The last layer decodes the latent codes and tries to reconstruct
the original input. In short, an autoencoder performs two key tasks: to encode the input data into
latent codes and then reconstruct the data from the latent codes. The resulting latent codes have
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lower dimensionality than the input data. In this regard, an autoencoder contributes to dimensionality
reduction. The encoding ∂, and decoding β processes of an autoencoder are described as follows:

∂ : s→ F
β : F → s
∂, β = argmin

∂,β
‖s− (β•α)s‖2.

(10)
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The simplest form of an autoencoder has one hidden layer. The encoder stage receives input data
s with dimension Rm and maps the data to latent variables o with dimension Rn. The latent code can
be given by

o = g(Ws + b), (11)

where o, W, b, and g are the latent code, weight matrix, bias vector, and activation function, respectively.
Equation (12) presents the decoding process of an autoencoder:

r = g′(W ′s + b′) (12)

where r, W ′, b′, and g′ are the reconstructed output, weight matrix, bias vector, and activation
function of the decoder, respectively. The loss function is calculated between the original data and the
reconstructed data in basic autoencoders by using the following loss function:

L(s, r) =
1
M

M

∑
m=1

K

∑
k=1

(skm − r)2 (13)

where L is the loss calculated between the original data s and the reconstructed data r. A sparsity
constraint can be introduced in an autoencoder by introducing a sparsity regularization term to the
loss function. The sparsity constraint enables the autoencoder to learn useful features that can be used
for classification [45]. The modified loss function can be represented as follows:

L(s, r) =
1
M

M

∑
m=1

K

∑
k=1

(skm − r)2 + λ·Ωweights + λ′·Ωsparsity (14)
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where λ is the L2 regularization coefficient and λ′ is the sparsity regularization coefficient. Ωweights
is the L2 regularization term and Ωsparsity is the sparsity regularization term. L2 regularization and
Ωsparsity regularization help in avoiding the overfitting problem in sparse autoencoders.

3. Dataset

To demonstrate the efficacy of the proposed model, seeded fault data provided by Case Western
Reserve University was used. As illustrated in Figure 6, the main components of the seeded fault test
rig include a 2 horsepower (hp) electric motor, a dynamometer, and a torque transducer [46].
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Using an electro-discharge machine, faults with diameters of 0.007, 0.014, and 0.021 inches were
seeded on the inner raceway (IR), outer raceway (OR), and rolling elements (RE) at the drive end
bearings. Variable length vibration acceleration signals were collected via an accelerometer attached to
the housing of the drive end bearing at 12 o’clock with a sampling data rate of 12,000 Hz. The motor
was subject to four loads ranging from 0 to 3 horsepower (hp), which resulted in four motor speeds,
approximately from 1722 to 1797 revolutions per minute (r/min).

In this study, the dataset comprises vibration acceleration signals for normal bearings and bearings
with three types of faults, i.e., faults on the inner raceway, outer raceway, and rolling element. For each
fault condition, the dataset consists of signals recorded for bearings with three levels of fault severities
(i.e., 0.007, 0.014, and 0.021 inches) at four different shaft loads. For normal bearings, there are four
signals in the dataset—one for each shaft load. The signals are subjected to a segmentation process
using a fixed sized window of 12,000 data points. The segmentation process splits all the fault signals
into 10 samples each, but three of the four normal signals yield 20 samples each, while the fourth
normal signal yields only 10 samples. The length of each sample for both normal and faulty bearings
is 12,000 data points. Thus, the seeded fault dataset used for the experiments contains a total of
610 samples (70 normal samples + 3 fault types × 3 fault severities × 60 samples). After segmentation,
a hybrid feature vector is constructed for each sample in the dataset. These feature vectors are
then divided into training and test sets. The training set contains feature vectors for 310 samples
(40 normal samples + 3 fault types × 3 fault severities × 30 samples), while the test set consists of
feature vectors for 300 samples (30 normal samples + 3 fault types × 3 fault severities × 30 samples).
The details of the bearing dataset with seeded faults are given in Table 3.
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Table 3. Bearings and dataset specification.

Fault
Type

Fault
Location

Fault Size
(Inches)

Training
Samples

Test
Samples

Sample
Length

Accelerometer
Position

Shaft
Load (hp)

Normal None 0 40 30

12,000
Drive End
Bearings 0, 1, 2, 3

Inner
raceway

IR 0.007 30 30
IR 0.014 30 30
IR 0.021 30 30

Outer
raceway

OR 0.007 30 30
OR 0.014 30 30
OR 0.021 30 30

Roller
RE 0.007 30 30
RE 0.014 30 30
RE 0.021 30 30

4. Results and Analysis

A bearing dataset with seeded faults was provided by Case Western Reserve University [46]
and used to validate the proposed fault diagnosis model. The dataset is composed of four health
conditions and three different fault severities. For training and evaluation of the first layer, all the
samples from training set were used to train the first sparse stacked autoencoder (SSAE)-based
deep neural network (DNN). On the other hand, while training the rest of the three SSAE-DNNs
in the crack size identification layer, only samples from the respective fault classes were considered.
To produce stable results, the experiment was repeated 20 times with random selection of samples to
form the train and test sets each time. To evaluate the effectiveness of the proposed scheme, the results
were compared with those of the state-of-the-art algorithms, including the radial basis function
(RBF) kernel-based one-against-all support vector machines (OAASVMs) and backpropagation neural
networks (BPNNs). All the SSAE-DNNs in the proposed scheme were replaced with RBF-OAASVMs
and BPNNs to create a similar hierarchical structure. The same set of features were provided as input
to the RBF-OAASVMs and two layered BPNNs with 10 hidden nodes. The Levenberg–Marquardt
backpropagation optimization function was used in the BPNNs to update the weights. Figure 7
presents the results of the fault pattern identification that is proposed to identify the bearing health
conditions (i.e., normal health or having a fault on the inner raceway, outer raceway, or roller element)
for the proposed method and the state-of-the-art algorithms. The overall average accuracy of the
proposed model for the fault pattern identification layer is 99.5%.
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BPNN and RBF-OAASVM stand for back-propagation neural network and radial basis function-one
against all support vector machine, respectively.
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The SSAE-based DNN, because of its hierarchical structure and by using nonlinear transformation
in the hidden layers, could extract discriminating information from the hybrid feature pool,
enhancing the overall performance of the proposed model. This observation is validated by Figure 8,
which contains the distribution of the first two feature vectors extracted by using SSAEs. It is worth
noticing that the proposed method correctly classified all the samples for inner and outer faults;
however, it misclassified a few of the roller fault samples. The hybrid feature pool fails to provide
enough intrinsic information, and, thus, SSAEs fail to extract more discriminant high-level features in
this case. In the case of the normal condition and inner and outer faults, high-level feature extraction
seems relatively easy for SSAEs. In the case of roller fault, the extracted high-level features overlap
with some of the samples from the normal and inner fault, which leads to the misclassification of
roller fault samples. The roller fault signals possess the properties of inner as well as outer faults.
This observation is validated by Figure 2, where the envelope power spectrum of the roller fault is
given. The presence of inner and outer fault defect frequencies can be clearly seen in the envelope
power spectrum. Therefore, features extracted from the time domain, envelope spectrum, and wavelet
energy, in this case, were either confused with inner or roller fault. Moreover, from the comparison
results, it is evident that the proposed model provided 3.32% and 6.12% better average accuracy for
the fault pattern identification layer than the RBF-OAASVMs and BPNNs, respectively.
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Figure 8. The extracted high-level features for the fault pattern recognition layer.

The fault pattern recognition layer is followed by the crack size identification layer. The results
of the subsequent layer mainly depend on the results of the first layer; if the performance of the first
layer is poor, the results of the subsequent layer will also be poor. From the results of the pattern
recognition layer, it is evident that the proposed method could classify most of the input instances,
which ultimately boosted the performance of the proposed scheme. This observation is validated
by the results of the crack size identification layer. Figure 9 shows the fault severity classification
of an inner fault; once again, the performance of the proposed method is better than those of the
RBF-OAASVM and BPNN methods. The proposed method provides an average accuracy of 100%,
whereas RBF-OAASVMs and BPNNs provide average accuracies of 94.4% and 90.44%, respectively.
It can be interpreted from the results that the proposed scheme successfully classifies all the samples
into their respective classes. However, RBF-OAASVMs and BPNNs fail to classify all the samples
properly. Figure 10 shows the results for crack size prediction within an outer fault. The average
fault severity accuracies for the proposed method, RBF-OAASVMs, and BPNNs are 100%, 93.56%,
and 85.03%, respectively. In Figure 11, the results of crack size identification in terms of the average
accuracy in a roller fault are given. It is evident that the proposed method outperforms the SVM
and BPNN methods. In this case, there is slight deterioration in the performance of the proposed
method, but, still, it delivers better performance compared with the other state-of-the-art algorithms.
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The deterioration is due to the misclassification of outer fault samples in the fault pattern identification
layer, consequently affecting the results of the crack size identification layer in the case of roller
faults. Overall, our proposed method has an average accuracy of 96.66%, while the average crack size
prediction accuracies of SVMs and BNNs are 92.33% and 83.44%, respectively.
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To further validate the reliability of the proposed method, a comparison is made with an existing
bearing fault diagnosis scheme [47], in which the authors used vibration spectrum imaging (VSI) and
artificial neural networks (ANN) for bearing fault diagnosis. The bearing dataset used for validation of
the scheme was acquired from Case Western Reserve University (shaft load of 2 hp with 1748 r/min).
The vibration signals were segmented into fixed sized windows of 1024 data points each, and then a
513 point fast Fourier transform (FFT) was applied to the segmented signals. The resultant spectral
information was stacked on top of each other to generate a 513 × 8 pixel grayscale vibration spectrum
image. A smoothing filter of size 8 × 4 was applied to the grayscale image, and then the filtered
image was converted into a binary image by using an optimum threshold value of 0.7. The optimum
threshold value plays a key role in the VSI-based fault diagnosis scheme because it defines the quality
of the input vectors to the underlying classifier, and can affect the overall accuracy of the scheme.
Then, the binary images, each with 4104 binary spectral components, were provided as an input to
an artificial neural network having one hidden layer with three nodes. The comparison results of the
proposed method and the VSI-based fault diagnosis scheme are presented in Table 4. The proposed
method provides better diagnostic performance as compared with VSI when tested on the dataset
containing instances from the seeded fault bearings with multiple fault severities. The proposed
method can overcome the nonstationary and nonlinear behavior of the vibration signal in a much
better way compared with the VSI-based approach, where the spectral information is more susceptible
to variation in working conditions and fault severities.

Table 4. The diagnostic performance of the proposed model and vibration spectrum imaging (VSI).

Method Layer 1 Average Accuracy (%) Layer 2 Average Accuracy (%)
Total (%)

0.007 Inches 0.014 Inches 0.021 Inches

VSI [47] 60.15 55 55 84.6 63.68
Proposed 99.75 100 100 96.66 99.10

5. Conclusions

In this paper, a two-layered bearing fault diagnosis scheme was proposed. The first layer is
for fault pattern identification in rotary machine bearings, while the subsequent layer is used for
crack size identification of a given fault. A hybrid features pool comprising time domain statistical
features, envelope power spectrum features, and wavelet energy features is used in combination with
sparse stacked autoencoder (SSAE)-based deep neural networks (DNNs) for the diagnosis of different
bearing defects with various levels of severity. The hybrid feature pool was formed to overcome
the nonstationary and nonlinear behavior of the vibration acceleration signals. A bearing dataset
containing four health conditions and three fault severities was used to validate the proposed model.
It is observed that the SSAE-based DNN is able to extract effective representative features from the
hybrid feature pool, resulting in a superior diagnostic performance of the proposed model for both
fault pattern as well as for crack size identification. Moreover, the proposed model was compared with
three state-of-the-art fault diagnosis algorithms (i.e., RBF-OAASVMs, BPNNs, and VSI). The results
demonstrated that the proposed scheme is more effective compared with the other methods regardless
of the nonlinearity contained in the vibration signals due to multiple fault severities. However, in the
case of roller fault identification, the performance of the proposed method slightly deteriorated,
which underscores the need for more sophisticated signal processing algorithms as future work that
could eventually result in superior diagnostic performance. It can be concluded that the proposed
method provides satisfactory bearing fault diagnosis results and can be used for fault diagnosis of
bearings containing various fault severities.
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