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Abstract: The charge couple device (CCD) tracking loop of a fast steering mirror (FSM) is usually
used to stabilize line of sight (LOS). High closed-loop bandwidth facilitates good performance.
However, low-rate sample and time delay of the CCD greatly limit the high control bandwidth.
This paper proposes an error-based observer (EBO) to improve the low-frequency performance of the
CCD tracking system. The basic idea is by combining LOS error from the CCD and the controller
output to produce the high-gain observer, forwarding into the originally closed-loop control system.
This proposed EBO can improve the system both in target tracking and disturbance suppression
due to LOS error from the CCD’s sensing of the two signals. From a practical engineering view,
the closed-loop stability and robustness of the EBO system are investigated on the condition of gain
margin and phase margin of the open-loop transfer function. Two simulations of CCD experiments
are provided to verify the benefits of the proposed algorithm.

Keywords: CCD error-based observer; fast steering mirror; image sensor; light of sight error; low-rate
sample; time delay

1. Introduction

A charge couple device (CCD)-based fast steering mirror (FSM) control system is widely used
in adaptive optics, free space communication, and line of sight stabilization [1–3]. The CCD image
sensor is crucial both in observation and orientation, and it is generally applied to detect the centroid
of a target source to provide the line of sight (LOS) error to implement the closed-loop control
system. In long-distance image detection such as deep space communication, the CCD usually needs a
relatively large amount of integral time for a high definition image. Low-rate frame and time delay
are unavoidable in the CCD tracking loop. The major limitation to a CCD-based tracking loop is
the time delay [4,5], which can significantly reduce the closed-loop performance. Even though there
are many articles concerning the CCD-based control problem, the work [6,7] usually concentrates
on upgrading hardware and software architectures. The predictive control [8] is considered to be an
effective method for compensating time delay. However, the predictive control is only efficient in
low measurement noise conditions because a predictor cannot predict white noise. An acceleration
feedback loop [1,9] was introduced to enhance the tracking and pointing performance. An acceleration
loop rebuilds the control plant into the integral type in the FSM control system, but it brings an
additional sensor and there is quadratic differential effect in the open-loop transfer function in the
low-frequency range. In fact, improving the performance at low frequencies is more important than
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high-control bandwidth. A feedforward controller [10] combining an LOS error with an angular sensor
is proposed to compensate for errors related to time delay in the CCD tracking loop of a fast steering
mirror. An additional position sensor is required to recover the target trajectory for implementing
feedforward control. A simple PID-I (proportional-integral-differential) controller [11] is proposed
in the CCD loop of the FSM control system, which is to add an integrator into the traditional PID
controller. However, two integrators in the control system easily lead to integral saturation. This paper
proposes an error-based observer (EBO) to improve the low-frequency performance of the CCD
tracking loop. The EBO combines the LOS error from the CCD and the controller output to produce a
high-gain observer, and feedforwards into the originally closed-loop control system. The proposed
EBO can benefit the control system both in target tracking and disturbance suppression because of
the LOS error from the CCD’s sensing of the two signals. From a practical engineering standpoint,
the closed-loop stability and robustness of the EBO system are investigated on the condition of gain
margin and phase margin of the open-loop transfer function. In this control mode, there is no extra
sensor except CCD to implement the EBO.

Section 2 presents a detailed introduction to the EBO, mainly describing the mathematical model
of the CCD-based tracking system. Section 3 focuses on parameters design, to be specific in terms of
controller and low-pass filter. Section 4 discusses and analyzes system performance. Section 5 sets up
simulations and experiments to testify the theorems in Section 4. Concluding remarks are presented in
Section 6.

2. The Model of CCD-Based FSM System

The configuration of a CCD-based tracking system is illustrated in Figure 1. The CCD as a tracker
provides the LOS error for controlling the FSM. The light source, through the FSM and disturbance
mirror to the CCD, is used to simulate the target. The controller hardware is used to implement the
control algorithm. The power driver actuates the FSM to achieve the tracking control.
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The maximum focus length is 1000 mm, so the instantaneous visual field is about 5.5 µ·rad.
The control structure of Figure 1 is shown in Figure 2, which includes the CCD tracking loop and
the observer based on the LOS error. Q(s) is the low-pass filter. G(s) is the control plant. C(s) is the
position controller. The time delay e−T0s characterizes the CCD in the control system although it may
be rough. The function e−T1s depicts the total time delay. R(s) represents the target trajectory but
not the availability. E(s) is the LOS error from the CCD. D(s) is the disturbance, which might not
be measured by the sensors. Y(s) stands for the output. G−1

p (s) describes the inverse of the control
plant G(s). Obviously, it is impossible to have a perfectly accurate model of G(s) in the high-frequency
region, evenly in the middle-frequency region.
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Figure 2. The control mode. (a) The traditional control mode; (b) the error-based observer (EBO)
control mode.

The block diagram in Figure 2 applies to regulation and tracking control. Different from reducing
closed-loop error E(s) in the presence of the disturbance, we aim at maintaining tracking error small
without considering disturbance. In a CCD-based tracking loop, the time delay greatly limits the
closed-loop bandwidth. In addition, the high-velocity position loop can build G(s) into several
hundred Hz bandwidth [6,11]. Thus, G(s) ≈ 1 is reasonable below the closed-loop bandwidth.

The controller C(s) = π/4T0s [12] can stabilize plant G(s) to obtain a phase margin more than
35◦ and magnitude margin more than 6 dB. Defining wc as the crossover frequency and wg as the gain
frequency of the open-loop transfer function Gopen(s) = C(s)G(s), we can easily obtain wc = π/4T0

and wg = π/2T0. The open-loop sensitivity transfer function [13] illustrated in Figure 2b is given
as follows:

SR =
E(s)
R(s)

=
1− e−T1sQ

1 + CGe−T0s + (GG−1
p e−T0s − e−T1s)Q

= (1− e−T1sQ)S′R (1)

SD =
E(s)
D(s)

=
(1− e−T1sQ)G

1 + CGe−T0s + (GG−1
p e−T0s − e−T1s)Q

= (1− e−T1sQ)S′D (2)

Here, S′R and S′D are the original error and disturbance attenuation functions, respectively,
in Figure 2a. Obviously, minimizing 1− e−T1sQ(s) is the objective. It is clear that the term 1− e−T1sQ(s)
cannot be expected to be zero, but it could be designed close to zero in a low-frequency domain,
wherein the main frequencies of the tracking target R(s) are located. Therefore, Q(s) is expressed as a
low-pass filter because of 1− e−T1sQ(s) characterizing high-pass filter for improving low-frequency
performance. Furthermore, it is practically impossible to have a perfectly accurate model of G(s)
in the high-frequency region, and thus necessary to incorporate a low pass filter in Q(s) to make
the influence of (GG−1

p e−T0s − e−T1s)Q small. From the control stability’s standpoint, Q(s) should
have a bandwidth as low as possible. However, the situation is opposite against the improvement of
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1− e−T1sQ(s). Clearly, the improvement of the proposed control mode in Figure 4 is not subject to the
control plant, dependent only on the low-pass filter and time-delay function.

3. Parameters Design

The equivalent controller in Figure 2b is given in Equation (3).

Ceq(s) =
G−1

p Q + C
1− e−T1sQ

(3)

Ceq(s) is always a stabilizing controller for the plant, because this is the output of the simplest
form of Youla parameterization as long as Q(s) is stable and rational [14].

G′open =
C−1G−1

p Q + 1

1− e−T1sQ
CGe−T0s (4)

G(s) is similar to one, resulting in making C−1G−1
p Q ≈ C−1Q = ksQ where k = 4T0/π. Q(s) is

expressed as a simplest low-pass filter as follows:

Q =
1

τs + 1
(5)

In fact, for the equivalent controller not to affect the closed-loop stability margin, there are two
necessary constraints: (1) arg[A(jwc)] ≥ 0; (2) −20 log[A(jwg)]− 20 log

∣∣Gopen(jwg)
∣∣ ≥ 6 dB, where

A(s) is defined as follows:

A(s) =
C−1G−1

p Q + 1

1− e−T1sQ
≈ ks + (τs + 1)

(τs + 1)− e−T1s (6)

For analyzing the characteristic of A(s), let e−jT1w = cos(T1w)− j sin(T1w). Thus, we have

A(jw) =
j(kw + τw) + 1

1− cos(T1w) + j[τw + sin(T1w)]
(7)

Due to the existence of sine and cosine function, A(jw) fluctuates both in phase function and
magnitude function at every period of the sine function. If we define M(w) as phase function of A(jw),
then we have

M(w) = ac tan(kw + τw)− ac tan
τw + sin(T1w)

1− cos(T1w)
(8)

if T1 = 0 then M(w) = ac tan(kw + τw)− 0.5π < 0; therefore, τ needs to be large enough to make the
phase loss of M(w) small at the crossover frequency of wc. However, large τ results in sacrificing the
improvement of the closed-loop performance. Considering the derivative of M(w) below,

M′(w) =
τ + k

1 + (τ + k)2w2
− (τ − T1)[1− cos(T1w)]− τT1w sin(T1w)

[1− cos(T1w)]2 + [τw + sin(T1w)]2
(9)

M′(w) > 0 is obvious if τ − T1 ≤ 0 when T1w increases from 0 to π. M′(w) > 0 is still confirmed
when τ − T1 > 0.
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Proof. We consider two cases below:
(1) T1w ∈ (0, 1

2 π]

If ϕ(w) < 0, M′(w) > 0 is obvious, where ϕ(w) = (τ − T1)[1 − cos(T1w)] − τT1w sin(T1w).
We easily obtain ϕ(0) = 0 and ϕ′(w) = T2

1 [sin(T1w) + τw cos(T1w)] < 0. Therefore, ϕ(T1w) < 0 such
that M′(w) > 0.

(2) T1w ∈ [ 1
2 π, π]

Because of 0.5 ≤ 1
1−cos(T1w)

≤ 1 and 0 < cot T1w
2 < 1, so

M(w) = ac tan(kw + τw)− ac tan[ τw
1−cos(T1w)

+ cot T1w
2 ]

> ac tan(kw + τw)− ac tan[τw + 1]
(10)

From the above analysis, M(w) increases monotonously as T1w changes from 0 to π. Note that
Mw→0 = −0.5π and Mw→∞ = 0 are obvious. M(wc) = 0 is expected when T1wc = 0.5π such that
T1 = 0.5πk is obtained. �

The magnitude function is depicted as follows:

20 log|A(jw)| = 10 log[
(wk + wτ)2 + 1

[1− cos(T1w)]2 + [τw + sin(T1w)]2
] (11)

It is obvious 20 log|A(j∞)| = 20 log( k
τ + 1), so τ ≥ k is expected for reducing the loss of

magnitude margin. At the gain frequency of wg,
∣∣A(jwg)

∣∣ is given in in Equation (12):

20 log
∣∣A(jwg)

∣∣ = 10 log[1 +
4τwg + 1
4 + τ2w2

g
] (12)

We can easily obtain the maximum max 20 log
∣∣A(jwg)

∣∣
τwg=

√
65−1
4

≈ 6.4. Because

20 log
∣∣Gopen(jwg)

∣∣ = −6.5, it is almost impossible to let 20 log
∣∣∣G′open(wg)

∣∣∣ ≥ 6 as long as τ is limited.
Therefore, for a phase margin more than 35◦ and a magnitude margin more than 6 dB [15], with this
proposed EBO, the original controller C(s) is replaced with 0.8C(s) coupled with τ = 3.0T0 and
T1 = 1.66T0.

4. Performance Analysis

With the proposed EBO, the closed-loop performance is dependent on the characteristics
of 1 − e−T1sQ(s). The effect of 1 − e−T1sQ(s) in the closed-loop system is analyzed in terms of
attenuation bandwidth and amplification value. We substitute e−jT1w = cos(T1w)− j sin(T1w) into
1− e−T1sQ(s), yielding∣∣∣1− e−jT1wQ(jw)

∣∣∣2 = 1 +
1 + 2τw sin(T1w)− 2 cos(T1w)

(τw)2 + 1
). (13)

∣∣1− e−jT1wQ(jw)
∣∣2 = 1 means 1 + 2τw sin(T1w) = 2 cos(T1w), which implies the minmum w meets

0.16π < T1w < 0.25π. Substituting τ = 3.0T0 and T1 = 1.66T0 into the above equation coupled with
wcT0 = 0.25π, the attenuation bandwidth is about 0.5wc.

The below analysis is about amplification of 1 − e−T1sQ(s). Rewriting Equation (13) into
Equation (14),
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∣∣∣1− e−jT1wQ(jw)
∣∣∣2 = 1 +

1 + 2
√
(τw)2 + 1 sin(T1w− β)

(τw)2 + 1
≤ 1 +

1 + 2
√
(τw)2 + 1

(τw)2 + 1
(14)

where β = arccos τw√
(τw)2+1

is between 0 and 0.5π is a strictly decreasing function as the

frequency increases.
Considering τw = 2.25T1w, T1w − β = 0.5π is possible. Thus, Equation (14) can obtain the

maximum value. Because τw = 2.25T1w = 3.53 when T1w = 0.5π,
√
(τw)2 + 1 approximates to τw.

Reasonably, the maximum value
∣∣1− e−jT1wQ(jw)

∣∣ occurs at T1w = 0.5π, which is approximated to
1.36. In other words, its maximum amplification is about 3 dB compared with the originally closed-loop
system at the same frequencies.

Based on aforementioned considerations and design, the Bode response of 1− e−T1sQ(s) is shown
in Figure 3. The cutoff frequency is about 0.9 Hz, which implies that it can improve the closed-loop
performance below the cutoff frequency. A large attenuation of more than −10 dB is achieved below
the frequency of 0.1 Hz. However, the magnitude response in the middle-frequency range from
0.9 Hz to 5.5 Hz is magnified due to the amplification by exponential function and low-pass filter.
This phenomenon absolutely respects Bode’s integral theorem.
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Figure 3. Bode response of 1− e−T1sQ(s).

The Bode response of error attenuation depicted in Equation (1) is shown in Figure 4. The control
system with the EBO improves below the frequency of 0.6 Hz, lower than the cutoff frequency of
1− e−T1sQ(s). The major cause is that the influence of (GG−1

p e−T0s − e−T1s)Q cannot be cut into zero,
resulting in deteriorating middle-frequency performance of the closed-loop system. It is impossible to
obtain a precision model of the G above the low-frequency region, such that GG−1

p e−T0s − e−T1s is not
approximated to zero. Therefore, choosing a low-pass filter can contribute significantly to reducing
this enlargement, but the improvement of the 1− e−T1sQ(s) must degrade.
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5. Experimental Setup

The experimental setup of the CCD-based tracking system is illustrated in Figure 5.
The disturbance mirror is also an FSM, moving in both X-Y directions to simulate the vibration
of the light source. The CCD as a tracker is placed in the focal plane of an imaging lens to detect
the centroid of the target source to provide the LOS error. The CCD updates in 50 Hz, and the delay
parameter T0 is about 0.06 s. From the ahead analysis and design, we have τ = 0.18 and T1 = 1.0.
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The Bode response of the control plant is given in Figure 6, and its bandwidth is more than 150 Hz.
The maximum magnitude relative to 0 dB is less than 3 dB below the frequency of 30 Hz, while the
phase loss relative to 0◦ is less than 6◦, shown in Figure 5. Thus, the closed-loop transfer function
approximates to unit below the low frequency of 30 Hz.



Sensors 2017, 17, 479 8 of 10

Sensors 2017, 17, 479 8 of 10 

 

The Bode response of the control plant is given in Figure 6, and its bandwidth is more than  
150 Hz. The maximum magnitude relative to 0 dB is less than 3 dB below the frequency of 30 Hz, 
while the phase loss relative to 0° is less than 6°, shown in Figure 5. Thus, the closed-loop transfer 
function approximates to unit below the low frequency of 30 Hz.  

 
Figure 6. The Bode response of the control plant. 

Due to the large amount of time delay in the CCD tracking loop, the CCD open-loop response 
in Figure 7, in which a pure delay appears to decrease in phase sharply after the frequency of 1 Hz, 
while the magnitude remains strong until the frequency reaches 16 Hz. Therefore, a simple integral 
controller is beneficial to achieve high closed-loop performance. 

 
Figure 7. The CCD open-loop Bode response. 

The error attenuation bandwidth (about 1.2 Hz) with the EBO controller is lower than that 
(about 1.5 Hz) with the only integral controller in Figure 8. In the frequency range of about 0.5~1 Hz, 
the closed-loop performance without the EBO is a little better, which looks very much like 
simulations shown in Figure 4. Furthermore, it shows that the performance improves about 10 dB 
below the frequency of 10 Hz. Fortunately, the experimental results are in accordance with the  
theoretical analysis. 

100 101 102
-15

-10

-5

0

5

M
ag

ni
tu

de
(d

B
)

10
0

10
1

10
2

-250

-200

-150

-100

-50

0

P
ha

se
(d

eg
)

Frequency(Hz)

10-1 100 101
-80

-60

-40

-20

0

20

M
ag

ni
tu

de
(d

B
)

10-1 100 101
-600

-400

-200

0

P
ha

se
(d

eg
)

Frequency(Hz)

Figure 6. The Bode response of the control plant.

Due to the large amount of time delay in the CCD tracking loop, the CCD open-loop response
in Figure 7, in which a pure delay appears to decrease in phase sharply after the frequency of 1 Hz,
while the magnitude remains strong until the frequency reaches 16 Hz. Therefore, a simple integral
controller is beneficial to achieve high closed-loop performance.
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Figure 7. The CCD open-loop Bode response.

The error attenuation bandwidth (about 1.2 Hz) with the EBO controller is lower than that
(about 1.5 Hz) with the only integral controller in Figure 8. In the frequency range of about 0.5~1 Hz,
the closed-loop performance without the EBO is a little better, which looks very much like simulations
shown in Figure 4. Furthermore, it shows that the performance improves about 10 dB below the
frequency of 10 Hz. Fortunately, the experimental results are in accordance with the theoretical analysis.
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6. Conclusions

A high-gain controller based on LOS error for a CCD tracking loop is proposed to improve
the low-frequency performance of the FSM closed-loop system. In this paper, we focus on
the implementation of the EBO, the optimization of the control parameters, and the analysis of
the close-loop stability from the viewpoint of its practical implementation. The conditions for
implementing the EBO into the CCD-based tracking loop for FSM were presented mainly in terms
of the closed-loop stability and error attenuation. Although the control bandwidth is not obviously
improved with this proposed controller, the low-frequency error attenuation is enhanced. Different
from the classical feedforward controller [10], the improvement of this proposed controller is not
subject to the control plant. Experiments verify this technique effectively to enhance closed-loop
performance in comparison with the classical PID control mode.
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