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Abstract: Novel auxiliary truncated unscented Kalman filtering (ATUKF) is proposed for
bearings-only maneuvering target tracking in this paper. In the proposed algorithm, to deal with
arbitrary changes in motion models, a modified prior probability density function (PDF) is derived
based on some auxiliary target characteristics and current measurements. Then, the modified prior
PDF is approximated as a Gaussian density by using the statistical linear regression (SLR) to
estimate the mean and covariance. In order to track bearings-only maneuvering target, the posterior
PDF is jointly estimated based on the prior probability density function and the modified prior
probability density function, and a practical algorithm is developed. Finally, compared with other
nonlinear filtering approaches, the experimental results of the proposed algorithm show a significant
improvement for both the univariate nonstationary growth model (UNGM) case and bearings-only
target tracking case.

Keywords: bearings-only target tracking; statistical linear regression; auxiliary truncated unscented
Kalman filtering

1. Introduction

Bearings-only maneuvering target tracking has been widely researched for decades. It is important
for many applications such as maritime surveillance, navigation and aerospace, wireless sensor
networks (WSN), and infrared search and track (IRST) systems [1–6]. However, while implementing
this technology in unlimited situations, there remain some challenging problems, such as multiple
platform tracking, uncertainty of the target model and nonlinear non-Gaussian noise. To deal with
the uncertainty of the motion model, such as abrupt target maneuver, heavy clutter measurements,
highly nonlinearity of dynamic models and nonlinear non-Gaussian noise, etc., the interacting multiple
model (IMM) [7] based on the nonlinear filtering algorithm is a promising approach. However, to
model the uncertainty of the motion model, the performance of the IMM-type algorithm is directly
proportional to the number of the motion models. Generally, the more motion models we produce,
the greater accuracy of the estimated state we obtain. However, the computational complexity of
the algorithm becomes larger with the increase of the numbers of motion models, particularly in
heavily cluttered environments. Moreover, the nonlinear filtering has been studied extensively in
bearings-only maneuvering target tracking.

As is well-known, the most widely used nonlinear filtering for bearing-only tracking is to employ
an extended Kalman filter (EKF) [8,9]. However, when the nonlinearity of dynamic models becomes
more severe, the performance of the EKF degrades sharply. In order to solve this problem, the
unscented Kalman filter (UKF) [10] and the truncated unscented Kalman filtering (TUKF) were
proposed [11,12]. Compared with other conventional Kalman filter-type approaches, the TUKF can
achieve better performance in the conditions of the target tracking system, and can provide very
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informative nonlinear measurements compared to the prior. Moreover, to take into account the
available additional information the state given by the constraint, Ondrej et al. [13] proposed a generic
local filter for the inequality constrained estimation problem, and designed an efficient truncation
technique based on the Monte Carlo integration method for the approximation of the state probability
density function. Beatriz et al. [14] proposed a constrained dual state and parameter estimation
algorithm using a dual Kalman filter (DKF) and a probability density function (PDF) truncation
algorithm for analysis of lateral vehicle dynamics.

In recent years, particle filtering has been widely used for bearing-only tracking. In [15], Gordon
proposed the first particle filtering algorithm based on the resampling step. The main idea is that the
posterior distribution can be approximated by series of random samples with associated weights, and
its parameter estimates can be computed by these samples and weights. Therefore, particle filtering
can deal with nonlinear non-Gaussian problems in terms of the dynamics and measurements. Recently,
many particle filtering methods have been proposed [16–18], for example, the extended Kalman particle
filter (EKF-PF), unscented particle filter (UPF), and the multivariable feedback particle filter (GPF) [18].
Moreover, for the maneuvering target tracking problem, many particle filters have been proposed
based on Markovian switching systems [19–22]. Boers et al. [19] proposed a interacting multiple model
particle filter algorithm (IMM-PF) by combining a mixture of the interacting multiple model (IMM)
filter with the particle filter. For the maneuvering target tracking problem in bearings-only wireless
sensor networks (WSNs), Atiyeh et al. [20] proposed a interacting multiple model particle filter to
estimate the state variables of the moving target. Li et al. [21] proposed a Rao–Blackwellized particle
filter based on multiple model algorithm for maneuvering target tracking in a cluttered environment.
Yu et al. [22] proposed a distributed particle filter by incorporating the curvature of the sensing region
in the measurement model for bearings-only tracking of a moving target. In their method, to reduce the
communication load, the transformation of the observations is approximated as Gaussian distribution,
which the variance can be approximated using the average variance over all particles. However, abrupt
target maneuvers, modeling uncertainty and the high nonlinearity of model function remain to be
unsolved issues.

For achieving a successful tracking performance, the aforementioned methods require accurate
motion models and adaptive nonlinear filtering methods. However, particularly in maneuvering target
tracking, accurate motion modeling is almost impossible, and an adaptive nonlinear filtering needs to
be used to handle abrupt maneuver of target. More importantly, these two challenges are not separate
problems and should be considered simultaneously. In previous research [23,24], Ehsan et al. [23]
proposed a new bearing-only bias estimation model based on triangulation using the associated
measurement reports (AMR) or local bearing-only tracks from different sensor pairs for distributed
tracking systems. Li et al. [24] proposed novel truncated quadrature Kalman filtering (TQKF) based on
the Gauss-Hermite quadrature rule for bearings-only maneuvering target tracking. In order to avoid
the requirement of the measurement function being bijective, the modified prior PDF of the TQKF
algorithm can be approximately computed by the least square estimation approach. However, the
most important limitation of the TQKF is the expensive computational burden, and it cannot be used
for real time target tracking.

In this paper, novel auxiliary truncated Kalman filtering (ATUKF) is proposed for bearings-only
maneuvering target tracking. Unlike the TUKF algorithm, to overcome the modeling uncertainty,
a modified prior probability density function (PDF) is defined based on several auxiliary target
characteristics and current measurements, which can effectively minimize the variance of the prior
distribution. Moreover, to achieve the requirement of bijective measurement function, the statistical
linear regression based on the unscented transformation is used to linearize the nonlinear measurement
function, and the modified prior PDF is approximated as Gaussian. Finally, the posterior PDF can be
approximately estimated based on the prior PDF and the modified prior PDF, and a practical algorithm
is developed for bearings-only target tracking systems.
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The rest of the paper is organized as follows. The proposed algorithm is given in Section 2.
In Section 3, we provide the experimental results. Finally, some conclusions are given in Section 4.

2. Proposed Algorithm

In order to track the maneuvering target, accurate motion modeling and nonlinear filtering are
two challenging problems that should not be separated. However, most research on maneuvering
tracking investigates these problems separately. In this section, in the bearings-only maneuvering
target tracking, novel auxiliary truncated unscented Kalman filtering is proposed. In Section 2.1, the
joint prior distribution is approximately constructed. In Section 2.2, in order to track the bearings-only
maneuvering target, the modified prior PDF is approximated based on statistical linear regression by
introducing the target spatio-temporal information. Section 2.3 summarizes the proposed algorithm.

2.1. Joint Prior Distribution

Suppose the target dynamic system can be written as:

xn = f (xn−1) + mn (1)

zn = h(xn) + en (2)

where zn ∈ Rnz denotes the observation vector at time n, xn ∈ Rnx denotes the target state vector
at time n, and f (·) and h(·) denote the nonlinear state transition function and observation function,
respectively.

Suppose that rn denotes the set of target characteristics including c independent components
rn =

{
r1

n, r2
n, . . . , rc

n
}

. In order to derive the proposed algorithm, there are two basic hypotheses,
firstly, that the nonlinear function hn(·) in (2) is a bijective, continuous function; and secondly, that the
probability density function of the measurement noise en has bounded, connected support.

pen(vn) = 0, en /∈ Ien ⊂ <nz (3)

where Ien is an nz-dimensional measurement validation region. Therefore, according to the second
assumption, the measurement likelihood function can be defined as follows:

p( zn|xn, rn) = pen(zn − hn(xn))χIen
(zn − hn(xn)) (4)

p(zn

∣∣∣xn, rn) = pen(zn − hn(xn))χIxn (zn)(xn) (5)

Ixn(zn) =
{

xn|xn = h−1
n (zn − en), en ∈ Ien

}
(6)

where χIen
(·) is the indicator function on the subset Ien . Therefore, the state posterior PDF can be

defined as:

p(x0:n|z1:n, r1:n) = p(zn |x0:n ,z1:n−1,r1:n)p(xn |x1:n−1,z1:n−1,r1:n)p(x1:n−1|z1:n−1,r1:n−1)
p(zn ,rn |z1:n−1,r1:n−1)

=
pek (zn−h(xn))χIx(zn)(xn)p(xn|xn−1,z1:n−1,r1:n)p(x1:n−1|z1:n−1,r1:n−1)

p(zk ,rk |z1:k−1,r1:k−1)

∝ p(zn|xn)p1(xn|zn, xn−1, r1:n)p(x1:n−1|z1:n−1, r1:n−1)

(7)

p1(xn

∣∣∣zn, xn−1, r1:n) = p(xn

∣∣∣xn−1, z1:n−1, r1:n)χIxn (zn)(xn)/ε1 (8)

where ε1 is a constant. From Equation (8), we can see that the modified prior PDF is defined by
incorporating the current measurement information zn. According to the conclusions in [11], if the
measurement noise is informative, the modified prior p1(·) is not only the minimum variance of the
prior p0(·), but also can improve the algorithm’s performance. Further, to deal with the uncertainty
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of motion models, the joint prior distribution p(xn|x0:n−1, z1:n, r1:n) of the proposed algorithm can be
defined as follows:

p(xn|x0:n−1, z1:n, r1:n) = αn p1(xn|zn, xn−1, r1:n) + (1− αn)p0(xn|xn−1, z1:n−1)

= αn p(xn

∣∣∣xn−1, r1:n)χIxn (zn)(xn) + (1− αn)p0(xn

∣∣∣xn−1, z1:n−1)
(9)

where αn ∈ [0, 1] is a proper parameter. To approximately calculate the mean and covariance of the
posterior distribution, we apply a UKF update to p0(·) (UKF1), and another UKF update to p1(·)
(UKF2). Finally, the posterior estimates can be approximately calculated through merging both results
obtained by UKF1 and UKF2.

2.2. Approximation of p1(·)

In the subsection, our object is to approximate the modified prior PDF p1(·) as Gaussian. For this

reason, we write the state vector as xn = [an
T , bn

T ]
T

, where an ∈ <na denotes the position components
of xn, bn ∈ <nb denotes the velocity components of xn, and nx = na + nb. The derivation of the mean
x̂p1,n and covariance Pp1,n of p1(·) is the same as in the truncated unscented Kalman filter (TUKF) [11],
which can be shown as follows:

x̂p1,n =

[
µan ,1

µbn ,1

]
, Pp1,n =

[
∑an ,1 ∑anbn ,1

(∑anbn ,1)
T ∑bn ,1

]
(10)

Σan ,1 = H̃−1
n Rn(H̃−1

n )
T

(11)

where µbn ,1, Σbn ,1, Σanbn ,1 can be found in [11]. µan ,1 denotes the estimated mean of state an, Rn

denotes the measurement noise covariance, and H̃−1
n = [∇an hT

n (an)]
T |an=µan ,1 is the Jacobian of hT

n (an)

evaluated at µan ,1.
Now, how to calculate the estimated mean µan ,1 remains a key problem to be solved. For the

passive sensor tracking system, the modeling of target dynamic system is a challenging problem when
the target maneuvers, and some auxiliary target characteristics need to be used to deal with arbitrary
changes in motion models. To achieve a high tracking performance, a statistical linear regression
method (SLR) [25] is proposed to estimate the state mean µan ,1.

Firstly, to evaluate the state mean µan ,1, three approximations are used: (S1) the prior PDF p0(an)

is constant over the connected region Ian(zn); (S2) the nonlinear function h(·) can be locally linearized;
and (S3) the measurement noise satisfies uniform distribution en ∼ UIen

in the connected region Ien .
According to S2, the nonlinear measurement Equation (2) can be approximated as a linear estimator of
zn, ẑn such that:

ẑn = }nan + dn (12)

where }n denotes a linear measurement matrix, and dn denotes a noise vector, which are derived by
minimizing the objective function defined as follows:

{}n, dn} = argminE(τn
Tτn) (13)

where τn is the linearization error, τn = zn − ẑn.
Substituting τn into (13), and setting the partial derivative of the objective function with dn to zero,

(−2)E(zn − }nan − dn) = 0
⇔ dn = zn − }nan

(14)

where an = E(xn) and zn = E(zn). Substituting dn into (13)

τTτ = [(zn − zn)− }n(an − an)]
T [(zn − zn)− }n(xn − xn)]
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Then, setting the gradient with respect to }n to zero,

(−2)E{[(zn − zn)− }n(an − an)][zn − zn])} = 0 (15)

Solving (15) for }n, we obtain:
}n = PT

anzn P−1
anan (16)

where Panan = E[(an − an)(an − an)
T ], Panzn = E[(an − an)(zn − zn)

T ]. According to the measurement
equation (12), the maximum likelihood position ân(zn) of target state an can be estimated as follows:

â(zn) = }n · (zn − dn) (17)

If the maximum likelihood estimate ân(zn) is used to replace the estimated mean µan ,1, the
performance of the proposed algorithm will be improved because the current measurement information
is incorporated. However, it cannot solve the uncertainty in motion models. In particular, when the
target speed or the measurement sampling interval is large, the tracking performance degrades.

More recently, sophisticated techniques have been based on the target motion characteristics [6],
which have been proposed to address the challenges in motion modeling. In their proposed method,
three target characteristics, such as actual target speed v, time interval T of measurement and course
angle θ of the target, are considered to improve the tracking performance. In (18), the relationship
between three target characteristics and the state predicted error is given:

∇σ =
√
(T · v)2 + (T · vn)

2 − 2T2v · vn cos(∇θ)

= T ·
√
(v)2 + (vn)

2 − 2v · vn cos(∇θ)
(18)

where vn denotes the current estimated velocity, ∇θ denotes the estimated error of course angle, and v
denotes the actual target velocity. Supposing ∇v = v− vn, we can obtain

∇σ = T ·
√
(v)2 + (vn)

2 − 2v · vn cos(∇θ)

= T ·
√
∇vn2 + 2v · (v−∇vn)(1− cos(∇θ))

(19)

From Equation (19), we can find that the predicted error ∇σ increases monotonically with the
increase of the parameters (vn, T, ∇θ). In fact, when ∇vn > 50 m/s and T > 20 s, the predicted
error ∇σ will larger than 1000 m. It shows that the predicted error becomes a major reason for the
performance degradation. On the other hand, when the actual target speed is relatively small, the
prediction error caused by T or ∇θ is smaller than the measurement error. Therefore, to improve the
performance of mean estimate µan ,1, the maximum likelihood estimate ân(zn) is considered as the
latest observation, and the modified maximum likelihood estimates that can incorporate current target
characteristics is defined as follows:

ϕ̂(zn) = µan ,0 + Kn(â(zn)− }nµan ,0) (20)

Kn =
(

T2 · v2 · σ2
v (n)

)
/
(

λ · σ2
e (k) + T2 · v2 · σ2

v (n)
)

where λ is a constant, σ2
e (n) denotes the variance of measurement noise, and σ2

v (n) denotes the
innovation variance. According to (20) and (16), the mean µan ,1 and the variance Σan ,1 in (10) can be
approximated as:

µan ,1 = ϕ̂(zn), Σan ,1 = Panan (21)

Finally, the modified prior PDF p1(·) can be approximated as a Gaussian probability density
function p1(·) ≈ N(xn, x̂p1,n, Pp1,n).
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2.3. Summary of the Proposed Algorithm

According to the descriptions above, in order to describe clearly the proposed algorithm, the
diagram of the ATUKF is shown in Figure 1. In Figure 1, it is shown that one cycle of the ATUKF
algorithm consists of the following steps: (A) time update (predicted by using Kalman filtering); (B) the
measurement updates based on the prior p0(·) and the modified prior p1(·); and (C) weight calculation
and the joint state update. According to the derived results mentioned above and Figure 1, the detailed
information of the new ATUKF algorithm can be summarized as follows.
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Algorithm: Auxiliary Truncated Unscented Kalman Filtering (ATUKF)

ATUKF—Update based on the prior probability density function (PDF) p0(·)

1. Obtain N = 2nx + 1 sigma points χ1
0, χ2

0..., χN
0 and the corresponding associated weights

w1, w2, ..., wN using unscented transform (UT ) based on the mean x̂n−1|n−1 and covariance
Pn−1|n−1 of the posterior PDF p0(xn|xn−1, z1:n−1, r1;n−1) , where nx denotes the dimension of state
x. The predicted sigma points can be obtained by the nonlinear state function f (·):

χi
0,n|n−1 = f (χi

0), i = 1, 2, . . . , N (22)
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2. Approximate the mean and covariance of the state-predicted prior PDF p0(xn|xn−1, z1:n−1)

x̂p,0,n|n−1 =
N

∑
i=1

wiχ
i
0,n|n−1 (23)

Pp,0,n|n−1 = Qn +
N

∑
i=1

wi(χ
i
0,n|n−1 − x̂p,0,n|n−1)(χ

i
0,n|n−1 − x̂p,0,n|n−1)

T
(24)

3. Compute the predicted measurement ẑ0,n|n−1 based on the nonlinear measurement function h(·):

zi
0,n|n−1 = h(χi

0,n|n−1), i = 1, 2, . . . , N (25)

ẑ0,n|n−1 =
N

∑
i=1

wiz
j
0,n|n−1 (26)

4. The cross-covariance, innovation covariance and error covariance are estimated as follows:

Pxz,0,n|n−1 =
N

∑
i=1

wi(χ
i
0,n|n−1 − x̂p,0,n|n−1)(z

i
0,n|n−1 − ẑ0,n|n−1)

T
, (Cross covariance) (27)

Pzz,0,n|n−1 = Rn +
N

∑
i=1

wi(zi
0,n|n−1 − ẑ0,n|n−1)(z

i
0,n|n−1 − ẑ0,n|n−1)

T
, (Innovation covariance) (28)

Pxx,0,n|n−1 =
N

∑
i=1

wi(χ
i
0,n|n−1 − x̂p,0,n|n−1)(χ

i
0,n|n−1 − x̂p,0,n|n−1)

T
, (Error covariance) (29)

5. Estimate the mean x̂u,0,n|n and covariance Pu,0,n|n using (30) and (31):

x̂u,0,n|n = x̂p,0,n|n−1 + Pxz,0,n|n−1P−1
zz,0,n|n−1(zn − ẑ0,n|n−1) (30)

Pu,0,n|n = Pp,0,n|n−1 − Pxz,0,n|n−1P−1
zz,0,n|−1PT

xz,0,n|n−1 (31)

ATUKF—Update based on the modified prior PDF p1(·)

1. Calculation of the mean x̂p,1,n|n−1 and covariance Pp,1,n|n−1 of the prior p1(·)

According to (14) and (16) in Section 2.2, the linear regression coefficients }n and dn can be
approximately computed by using Equations (27)–(29). The mean x̂p,1,n|n−1 and covariance
Pp,1,n|n−1 of p1(·) can be approximately estimated by (10) and (11), respectively.

2. Draw N new sigma points χ1
1,n|n−1, χ2

1,n|n−1, . . . , χN
1,n|n−1 with the associated weights

w1, w2, . . . . . . wN by using the UT based on the mean x̂p,1,n|n−1 and covariance Pp,1,n|n−1.
The predicted measurements of new sigma points are estimated as follows:

zi
1,n|n−1 = h(χi

1,n|n−1) (32)

3. Calculation of ẑ1,n|n−1, Pzz1,n|n−1 andPxz1,n|n−1

ẑ1,n|n−1 =
N

∑
i=1

wiz
j
1,n|n−1 (33)

Pzz,1,n|n−1 = Rn +
N

∑
i=1

wi(zi
1,n|n−1 − ẑ1,n|n−1)(z

i
1,n|n−1 − ẑ1,n|n−1)

T
, (Innovation covariance) (34)
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Pxz,1,n|n−1 =
N

∑
i=1

wi(χ
i
1,n|n−1 − x̂p,1,n|n−1)(z

i
1,n|n−1 − ẑ1,n|n−1)

T
, (Cross covariance) (35)

4. Estimate the mean x̂u,1,n|n and covariance Pu,1,n|n using (36) and (37):

x̂u,1,n|n = x̂p,1,n|n−1 + Pxz,1,n|n−1P−1
zz,1,n|n−1(zn − ẑ1,n|n−1) (36)

Pu,1,n|n = Pp,1,n|n − Pxz,1,n|n−1P−1
zz,1,n|n−1PT

xz,1,n|n−1 (37)

ATUKF—Jointly update

1. Calculate the parameter αn using (38) and (39)

µ1(x̂u,i,n) = 1/
√
|Pu,i,n| · exp((zn − hn(x̂u,i,n))/2), i = 0, 1 (38)

αn = µ1(x̂u,1,n)/(µ0(x̂u,0,n) + µ1(x̂u,1,n)) (39)

2. Approximate the mean x̂n and covariance Pn of the posterior PDF p(xn|z1:n) using (23) and (24).

x̂n|n = αn · x̂u,1,n|n + (1− αn) · x̂u,0,n|n (40)

Pn|n = αn ·
[

Pu,1,n|n + (x̂u,1,n|n − x̂n|n
)

(x̂u,1,n|n − x̂n|n
)

T
]
+ (1− αn) ·

[
Pu,0,n|n + (x̂u,0,n|n − x̂n|n)(x̂u,0,n|n − x̂n|n)

T
]

(41)

3. Simulation Results

In this section, to evaluate the tracking performance of the ATUKF algorithm, two examples
are employed. In Section 3.1, the univariate nonstationary growth model (UNGM) is discussed [11].
In Section 3.2, a bearings-only maneuvering tracking scenario [24], interested in defense applications,
is discussed. In the first case, the EKF, UKF, the quadrature Kalman filtering (QKF) [25], the mixture
truncated unscented Kalman filter (MTUKF, with three mixture components) [12] and particle
filtering(PF) are utilized. In the second case, the TQKF, interacting multiple model extended Kalman
filtering(IIMMEKF) and the interacting multiple model Rao–Blackwellized particle filter (IMMRBPF)
are employed. In all the experiments, each simulation has been repeatedly performed 100 times.

3.1. Univariate Nonstationary Growth Model (UNGM)

In this section, due to the highly nonlinearity and non-stationarity of dynamic system, the
univariate nonstationary growth model is considered. The discrete time system of this model can be
written as:

xn = αxn−1 + β
xn−1

1 + x2
n−1

+ γ cos(1.2(n− 1)) + mn (42)

zn =

{
φ2x2

n + en n ≤ 30
φ1x3

n − 2 + en n > 30
(43)

where the process noise mn is satisfied with Gaussian distribution with zero mean and variance one,
and en is satisfied with Gaussian distribution with zero mean and variance 0.01. α = 0.5, β = 25, γ = 8,
φ1 = 0.2 and φ2 = 0.05 are known constants. In each Monte Carlo simulation, we assume that the
initial distribution of state x0 is uniform distribution in the interval [0 1]. The number of particles
is 1000.

Figure 2 shows the root-mean-square position errors (RMSE) of the EKF, UKF, QKF, PF, MTUKF
and ATUKF. It is obvious from Figure 2 that the performance of the ATUKF is much better than that of
the EKF, UKF and QKF. In this case, the performance of the EKF is the poorest. A reason for the poor
performance of the EKF, UKF and QKF is the increase of the approximate error arising from the high
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nonlinearity and the non-stationarity of the dynamic system. Figure 3 shows the RMS position errors
of all filters with different noise variance σen ∼ [0.1 5]. From Figure 3, it is seen that whenever the
measurement is informative (σen < 1) or the measurement is uninformative (σen > 1), the ATUKF is
robust in all situations, its performance is similar to the MTUKF’s, and it is very close to that of the PF.
Moreover, among the EKF, UKF and QKF, the EKF has the poorest performance. In particular, when
the measurement is very informative (σen < 1), the EKF yields a divergent estimate.
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Figure 2. Root-mean-square (RMS) position errors of the extended Kalman filter (EKF), unscented
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Figure 3. RMS position error for different noise variances.

Table 1 shows the computation time statistics for all algorithms. In this case, all the experiments
are performed by using MATLAB programming on Intel-Core(TM)-i2-4030U processor (1.9 GHz)
based on the Windows platform. It can be seen from Table 1 that the computational load of the PF is
the largest than these of other filters, such as the EKF, UKF, QKF, MTUKF and ATUKF. The ATUKF
is very close to the QKF. Furthermore, the computation time for the ATUKF is much lower than the
MTUKF. The main reason is that the MTUKF approximates the posterior PDF as a Gaussian mixture,
and it makes the computational burden increase.
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Table 1. Comparison of the computation times of different filtering algorithms (s). UNGM: univariate
nonstationary growth model.

Case EKF UKF QKF PF MTUKF(3) ATUKF

UNGM 1.102 6.650 15.264 522.519 43.142 16.240

3.2. Bearings-Only Maneuvering Tracking (BOT) Scenario

In this scenario, the target makes two circular turns with rectilinear segments connecting them.
Figure 4 shows the true target trajectory. The speed modulus is kept constant throughout (0.3 km/s).
The initial position is (2 km, 8 km, 1 km), and the initial velocity is (0.15 km/s, 0.26 km/s, 0.0 km/s).
The segments are defined as follows:
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Figure 4. True Trajectory.

First segment. Rectilinear flight until the plane is at (6.35 km, 15.53 km, 1 km) (from t = 0 s to
t = 30 s).

Second segment. Circular turn with turn rate 6o/s (from t = 31 s to t = 50 s).
Third segment. Rectilinear flight until the plane is at (14.31 km, 10.33 km, 1 km) (from t = 51 s to

t = 70 s).
Fourth segment. Circular turn with turn rate 4. 8o /s (from t = 71 s to t = 95 s).
Fifth segment. Rectilinear flight until the plane is at (21.26 km, 11.63 km, 1 km) (from t = 96s to

t = 100 s).
The motion model of target is defined as follows:

xs
n = Fsxs

n−1 + ms
n (44)

where xs
n = (x, y, z, x′, y′, z′) denotes the target state vector under model x, x, y and z denote the target

position coordinates, x′, y′ and z′are the target speed in x, y and z directions, respectively, Fs denotes
the transition matrix, and s ∈ {1, 2, . . . , M} denotes the target model index. In the maneuvering target
tracking scenario, only a constant velocity model is used for the ATUKF algorithm and TQKF algorithm.
In the IMMEKF and IMMRBPF, there are both clockwise- and counterclockwise-coordinated turn
models that are used to simulate the target maneuvering. The details of three target motion models are
defined as follows:

Model 1: Constant Velocity Motion

The state transition matrix and the process noise covariance matrix are defined by:



Sensors 2017, 17, 972 11 of 14

F1 =



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(45)

Q1 =



1
4 T4 0 0 1

2 T3 0 0
0 1

4 T4 0 0 1
2 T3 0

0 0 1
4 T4 0 0 1

2 T3

1
2 T3 0 0 T2 0 0
0 1

2 T3 0 0 T2 0
0 0 1

2 T3 0 0 T2


· σ2

n (46)

where T denotes the sampling interval, in this paper, T is set to 1.

Model 2: Constant Turn Motion

The state transition matrix is:

F2 =



1 0 0 sin(w)
w

cos(w)−1
w 0

0 1 0 1−cos(w)
w

sin(w)
w 0

0 0 1 0 0 1
0 0 0 cos(w) − sin(w) 0
0 0 0 sin(w) cos(w) 0
0 0 0 0 0 1


(47)

where w is a constant angular rate. In this paper, w is set to 0.0175. The process noise covariance matrix
Q2 is the same as in Model 1.

Model 3: w > 0 describes a clockwise turn, and Model 3 is its natural counterpart for a
counterclockwise turn w < 0.

Two passive sensors are deployed in (0, −5 km, 0) and (0, 5 km, 0) respectively. Using the
detection fusion architecture [24], the azimuth and elevation angles of aircraft, αi and βi respectively,
measured by sensor i, are transmitted to the fusion node. The measurement function is written as:

h(xn) =

(
αi
βi

)
=


arctan

( y−si,y
x−si,x

)
arctan

(
z−si,z√

(x−si,x)
2+(y−si,y)

2

)  (48)

where (si,x, si,y, si,z), i = 1, 2 denote the positions of the stationary sensors. The measurement covariance

can be defined as Rn =

[
1 0
0 1

]
σ2

en .

The real initial position of the target is (2 km, 8 km, 1 km), and the initial velocity
is (0.15 km/s, 0.26 km/s, 0.0 km/s). The prior PDF of state x0 is assumed to be x0 ∼
N
(

x̂0|0, P̂0|0

)
, where x̂0|0 = [2.1 km 00. 12 kms−1 7.95 km 0. 23 kms−1 0. 95 km 0 kms−1]

T
, P̂0|0 =

diag[0.144 km 2 0. 022 km2s−2 0. 144 km2 0. 02.2 km2s−2 0 0]
T

. The standard deviation of the process
and the measurement noise are set to σmn = 0.01 and σen = 0.001, and these noises are zero-mean
Gaussian-distributed and independent. The number of particles is set to 200.

Figure 5 shows the X RMSE, Y RMSE, Z RMSE and position RMSE of the ATUKF compared with
IMMEKF, IMMRBPF and TQKF. From Figure 5, we can see that the RMSE of all algorithms abruptly
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increased from 30 s to 50 s, which is mainly due to the increase of the target predicted errors caused by
the target maneuvering. However, in Figure 5a,c,d, it is shown that the performance of the ATUKF
algorithm has outperformed the IMMEKF, IMMRBPF and TQKF. A key reason is that the proposed
algorithm can incorporate the target characteristic information and current measurement information
into the prior PDF, which can effectively degrade the variance of errors caused due to the maneuvering
of the target. Moreover, because the flight height of target remained unchanged, from Figure 5c, the Z
RMSE of all algorithms is very close.
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Figure 5. Root-mean-square error (RMSE) of the ATUKF, IMMEKF and IMMRBPF. (a) X RMSE; (b) Y
RMSE; (c) Z RMSE; (d) position RMSE.

Finally, the computation time statistics for all algorithms are given in Table 2. In this case, all the
experiments are performed by using MATLAB programming on an Intel-Core(TM)-i2-4030U processor
(1.9 GHz) based on the Windows platform. In Table 2, it is shown that the computational load of
the IMMRBPF is much higher than these of the IMMEKF, TQKF and ATUKF. More importantly, the
ATUKF requires much less of a computation time than the TQKF. However, the computational load of
the ATUKF is nearly two times higher than that of the IMMEKF.

Table 2. Computation times for all algorithms (s). BOT: Bearings-only maneuvering tracking.

Case IMMEKF IMMRBPF TQKF ATUKF

BOT 0.074 14.493 0.553 0.150



Sensors 2017, 17, 972 13 of 14

4. Conclusions

In this paper, we presented a bearings-only target tracking algorithm based on an auxiliary
truncated unscented Kalman filtering (ATUKF) algorithm. Unlike the truncated unscented Kalman
filtering, in the proposed algorithm, several target characteristics were introduced to construct the
modified prior PDF, and the statistical linear regression was used to linearize the nonlinear non-bijective
measurement function by using the sigma points. Moreover, we have developed a practical algorithm
for a bearings-only target tracking system. Finally, in the simulation results, compared with the EKF,
UKF, the quadrature Kalman filtering (QKF), the mixture truncated unscented Kalman filter (MTUKF)
and the particle filter (PF), the ATUKF exhibits better performance. For the second case, compared
with the IMMEKF algorithm, the IMMRBPF algorithm and the TQKF algorithm, the ATUKF algorithm
not only improves the performance of the tracker, but significantly reduces the computation time.
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