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Abstract: A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric
resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary
coil connected to the electrodes of the resonator. The interrogation technique periodically switches
between interleaved excitation and detection phases. During the excitation phase, the resonator is set
into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the
excitation signal is turned off and the transient decaying response of the resonator is sensed without
contact by measuring the voltage induced back across the primary coil. This approach ensures
that the readout frequency of the sensor signal is to a first order approximation independent of the
interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the
interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has
been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the
accurate readout of the series resonant frequency and quality factor over an interrogation distance
of up to 2 cm. As an application, the technique has been applied to the measurement of liquid
microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique
can be exploited for the measurement of any physical or chemical quantities affecting the resonant
response of quartz resonator sensors.

Keywords: quartz crystal resonator; quartz crystal microbalance; contactless electromagnetic
interrogation; resonant sensor; liquid solution microdroplet measurement

1. Introduction

AT-cut quartz crystal resonators (QCRs) are thickness-shear-mode (TSM) acoustic-wave resonators
in which a thin quartz disk, obtained from a quartz rod sliced at an angle of 35.25◦ with respect to its
optical axis, is sandwiched between two metal electrodes [1]. As a result of the piezoelectric nature of
quartz, the application of an alternating electric field across the quartz disk produces a shear strain
proportional to the electric potential. The QCR shows a set of resonant frequencies determined by the
shear acoustic wave velocity and the crystal thickness.

These resonant frequencies are sensitive to a wide range of measurands, e.g., the mass deposited
upon the crystal surface [2,3]. Based on this effect, quartz crystal microbalances (QCMs) are the QCRs
commonly employed as mass sensors in gas phase, in vacuum, and in contact with liquids in many
bio-analytic applications [4–9]. There are basically three different operation modes for QCR sensors.
The first is based on an oscillator circuit in which the QCR is the element determining the frequency of
oscillation. This method typically allows the measurement of the frequency variation due to different
quantities, such as mass loading in QCMs, stress, or temperature, just to name a few. Oscillator circuits
capable to provide output signals related to sensor frequency and energy dissipation for both the
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fundamental and the third harmonic have been reported [10]. The second operation mode involves
impedance analysis allowing both the sensor frequency and energy dissipation data to be collected;
also extending the analysis to multiple harmonics. Impedance analysis can be somewhat slow, and it
can require expensive instrumentation, even if dedicated stand-alone interface circuits for the analysis
of multiple-harmonic responses have been proposed [11–13]. The third operation modeis the Quartz
Crystal Microbalance with Dissipation monitoring (QCM-D) [14] and it is based on the recording of
the free decay of the QCM oscillations allowing simultaneous measurements of the sensor frequency,
dissipation factor D and oscillation amplitude.

In all the above three cases, cabled links are required between the sensor unit and the readout
electronic circuit or system. On the other hand, the possibility of contactless interrogation sensors
can be attractive in applications where cabled solutions are not allowed, such as in closed volumes
or packages. For instance, QCMs coated with suitable functionalizing polymers and operating as
contactless gravimetric resonant sensors could be placed inside food packages for quality or spoilage
monitoring. Alternatively, they could be adopted for the realization of smart sensing labels for sealed
packages or drug conservation. Applications in liquid environments to monitor biological samples
can be also viable. In contactless operation, the energy required to power the sensor unit needs to be
made available on board. Battery-powered sensor units have been the most adopted solution, but they
present the significant drawback of requiring periodical battery recharge or replacement. As an
alternative, energy harvesting techniques can be adopted [15,16]. For applications involving hostile
environments that may be incompatible with active electronics, an attractive solution is adopting
passive sensors with energy supplied by an external interrogation unit. This is commonly done in
the broad field of radio frequency identification (RFId) systems [17], as well as in remote sensing
applications involving surface acoustic wave (SAW) sensors [18,19].

Because in the resonant measurement principle information is carried by the frequency of the
readout signal, resonant sensing can be considered a robust approach in contactless operation to
minimize the detrimental effect caused by the interrogation distance, which influences the readout
signal amplitude. From this perspective, QCRs can be used as passive resonator sensors for the
measurement of quantities affecting resonant frequency and/or quality factor. Techniques for
contactless interrogation of quartz resonators have been previously studied, though they typically use
special-electrode sensors or bare crystals [20,21]. Specifically, in [22] a technique based on measuring
the admittance of a QCR sensor through an electromagnetic coupling between a primary coil and
a secondary coil connected to the sensor was proposed. The reported analysis and results show that
the variations of the readout QCR frequency depend on the mutual inductance between the coils and
on their distance. This is a fundamental limitation in practical applications where keeping the distance
fixed might be problematic or impossible.

The contactless electromagnetic principle proposed in this paper advantageously employs QCR
crystals with ordinary electrodes. In addition, it grants a first order independence from the interrogation
distance, since the mutual inductance between the coils acts only as a scaling factor on the signal amplitude.

In particular, the developed interrogation principle exploits the electromagnetic air coupling
between two coils to perform a gated excitation of the resonator, followed by the sensing of the
free transient response. The technique has been successfully employed with different piezoelectric
sensors [23] and, with the aid of a static magnetic field, also with non-piezoelectric sensors, like silicon
micro-electro-mechanical system (MEMS) resonators [24–26]. The technique also has a comparatively
fast readout capability in the order of several readings per second, depending on the gating frequency,
allowing the monitoring of rapid changes in the sensor parameters. To this purpose, dedicated
post-readout techniques, based on autocorrelation analysis suitable for the implementation into
embedded systems, have been developed for measuring the significant parameters of QCR sensors [27].
This contactless interrogation technique can simultaneously measure both the resonant frequency and
quality factor (Q = 1/D) of the sensor, making it somewhat related to the QCM-D technique, but with
the advantage of contactless operation.
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This paper is dedicated to a theoretical analysis, based on the derivation of a lumped-element
equivalent electromechanical circuit, and detailed investigation of the operating principle of the
contactless interrogation technique. In particular, closed-form expressions for the frequency of
the readout signal are presented for the first time, and the dependence on the equivalent model
parameters are derived, supporting the analysis by numerical investigations. The theoretical
predictions, in particular the independence of the readout signal frequency from the distance, are
validated through experimental results on a developed system connected to AT-cut QCR sensors.
In addition, the successful application of the proposed technique to measure the frequency shift due to
microdroplets of water-sugar solution deposited on a quartz crystal resonator is reported.

2. Operating Principle

Figure 1 illustrates the operating principle and block diagram of the proposed interrogation
system for QCR sensors. The interrogation principle exploits the separation in time between driven
excitation and free decay detection phases, somewhat similarly to what was previously proposed
for silicon micromechanical resonators [24]. In the present case, however, the principle does not
require magnets.

The developed interrogation system employs a primary coil with inductance L1

electromagnetically air-coupled to a secondary coil with inductance L2, connected to the electrodes of
the QCR sensor. During the excitation phase a gating signal vg sets the switch SW to the position E,
connecting for a time interval TE the primary coil L1 to the sinusoidal excitation signal vexc, which
results in a gated sinusoidal signal at frequency f exc. By exploiting the electromagnetic air coupling
between the two coils, the excitation signal is transmitted to the QCR which is excited into vibrations.
The QCR is an electro-mechanical system which vibrates in thickness-shear mode and the TSM
fundamental resonant frequency of its mechanical behavior will be indicated as f r = ωr/2π. It can be
noticed that, since the operating principle relies on the detection of the QCR free decaying response,
ensuring that the excitation frequency f exc is exactly equal to f r is not strictly required, which is
advantageous since f r might not be exactly known in advance. Nevertheless, when f exc approaches f r,
the effectiveness of the excitation is increased and the amplitude of the detected signal rises.

In the detection phase, the gating signal vg sets the switch SW to the position D for a time interval
TD, disconnecting the excitation from the primary coil and, thus, also from the quartz resonator. It also
connects the primary coil to the readout circuit. In this condition, the QCR undergoes decaying
oscillations at frequency f dr, i.e., the mechanical damped resonant frequency. The initial amplitude
of the oscillations is inversely related to the difference between f exc and f r. Due to the piezoelectric
properties of quartz, the mechanical vibrations of the resonator generate a current in the coil L2 and
consequently an induced readout voltage v1 can be sensed back across L1.
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The induced voltage v1 is further amplified by means of a high-impedance amplifier of gain G and
then, by means of a zero-crossing detector, converted into an output square waveform with frequency
f o = f dr, which can be measured by a frequency counter.

2.1. Theoretical Analysis and Equivalent Model

Piezoelectric electroacoustic devices, such as AT-cut quartz resonators, can be studied by adopting
the Mason distributed-parameter electromechanical circuit [3,28]. Around each resonant frequency
corresponding to a given vibration mode, the Mason model can be simplified into the Butterworth-van
Dyke (BVD) equivalent lumped-element circuit. The BVD circuit is composed of a motional, i.e.,
mechanical, branch and an electrical branch formed by the parallel capacitance C0. The motional
branch comprises the series of inductance Lm, capacitance Cm, and resistance Rm, which respectively
represent the equivalent mass, compliance, and energy losses of the quartz crystal at the considered
mode. In the following, the fundamental thickness-shear mode will be considered. With respect to the
BVD circuit, the previously introduced mechanical resonant frequency f r corresponds to the series
resonant frequency of the motional branch, i.e., the frequency at which the reactance of the mechanical
branch impedance vanishes, which can be expressed as f r = 1/[2π(LmCm)1/2].

Accordingly, during the detection phase, the interrogation system can be modelled as illustrated
in Figure 2. The two coils separated by a distance d are modelled by means of their mutual inductance
M function of d, their equivalent series resistances R1, R2, and inductances L1, L2, i.e., the impedances
of the primary and secondary coils are Z1 = R1 + sL1 and Z2 = R2 + sL2, respectively, where s is the
complex frequency in the Laplace domain. The impedance Zd = Rd/(1 + sRdCd) represents the generic
equivalent input impedance of the electronic detection circuit.

The voltage sources Vd0 = qCd(sCd)−1, V10 = L1iL1, V20 = L2iL2, VC0 = qC0(sC0)−1 and
Vm0 = qCm(sCm)−1 − LmiLm represent the initial conditions of the electric capacitance Cd of the
detection circuit input stage, of the primary and secondary coils L1 and L2, of the QCR electric
capacitance C0 and of the QCR motional branch, respectively. The terms qCd, qC0, and qCm are the
initial charges on the capacitances Cd, C0, and Cm, respectively, and the terms iL1, iL2, and iLm are the
initial currents in the inductances L1, L2, and Lm, respectively, all of them taken at time n(TD + TE) + TE,
where n is an integer, i.e., at the beginning of the detection phase.
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Figure 2. Lumped-element Butterworth-van Dyke (BVD) model of the quartz crystal resonator (QCR)
sensor into the equivalent circuit of the interrogation system during the detection phase.

In order to derive an expression for the voltage V1 induced between nodes A and B in Figure 2,
the Thévenin equivalent voltage source VTh and impedance ZTh of the right-hand part of the circuit
can be expressed as:

VTh = sMI2 −V10 (1a)

ZTh =
Z1(Z2 + Zm ‖ Z0)− (sM)2

Z2 + Zm ‖ Z0
(1b)
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where Zm = Rm + sLm + (sCm)−1 is the impedance of the QCR motional branch, Z0 = (sC0)−1 is the
impedance of the capacitance C0, and I2 has the following expression:

I2 =
V20(Z0 + Zm) + VC0Zm + Vm0Z0

Z2Zm + Z0(Z2 + Zm)
(2)

Hence the voltage V1 at the detection circuit input during the detection phase can be expressed by:

V1 = Vd0
sRdCd

1 + sRdCd

ZTh
ZTh + Zd

+ VTh
Zd

ZTh + Zd
(3)

In the limiting case of |Zd| → ∞, i.e., for high input impedance of the detection circuit, the
readout voltage V1 becomes equal to VTh and, hence, from Equation (1a), obtaining V1 reduces to the
determination of the current I2.

Inserting the corresponding expression of each term in Equation (2) , I2 as a function of s can be
put in the rational form I2(s) = N(s)/D(s) where N(s) and D(s) are given by:

N(s) = iL2LmCmL2C0

[
s3 +

(
Rm
Lm

+ qC0
iL2

1
L2C0

)
s2 +

(
Cm+C0
LmCmCo

+ qC0
iL2

Rm
Lm L2C0

)
s + qC0+qCm

iL2
1

LmCm L2C0

]
(4a)

D(s) = LmCmL2C0

[
s4 +

(
R2
L2

+ Rm
Lm

)
s3 +

(
1

LmCm
+ 1

L2C0
+ 1

LmC0

)
s2 +

(
R2

LmCm L2
+ Rm

Lm L2C0
+ R2

Lm L2C0

)
s + 1

LmCm L2C0

]
(4b)

From Equation (4a,b) it is possible in principle to derive a time expression for i2(t) and hence for
v1(t) by making a partial fraction expansion of I2(s) and then taking the inverse Laplace transform of
each term.

It must be remarked that, for the purposes of the present work, the main interest and specific goal is
to determine the complex frequencies at which the electrical network composed of R2-L2-C0-Rm-Lm-Cm

responds due to non-zero initial conditions on its reactive elements. On the other hand, determining the
closed form expression of the time response v1(t) is unnecessary besides which it is very involved. These
complex frequencies can be determined resolving D(s) = 0. The expression of D(s) is a fourth-order
polynomial which can be factored in the product of two second-order polynomials as D(s) = D0(s2 +
2αms + ωm

2)(s2 + 2αes + ωe
2) where D0 is a normalization constant. As a consequence, it is expected

that in the time domain i2(t) can be determined as the sum of two damped sinusoidal signals at the
damped angular frequencies ωdm = (ωm

2 − αm
2)1/2 and ωde = (ωe

2 − αe
2)1/2 with natural angular

frequencies ωm, ωe and exponential decay times τm = 1/αm, τe = 1/αe, respectively. In addition, it can
be observed that if αm << ωm and αe << ωe, i.e., in the case of light damping, then ωdm ≈ ωm and
ωde ≈ ωe.

Solving the equation D(s) = 0, even if possible, is in general sufficiently involved to suggest
adopting an approximate approach based on defined conditions. In particular, it will be demonstrated
in the following that under specific assumptions, ωdm corresponds to the damped angular frequency
of the series resonant subcircuit of the mechanical branch Rm-Cm-Lm, while ωde corresponds to the
damped angular frequency of the electrical resonant subcircuit composed of R2-L2-C0. In the more
general case, this is not true because the two subcircuits are indeed coupled.

As a first step, the circuit of Figure 2 can be analyzed considering R2 = 0 and Rm = 0, which is
equivalent to an undamped system. With this assumption, Equation (4b) reduces to:

Du(s) = LmCmL2C0

[
s4 +

(
1

LmCm
+

1
L2C0

+
1

LmC0

)
s2 +

1
LmCmL2C0

]
(5)

In this circumstance Du(s) does not contain terms of odd degree and the equation Du(s) = 0 can
be regarded as a quadratic equation in the variable p = s2, i.e., p2 + bp + c = 0, and directly solved.
By inspection of Equation (5), it is clearly b > 0, c > 0 and also for the discriminant ∆ it holds that
∆= b2 − 4c > 0. Thus, for the solutions of the quadratic equation, two real negative roots p1 and p2 are
expected, and hence the corresponding values of s are: s1+,1− = ±p1

1/2 = ±jωmu and s2+,2− = ±p2
1/2
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= ±jωeu. Recalling that ωr = 2πf r = (LmCm)−1/2 and defining ωe0 = (L2C0)−1/2 and δω = (LmC0)−1/2,
the values of ωmu and ωeu, corresponding to the two natural angular frequencies of the circuit, can be
derived as:

ωmu =

 (ω2
r + ω2

e0 + δω2) +
√
(ω2

r + ω2
e0 + δω2)

2 − 4ω2
r ω2

e0

2

1/2

(6a)

ωeu =

 (ω2
r + ω2

e0 + δω2)−
√
(ω2

r + ω2
e0 + δω2)

2 − 4ω2
r ω2

e0

2

1/2

(6b)

It can be observed that ωr and ωe0 represent the resonant angular frequencies of the series Lm-Cm

mechanical subcircuit and the parallel L2-C0 electrical subcircuit, respectively. Then Equation (6a,b)
show that, by interconnecting the two subcircuits, a cross coupling is introduced, and each natural
frequency of the network in general depends on the resonant frequencies of both subcircuits.

Under the hypothesis that ωrL2 « 1/(ωrC0), meaning that at the frequency ωr the impedance
magnitude of L2 is smaller than that of C0, the exact expressions in Equation (6a,b) can be approximated
by a Taylor series arrested to the first order, leading to:

ωmu ≈ ωr

(
1− 1

2
L2

Lm

)
(7a)

ωeu ≈ ωe0

(
1 +

1
2

L2

Lm

)
(7b)

From Equation (7a,b) it can be observed that both ωmu and ωeu depend on L2 and Lm and if
Lm « L2 the natural frequencies of the network tend to the resonant frequencies of the two subcircuits.

The effect of damping introduced by Rm and R2 will be taken into account by numerical analysis
in the following subsection. It is expected that the damped angular frequencies ωdm and ωde will
depend in the general case on all the parameters of the circuit. However, it will be shown that, for light
damping and for the range of variation of the parameters considered in the present work, ωdm and
ωde are well approximated by their undamped counterparts given by Equation (7a,b).

2.2. Numerical Analysis

In the following the solutions of D(s) = 0, where D(s) is the expression in Equation (4b), will be
computed numerically considering the typical values reported in Section 3 for both the parameters of
the QCR and the electrical parameters. For the cases under examination, the solutions will be two pairs
of complex conjugated numbers which, adopting the notation previously introduced, can be expressed
as se = −αe + jωde and sm = −αm + jωdm. Simulations as a function of selected parameters of the
equivalent circuit have been carried out in Matlab to validate the electrical equivalent model derived
in Section 2.1.

Figure 3a shows the comparison between the values of the damped mechanical frequency
f dm = ωdm/2π computed from Equation (4b) and the values of f mu = ωmu/2π given by Equations (6a)
and (7a). It can be observed that the numerical solution and the result of Equation (6a) are coincident
while the results of Equation (7a) is within 3 ppm with respect to the numerical solution for L2 = 10 µH.
It can be concluded that for the considered conditions, both the influence of the damping due to Rm

and R2 and the presence of L2 do not affect the mechanical resonant frequency of the resonator and
then f dm ≈ f mu ≈ f r.
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Similarly, Figure 3b demonstrates that the electrical frequency f de = ωde/2π computed from
Equation (4b) and the expressions of f eu = ωeu/2π from Equations (6b) and (7b) are also in remarkable
agreement over the same range of variation of L2. Also in this case, it can be concluded that f de ≈ f eu.

Subsequently, for the same range of variation of L2, the attenuation constants αm and αe have
been computed and the results are shown in Figure 4.
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It can be seen that αe is four orders of magnitude larger than αm, hence the contribution to v1 due
to the electrical part falls off more rapidly than its mechanical counterpart and it is expected to quickly
become negligible.

2.3. Additional Remarks

As reported in Section 2.1, the waveform of the current i2(t) is the sum of two damped sinusoidal
signals at frequency f dm and f de with attenuation constants αm and αe, respectively. In the numerical
analysis reported in Section 2.2, it has been shown that αe » αm. Thus, the damped sinusoidal signal at
frequency f de decays to zero much faster than the damped sinusoidal signal at frequency f dm, and,
hence, the former can be neglected in the final expression of the waveform i2(t) which results:

i2(t) = I20e−t/τm cos(2π fdmt + θ2) (8)

In Equation (8) the amplitude and phase coefficients I20 and θ2 are functions of both the initial
conditions and the electrical and mechanical parameters of the system. The mechanical response
of the QCR is read through the voltage v1, which in the time domain can be derived by taking the
inverse Laplace transform of Equation (3) or, equivalently, multiplying M by the time derivative of
Equation (8):

v1(t) = 2π fm MI20e−t/τm cos(2π fdmt + θm)− L1iL1δ(t) (9)

where the last additional term represents the contribution of the initial conditions on L1 and
θm = θ2 – π − arctan(2πf dm/αm). From Equation (9) it can be seen that v1 is proportional to the natural
frequency f m and, notably, that the mutual inductance M acts only as a scaling factor for the amplitude
of v1, without affecting the sensor response parameters f dm and τm. This is advantageous with respect
to other contactless techniques like the one reported in [22] in which the resonant frequency of the
QCR sensor is monitored by measuring the reflected admittance of the sensor through the primary
and secondary coils. The significant limitation in this case is that the shape of the reflected admittance
function versus frequency, and in turn the estimated QCR resonant frequency, depends on the mutual
inductance between the coils and, as such, on their distance. Keeping the distance between the coils
fixed is unpractical/unfeasible in most real applications. On the contrary, the gated technique here
proposed which decouples excitation and detection is robust against the interrogation distance.

If the limiting case of Z2 → 0 is considered for a high quality factor resonator, i.e., the QCR is
short-circuited during the detection phase and the mechanical damping is low, the voltage v1 is an
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exponentially lightly damped sinusoidal signal at exactly the frequency f r, i.e., the system detects the
QCR oscillating at its series resonance.

3. Experimental Validation

The reference quartz resonator used to verify the derived theory and equivalent model of the
contactless interrogation system is a 4.432MHz AT-cut 8-mm diameter crystal with 5-mm diameter
gold electrodes. The impedance magnitude and phase diagrams of the sensor, measured with
a HP4194A impedance analyzer, are shown in Figure 5. The extracted parameters of the BVD circuit
are: C0 = 5.72 pF, Rm = 10.09 Ω, Lm = 77.98 mH, and Cm = 16.54 fF.

Figure 6 shows the schematic diagram of the circuit realized to implement the contactless
interrogation technique. The alternation between the excitation and detection phases is achieved
by means of two pairs of normally-open (NO) and normally-closed (NC) electronic analog switches
(SWs) (MAX393) driven by the gating signal vg(t). When the NC SW1 is open and the NO SW2 is closed,
the coil L1 is connected to the excitation voltage vexc(t). Contrarily, when the NC SW1 is closed and
the NO SW2 is open, the coil L1 is connected to the non-inverting amplifier with gain, corresponding
to G in Figure 1, of 10 based on a wideband operational amplifier (OPA657) to obtain the output
voltage vo(t). The output signal is subsequently squared by an additional operational amplifier used
as a zero-crossing detector and its output is fed to a frequency counter to measure f o.
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The QCR was driven with an excitation signal vexc of frequency f exc = 4.43 MHz and amplitude
5 V, whereas the gating signal vg had a frequency of 175 Hz and duty cycle of 20%.
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Planar spiral coils milled from copper-clad Flame Retardant (FR4) substrates of dimensions
3 cm × 3 cm were used for L1 and L2 during the tests. The coils were measured by means of a HP4194A
impedance analyzer at 4.43 MHz. The primary and secondary coils had equivalent series inductance
and resistance L1 = 8.45 µH and R1 = 5.07 Ω, and L2 = 8.53 µH and R2 = 5.22 Ω, respectively.

Optimal operation was achieved when the planes of coils were parallel and were aligned along
their central out-of-plane axes of symmetry. In these conditions, the flux linkage between the coils
and hence the mutual inductance are maximized. These operating conditions were always adopted in
all the experimental results reported in the following. However, misalignments of a few millimeters
and relative tilt of few degrees of the coils were found not to affect the interrogation process to
a significant extent.

Figure 7 shows a typical measured readout voltage vo taken during the detection phase with
the interrogation distance set to d = 5 mm. The interrogation system responds with an exponentially
damped sinusoidal signal, as predicted by Equation (8). The readout frequency f o was measured
with a Fluke PM6681 frequency counter gated by the signal vg and 30 repeated measurements in the
same conditions showed a standard deviation of less than 1 Hz. The damped mechanical resonant
frequency was measured to be f dm = f o = 4,431,871 Hz, while analyzing the decaying exponential
envelope Voexp(−t/τo) of the readout voltage vo estimated the quality factor at Qo = πf oτo = 140 × 103.
By substituting into Equation (7a) the values of the BVD parameters of the reference QCR, a frequency
f dm = 4,433,607 Hz was derived. Similarly, from the values of simulations of Figure 4, a quality factor
Qm = 142 × 103 was estimated. Both values are in good agreement with the measured values, thus
confirming the validity of the developed equivalent model.
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decaying envelope of the readout voltage, the quality factor of the electrically loaded quartz resonator
sensor can be estimated.

In order to validate the proposed equivalent model, the behavior of the system has been tested
for different values of the interrogation distance d and inductance of the primary and secondary coils
L1 and L2.

Figure 8 shows the measured readout frequency f o for different values of the interrogation
distance d. It can be seen that the variations of f o as the interrogation distance changes do not exceed
3 Hz. On the contrary, the amplitude of the readout voltage taken at a prescribed time t0 = 100 µs
elapsed after the end of gated excitation decreases as the interrogation distance increases. This behavior
confirms the prediction of the theoretical model and Equation (9), according to which the distance
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d changes the mutual inductance M, which in turns acts as a scaling factor on the amplitude of the
readout voltage without, however, affecting the measured readout frequency.

Figure 9 shows the measured readout frequency f o for different values of the inductance L2 of
the secondary coil while keeping L1 = 8.45 µH. The interrogation distance d is set to 5 mm. According
to the model and to Equation (7a), the measured frequency is linearly dependent on L2 and, as L2

approaches zero, the readout frequency f o approaches the QCR sensor series resonant frequency
f r = f m. The frequency offset between the measured and expected frequencies may well be caused by
residual inaccuracies in the system parameter values used in the model.

Figure 10 reports the measured readout frequency f o for different values of the inductance L1 of
the primary coil. It can be noticed that, as expected, the influence of L1 on f o is negligible. However,
decreasing the value of L1 worsens the signal-to-noise ratio (SNR), thus, lowering the repeatability
of the readout frequency measurements. Therefore, it is desirable to choose a primary coil with
a sufficiently high inductance L1 in order to grant an adequate SNR and repeatability in the contactless
measurement operation.
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4. Liquid Solution Microdroplet Measurements

The interrogation principle has been validated by detecting the frequency variations due to the
deposition of microdroplets of liquid solution of sugar in water on a 4.8 MHz AT-cut quartz crystal.

A piezoelectric microdispenser (Microfab MJ-AB) with a 50 µm diameter orifice was adopted
to deposit microdroplets on the sensor surface. For each deposition run Dn, the driving signal of
the microdispenser was composed of N = 500 pulses at a driving frequency of 80 Hz, in order to
obtain N microdroplets. The estimated volume of a single microdroplet was vdrop = 36 pl [10,11],
obtaining a total volume of Vdep = Nvdrop = 18 nl per deposition run. A test solution of sugar in
water at a concentration of c = 0.25 wt % was prepared for the measurements. Assuming that the
density of the solution was about 1 g·cm−3, it results that the mass of sugar for each deposition was
about mdep = 45 ng. Figure 11 shows a picture of the experimental setup with a detailed view of the
microdispenser ejecting a sequence of microdroplets. In the experimental activity, all the measurements
were taken with the coils aligned and set at an interrogation distance d of about 5 mm.
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Figure 12 shows the output frequency shift ∆f dm as a function of time during 10 deposition
runs of the test solution. Each deposition was triggered about every 4 min. The unloaded damped
frequency f dm0 of the quartz was 4,798,030 Hz. After each deposition run Dn, the QCR sensor response
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was divided in two different phases termed in the following discussion as the wet phase and the dry
phase. The wet phase corresponds to the situation where a fixed amount of volume Vdep of solution has
been deposited and an initial steady-state frequency shift ∆f wet(n) is measured before the evaporation
process. The dry phase starts at the end of the evaporation process of water and the steady-state
frequency shift |∆f dry(n)| is then measured. More specifically, it can be observed that at the moment
of the first deposition D1 (at about t = 1 min) an initial frequency downshift is present. This is ascribed
to the acoustic load given by both the liquid-solution density and viscosity. After the deposition,
during the drying process, a second frequency downshift is observed (at about t = 3.5 min) which is
ascribed to the transition of the acoustic load from wet to dry phases. The steady state (magenta boxes)
given by the mass of the residual thin film of sugar, is then used to estimate ∆f dry. In the dry phase it can
be reasonably assumed that a sugar film of mass mfilm = n·mdep is formed on the surface of the QCR
sensor. Starting from D2, an initial frequency upshift is present, suggesting that each fixed-volume
added deposition dissolves the existing sugar film on the sensor (except for the first deposition D1)
and essentially increases the sugar concentration in the deposited liquid solution. Each new deposition
Dn increments the concentration of sugar solution cs to cs = n × c and causes a variation of the acoustic
properties of the deposited liquid solution that is detected. After the deposition, where an initial
steady-state (green boxes) is observed, the drying process starts and a frequency downshift is observed
due to the transition from wet to dry phases. As a consequence, considering the (n + 1) deposition run,
a frequency upshift is observed, such that |∆f dry(n)| > |∆f wet(n + 1)|. This behavior can be explained
observing that in the wet phase ∆fwet(n) is related to the concentration cs of the solution, while in the
dry phase ∆fdry(n) is related to the mass ms of sugar.

Figure 13a shows the steady-state frequency shift ∆f dry derived from Figure 12 as a function of
the deposited sugar mass mfilm, where the linear behavior obtained validates the operation of the
QCR sensor in a gravimetric regime in the explored range with a sensitivity of about −6.13 Hz/ng.
Figure 13b shows the steady-state frequency shift ∆fwet derived from Figure 12 as a function of the
sugar concentration cs, where a linear trend was obtained in the considered concentration range with
a sensitivity of about −44.2 Hz/wt %.
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In principle, the quality factor Q could be measured in the reported experiments, though they
were not performed in this case with the adopted setup. A new contactless system which includes
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a tailored circuit performing heterodyne demodulation (frequency down-mixing) during the detection
phase and autocorrelation analysis is reported in [27]. The new system allows frequency and quality
factor measurements with an update rate of up to five measurements per second.Sensors 2017, 17, 1264 14 of 16 
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5. Conclusions

The present paper has addressed the theoretical study of a contactless interrogation system for
quartz crystal resonator sensors which exploits the electromagnetic air coupling between two coils
to perform a gated excitation of the resonator, followed by the sensing of the free transient response.
The developed analytical model and related lumped-element equivalent circuit have shown that the
proposed technique offers independence from the interrogation distance, which is advantageous
with respect to other techniques requiring a fixed or known distance between the sensor and the
interrogation unit. The predicted behavior has been investigated and validated experimentally.
In addition, the technique has been applied to the measurement of deposition of microdroplets
of a sugar-water solution. The proposed technique successfully measured relevant parameters
of solutions in terms of solute and solvent. By adopting suitable elaboration techniques, such as
correlation algorithms [27,29], improvements of the signal-to-noise ratio can be achieved. Future
developments include the possibility of applying the technique to measurements on biological samples
in closed volumes with proximate interrogation from outside.
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