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Abstract: We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS)
as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna,
which is non-stabilized physically to the local horizontal with x-configured beams, is considered.
We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode
for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind
algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the
proposed approach are considered.
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1. Introduction

Microwave backscatter from the sea/ocean surface and remote measurement of the sea-surface
wind have been actively investigated during the last seven decades [1–21]. The sea clutter is
usually described by the normalized radar cross section (NRCS) and its statistical characteristics
including probability distributions, spectral shapes of the Doppler reflections and the amplitude
correlations [22]. For studying sea clutter and recovering the sea-surface wind vector, radars operating
as scatterometers are rather common tool. Fundamentals of the scatterometer wind retrieval are
based on the geophysical model function generated from the backscatter measurements collected
from airborne and/or spaceborne platforms over the observed sea/ocean areas where wind fields
are available simultaneously from various independent sources. The accuracy of scatterometer
measurements of the wind direction is about ±20◦, while the accuracy of the wind speed estimation is
about ±2 m/s for wind speeds between 3 and 24 m/s, respectively.

Such measurements with airborne scatterometers are usually performed by either a measuring
instrument with a fixed fan-beam antenna at the circular track flight or a radar with a rotating
antenna at the rectilinear track flight. However, the size of a microwave antenna with a narrow
beam is considerable at Ku-, X- and C-bands. Though recent advancement in antenna technologies
allow to make them small enough to be installed on aircraft as a separate piece of equipment [23],
installation of any additional equipment, especially on small aircraft, has its own drawbacks such
as the reduction of aerodynamic characteristics, need for additional power supply etc. Accordingly,
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the most straightforward solution would be to also use the navigation equipment already available
onboard for sea surface monitoring, in addition to its normal functionality.

One promising airborne radar instrument for such an application is the DNS. The system is
equipped either with a fixed antenna, which is the most common solution in modern DNS designs,
or with a track-stabilized antenna with additional its roll and pitch stabilization [24]. The DNS
operation with a fixed-antenna system appears more difficult due to lack of its track stabilization.
Similar situation can also take place in the case of track-stabilized antenna system when current roll
or pitch angles exceed maximum angles of stabilization. The above setting is the particular focus of
this article.

In this paper, we suggest the complementary utilization of the onboard DNS equipped with a
fixed antenna system (non-stabilized relative to the local horizontal) as a sea-surface wind sensor
in addition to its normal functionality. We also propose a particular algorithm for the sea surface
wind speed and direction retrieval from the DNS measurements. This new application of the DNS
as a sensor of the sea-surface wind, in addition to its typical navigational functions, is achieved in a
scatterometer mode when the system operates as a four-beam scatterometer.

2. Materials and Methods

2.1. Doppler Navigation System Overview

DNS is a completely self-contained radar system for measuring the aircraft ground speed and
drift based on the Doppler principle and providing the dead-reckoning navigation of aircraft [25].
Additional navigation input originating from DNS helps to eliminate several problems associated with
early navigation systems, like inaccurate heading references and degradation or loss of Doppler inputs
during a flight over large water areas. Most modern DNSs combine the inherent information of Doppler
measurements with the information from other navigation systems, i.e., the Inertial Reference System
(IRS), the VHF (very high frequency) Omnidirectional Range and Distance Measuring Equipment
(VOR/DME), or the Global Positioning System (GPS) [26]. The frequency band between 13.25 and
13.4 GHz has been internationally authorized for DNS operation. The center frequency of this band
is 13.325 GHz. Two other bands, in particular, centered at 8.8 and 9.8 GHz, respectively, have been
used in earlier DNS designs, while currently they are no longer applied in standalone Doppler radar
design [24]. Typically, the DNS utilizes either three-beam λ-configured (beams 1, 2, and 3) or four-beam
x-configured (beams 1, 2, 3, and 4) antennas, directed as shown in Figure 1 [27].
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Figure 1. The typical beams geometry of the DNS: λ-configured beams 1, 2, and 3; x-configured beams 
1, 2, 3, and 4 [27]. 

Figure 1. The typical beams geometry of the DNS: λ-configured beams 1, 2, and 3; x-configured beams
1, 2, 3, and 4 [27].
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The effective beamwidth θb of the DNS antenna is between 3◦ and 10◦ [27]. The typical mounting
angle for the antenna beam axis in the vertical plane θ0 is between 15◦ and 30◦ [24]. In the horizontal
plane, the mounting angle of the antenna beam axis Γ0 is between 15◦ and 45◦ [28]. In the inclined
plane, the beam axis mounting angle η0 (angle between the longitudinal axis of the antenna and the
central direction of the beam) is between 65◦ and 80◦ [24]. Every DNS beam provides the same angular
resolutions in the vertical and azimuthal planes, ∆θ and ∆α, respectively. A more detailed reference
regarding the choice of the DNS beams parameters can be found in [27].

Operating over sea/ocean, the DNS multi-beam antenna provides the selection of the
backscattered power from various directions relative to the aircraft course ψ, which are different from
each other significantly. This key feature allows considering the DNS as a multi-beam scatterometer
that we suggest here to utilize for the sea-surface wind retrieval complementary to its normal
navigation functions.

2.2. Sea-Wind Retrieval

Blowing over the sea, winds modify properties of the microwave backscattering, so that it becomes
dependent on the direction and speed of the wind. The wind speed U is recovered with a scatterometer,
since at medium incidence angles θ, stronger winds results in larger NRCS σ◦(U, θ, α) as well as at small
incidence angle, they produce smaller NRCS. As the NRCS depends on the azimuth illumination angle
α towards the up-wind direction, the wind direction can also be measured [29]. For the scatterometer
wind retrieval over the sea, the so-called “geophysical model function” is used providing an explicit
relationship between the wind over water and NRCS. At medium incidence angles, the minimum
requirement for the wind retrieval over water is the availability of several NRCS values (at least three
NRCSs or more) corresponding to the significantly different azimuthal directions. The DNS antenna is
capable of providing such NRCSs.

During the horizontal rectilinear flight, these NRCSs obtained with the roll-and-pitch-stabilized
antenna beams 1, 2, 3, and 4 are σ◦(U, θ0, α + ψ0.b.1), σ◦(U, θ0, α + ψ0.b.2), σ◦(U, θ0, α + ψ0.b.3), and
σ◦(U, θ0, α + ψ0.b.4), respectively, where ψ0.b.1 = Γ0, ψ0.b.2 = 180◦ − Γ0, ψ0.b.3 = 180◦ + Γ0, and
ψ0.b.4 = 360◦ − Γ0. However, in the case of non-stabilized antenna system (or in the case of exceeding
the roll or pitch maximum angle of stabilization for the stabilized antenna system), the actual incidence
angles and azimuth directions of the beams are very different from their mounting angle values.

Let an aircraft use a DNS with the fixed-antenna that have four beams and perform a horizontal
rectilinear flight at the altitude H over the mean water surface with the speed V. Assuming the beams
to be identical and narrow enough, the current azimuthal direction of beam N (from beams 1, 2, 3,
and 4) is ψb.N relative to the aircraft ground track (aircraft course), the current angle of incidence of
beam N is θb.N, and the NRCS corresponded to the beam N is σ◦(U, θb.N , α + ψb.N). Let the wind
blow in direction ψw, the angle between the aircraft course ψ and the up-wind direction be α, and the
geophysical model function be [29]

σ◦(U, θ, α) = A(U, θ) + B(U, θ) cos α + C(U, θ) cos(2α) (1)

where A(U, θ), B(U, θ) and C(U, θ) are the Fourier coefficients dependent on the speed of the wind over
the sea and incidence angle, A(U, θ) = a0(θ)Uγ0(θ), B(U, θ) = a1(θ)Uγ1(θ), and C(U, θ) = a2(θ)Uγ2(θ);
a0(θ), a1(θ), a2(θ), γ0(θ), γ1(θ) and γ2(θ) are the coefficients dependent on the incidence angle, radar
wavelength, and polarization.

Then, the wind speed and the up-wind direction can be retrieved from the azimuth NRCSs data
using the system of four equations [27]:
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σ◦(U, θb.1, α + ψb.1) = A(U, θb.1)

+B(U, θb.1) cos(α + ψb.1)

+C(U, θb.1) cos(2(α + ψb.1)),
σ◦(U, θb.2, α + ψb.2) = A(U, θb.2)

+B(U, θb.2) cos(α + ψb.2)

+C(U, θb.2) cos(2(α + ψb.2)),
σ◦(U, θb.3, α + ψb.3) = A(U, θb.3)

+B(U, θb.3) cos(α + ψb.3)

+C(U, θb.3) cos(2(α + ψb.3)),
σ◦(U, θb.4, α + ψb.4) = A(U, θb.4)

+B(U, θb.4) cos(α + ψb.4)

+C(U, θb.4) cos(2(α + ψb.4)).

(2)

Further, the navigation direction of wind is retrieved as:

ψw = ψ − α ± 180◦ (3)

3. Results and Discussion

To analyze the feasibility of the developed algorithm for the wind retrieval, a series of computer
simulations using a Ku-band model (1) from [1] developed for the horizontal transmit and receive
polarization was carried out. Rayleigh Power (Exponential) distribution has been used to generate the
“measured” NRCSs. The mounting angles of the antenna beam axis in the horizontal plane of 45◦ and
15◦ (the highest and lowest angles from the typical range of mounting angles of the antenna beam axis
in the horizontal plane) at the worst case of a cross-wind horizontal rectilinear flight with the angle of
attack of −5◦ have been considered.

Two series of simulations have been performed. The first series of simulations focused
on the incidence angle of 30◦ corresponding to the highest mounting angle of the antenna
beam axis in the vertical plane from the typical range of DNS mounting angles. The second
series of simulations focused on the incidence angle of 45◦, which is higher than the typical
mounting angle of the antenna beam axis in the vertical plane. The given angle of attack
of −5◦ results in the following actual combinations of angles. At θ0 = 30◦, the combinations
for Γ0 = 45◦ are (ψb.4 = 307◦ and ψb.1 = 53◦, θb.4 = θb.1 = θ1 = 27◦) and (ψb.2 = 142◦ and
ψb.3 = 218◦, θb.2 = θb.3 = θ2 = 33◦); for Γ0 = 15◦ are (ψb.4 = 276◦ and ψb.1 = 84◦, θb.4 = θb.1 = θ1 = 29◦) and
(ψb.2 = 113◦ and ψb.3 = 247◦, θb.2 = θb.3 = θ2 = 31◦). At the same time, the combinations at θ0 = 45◦

for Γ0 = 45◦ are (ψb.4 = 310◦ and ψb.1 = 50◦, θb.4 = θb.1 = θ1 = 43◦) and (ψb.2 = 140◦ and ψb.3 = 220◦,
θb.2 = θb.3 = θ2 = 48◦); for Γ0 = 15◦ are (ψb.4 = 280◦ ψb.1 = 80◦, θb.4 = θb.1 = θ1 = 44◦) and (ψb.2 = 110◦

and ψb.3 = 250◦, θb.2 = θb.3 = θ2 = 46◦).
The results obtained at the “true” near-surface wind speed of 2 m/s are exemplified in Figures 2

and 3. The NRCS curves following model (1) at the “true” wind speed are shown by solid curves.
Crosses and dotted traces demonstrate the “measured” NRCS obtained by integrating 1565 samples
for each azimuthal angle with the step of one degree at the actual beam incidence angles of beams
θ1 and θ2, respectively. Dashed traces show the azimuth NRCS curves accordingly to the model (1)
correspondingly to the “measured” up-wind directions and wind speeds. Left columns in Figures 2
and 3 represent the results without the influence of the instrumental measurement noise. As reported
in [30], the typical instrumental noise of about 0.2 dB at scatterometer measurements may lead to
the error of 0.5 m/s only. Right columns in Figures 2 and 3 represent similar results for the 0.2 dB
instrumental noise scenario. Accordingly, the influence of higher instrumental noise of up to 1 dB has
also been considered in the simulations. Right panels in Figure 4 demonstrate the maximum errors
of wind speed recovering as a function of the instrumental noise obtained from simulations with 100
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independent instrumental noise realizations, while their left panels demonstrate the maximum errors
of wind direction retrieval at the same number of independent instrumental noise realizations.
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Figure 2. Simulation results for the mounting angle of a beam axis of 30◦ in the vertical plane and
the angle of attack of −5◦ at the “true” speed of wind of 2 m/s. Solid traces show the NRCS curves
according to the model (1) at the “true” wind speed. Crosses and dotted traces demonstrate the
generated “measured” NRCS after integrating 1565 samples at actual incidence angles of beams
θ1 and θ2, respectively. Dashed traces show the azimuth NRCS curves according to the model (1)
corresponding to “measured” up-wind directions and wind speeds: (a) “measured” wind speed of
2 m/s and up-wind direction of 1.1◦ at Γ0 = 45◦ with combinations (ψb.4 = 307◦ and ψb.1 = 53◦, θ1 = 27◦)
and (ψb.2 = 142◦ and ψb.3 = 218◦, θ2 = 33◦); (b) “measured” wind speed of 2 m/s and up-wind direction
of 1.2◦ at the same combinations and with the instrumental noise of 0.2 dB; (c) “measured” wind speed
of 2.01 m/s and up-wind direction of 1.5◦ at Γ0 = 15◦ with combinations (ψb.4 = 276◦ and ψb.1 = 84◦,
θ1 = 29◦) and (ψb.2 = 113◦ and ψb.3 = 247◦, θ2 = 31◦); (d) “measured” wind speed of 2.01 m/s and
up-wind direction of 1.7◦ at the same combinations and with the instrumental noise of 0.2 dB.

The above results clearly indicate that the DNS with a four-beam antenna that is not stabilized
physically to the local horizontal is suitable for the measurement of the sea-surface wind at the typical
mounting angle of the antenna beam axis in the vertical plane of 30◦ or higher. The accuracy of the
algorithm proposed, even in the considered worst case scenario of 2 m/s wind speed and the typical
mounting angle of the antenna beam axis in the horizontal plane of 15◦, is within the usual accuracy
range for scatterometer wind measurement. These results also indicate that DNS with the increased
mounting angle of 45◦ for the antenna beam axis in the vertical plane provides a better usage of
anisotropic properties of the sea-surface scattering at wind measurements over water.
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Figure 3. Simulation results for the mounting angle of a beam axis of 45◦ in the vertical plane and
the angle of attack of −5◦ at the “true” speed of wind of 2 m/s. Solid traces show the NRCS curves
according to the model (1) at the “true” wind speed. Crosses and dotted traces demonstrate the
generated “measured” NRCS after integrating 1565 samples at actual incidence angles of beams
θ1 and θ2, respectively. Dashed traces show the azimuth NRCS curves according to the model (1)
corresponding to “measured” up-wind directions and wind speeds: (a) “measured” wind speed of
2 m/s and up-wind direction of 358.5◦ at Γ0 = 45◦ with combinations (ψb.4 = 310◦ and ψb.1 = 50◦,
θ1 = 43◦) and (ψb.2 = 140◦ and ψb.3 = 220◦, θ2 = 48◦); (b) “measured” wind speed of 2 m/s and up-wind
direction of 358.7◦ at the same combinations and with the instrumental noise of 0.2 dB; (c) “measured”
wind speed of 2 m/s and up-wind direction of 359◦ at Γ0 = 15◦ with combinations (ψb.4 = 280◦

ψb.1 = 80◦, θ1 = 44◦) and (ψb.2 = 110◦ and ψb.3 = 250◦, θ2 = 46◦); (d) “measured” wind speed of 2 m/s
and up-wind direction of 358.9◦at the same combinations and with the instrumental noise of 0.2 dB.

Equipped with a combination of reliable navigation tools including multiple INSs and DNSs,
modern aircraft provide very accurate roll and pitch control, especially when it comes to simple
rectilinear or circular flight scenarios that are commonly performed in autopilot mode. Under calm
atmospheric conditions that are optimal for measurements, both roll and pitch control accuracy is
around 0.3 degrees that could be easily neglected in our calculations. When it comes to passing zones
with more turbulent atmospheric conditions, short-term variability of the aircraft roll and pitch can
normally be observed, before it is again stabilized by flight controls. If periods of turbulence are rather
short, for practical purposes, it would be easier to eliminate these measurements from further analysis,
than to develop a dedicated correction, that would appear quite complex due to nonlinear character
of turbulent flows. Uncertainties in the mounting angle of the antenna beam are very low as well,
typically not exceeding 15 angular minutes [24,25]. As the NRCS curves are quite smooth, especially
in the horizontal plane, they have an inessential impact on wind measurement results.



Sensors 2017, 17, 1340 7 of 10
Sensors 2017, 17, 1340 7 of 10 

 

(a) (b) 

 

(c) (d) 

Figure 4. Simulation results for the maximum error dependences of the wind retrieval from the 
instrumental noise: (a) maximum errors of the wind speed at Γ0 = 45° with combinations (ψb.4 = 307° 
and ψb.1 = 53°, θ1 = 27°) and (ψb.2 = 142° and ψb.3 = 218°, θ2 = 33°) (line with rounds), and at Γ0 = 15° with 
combinations (ψb.4 = 276° and ψb.1 = 84°, θ1 = 29°) and (ψb.2 = 113° and ψb.3 = 247°, θ2 = 31°) (line with 
triangles); (b) maximum errors of the wind direction at the same combinations; (c) maximum error of 
the wind speed at Γ0 = 45° with combinations (ψb.4 = 310° and ψb.1 = 50°, θ1 = 43°) and (ψb.2 = 140° and 
ψb.3 = 220°, θ2 = 48°) (line with triangles), and at Γ0 = 15° with combinations (ψb.4 = 280° and ψb.1 = 80°,  
θ1 = 44°) and (ψb.2 = 110° and ψb.3 = 250°, θ2 = 46°) (line with triangles); (d) maximum errors of the wind 
direction at the same combinations. 

Application of DNS with a non-stabilized antenna as the wind sensor over the sea surface has 
some limitations, which should be taken into account. The incidence angle should remain within the 
range of the geophysical model function validity at medium incidence angles. The incidence angle 
validity typically ranges from 25°–30° to 55°–60°. Since a non-stabilized antenna system is used, the 
combination of the current angle of attack, pitch, and roll should not cause the actual incidence angles 
of beams going out of the range of validity for the geophysical model applied. 

Since at the wind retrieval, the NRCS model function (1) is used without any correction while 
the azimuth angular size of the selected cell is not wider than 15°–20° [31], the actual resolution in the 
azimuthal plane should not exceed that value. At the narrowest typical DNS beamwidth of 3° in the 
horizontal plane, the angular resolutions in the azimuthal plane are 7.1°, 6.0°, 4.2° and 3.5° at the 
incidence angles of 25°, 30°, 45° and 60°, respectively. Alternatively, the widest typical DNS 
beamwidth in the same plane of 10° does not always provide acceptable azimuthal resolutions in the 
azimuthal plane. They are 23.4°, 19.9°, 14.1° and 11.6°, respectively, at the same incidence angles. 
Furthermore, delay selection may be further required in case of the antenna beam is not sufficiently 
narrow to provide the required angular resolution in the vertical plane. The presented simulation 
results have been obtained under the assumption of the narrow angular resolutions in both the 
horizontal and the vertical planes. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Instrumental Noise, dB

M
ax

im
um

 E
rr

or
 o

f W
in

d 
S

pe
ed

, m
/s

 

 
θ1 = 31° (ψ1 = 113°, ψ3 = 247°), θ2 = 29° (ψ2 = 276°, ψ4 = 84°)

θ1 = 33° (ψ1 = 142°, ψ3 = 218°), θ2 = 27° (ψ2 = 307°, ψ4 = 53°)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Instrumental Noise, dB

M
ax

im
um

 E
rr

or
 o

f W
in

d 
D

ire
ct

io
n,

 d
eg

.

 

 

θ1 = 31° (ψ1=113°, ψ3 = 247°), θ2 = 29° (ψ2 = 276°, ψ4 = 84°)

θ1 = 33° (ψ1=142°, ψ3 = 218°), θ2 = 27° (ψ2 = 307°, ψ4 = 53°)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Instrumental Noise, dB

M
ax

im
um

 E
rr

or
 o

f W
in

d 
S

pe
ed

, m
/s

 

 
θ1 = 48° (ψ1 = 140°, ψ3 = 220°), θ2 = 43° (ψ2 = 310°, ψ4 = 80°

θ1 = 46° (ψ1 = 110°, ψ3 = 250°), θ2 = 44° (ψ2 = 280°, ψ4 = 80°

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Instrumental Noise, dB

M
ax

im
um

 E
rr

or
 o

f W
in

d 
D

ire
ct

io
n,

 d
eg

.

 

 
θ1 = 48° (ψ1 = 140°, ψ3 = 220°), θ2 = 43° (ψ2 = 310°, ψ4 = 50°)

θ1 = 46° (ψ1 = 110°, ψ3 = 250°), θ2 = 44° (ψ2 = 280°, ψ4 = 80°)

Figure 4. Simulation results for the maximum error dependences of the wind retrieval from the
instrumental noise: (a) maximum errors of the wind speed at Γ0 = 45◦ with combinations (ψb.4 = 307◦

and ψb.1 = 53◦, θ1 = 27◦) and (ψb.2 = 142◦ and ψb.3 = 218◦, θ2 = 33◦) (line with rounds), and at Γ0 = 15◦

with combinations (ψb.4 = 276◦ and ψb.1 = 84◦, θ1 = 29◦) and (ψb.2 = 113◦ and ψb.3 = 247◦, θ2 = 31◦) (line
with triangles); (b) maximum errors of the wind direction at the same combinations; (c) maximum error
of the wind speed at Γ0 = 45◦ with combinations (ψb.4 = 310◦ and ψb.1 = 50◦, θ1 = 43◦) and (ψb.2 = 140◦

and ψb.3 = 220◦, θ2 = 48◦) (line with triangles), and at Γ0 = 15◦ with combinations (ψb.4 = 280◦ and
ψb.1 = 80◦, θ1 = 44◦) and (ψb.2 = 110◦ and ψb.3 = 250◦, θ2 = 46◦) (line with triangles); (d) maximum
errors of the wind direction at the same combinations.

Application of DNS with a non-stabilized antenna as the wind sensor over the sea surface has
some limitations, which should be taken into account. The incidence angle should remain within
the range of the geophysical model function validity at medium incidence angles. The incidence
angle validity typically ranges from 25–30◦ to 55–60◦. Since a non-stabilized antenna system is used,
the combination of the current angle of attack, pitch, and roll should not cause the actual incidence
angles of beams going out of the range of validity for the geophysical model applied.

Since at the wind retrieval, the NRCS model function (1) is used without any correction while
the azimuth angular size of the selected cell is not wider than 15–20◦ [31], the actual resolution in the
azimuthal plane should not exceed that value. At the narrowest typical DNS beamwidth of 3◦ in the
horizontal plane, the angular resolutions in the azimuthal plane are 7.1◦, 6.0◦, 4.2◦ and 3.5◦ at the
incidence angles of 25◦, 30◦, 45◦ and 60◦, respectively. Alternatively, the widest typical DNS beamwidth
in the same plane of 10◦ does not always provide acceptable azimuthal resolutions in the azimuthal
plane. They are 23.4◦, 19.9◦, 14.1◦ and 11.6◦, respectively, at the same incidence angles. Furthermore,
delay selection may be further required in case of the antenna beam is not sufficiently narrow to
provide the required angular resolution in the vertical plane. The presented simulation results have
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been obtained under the assumption of the narrow angular resolutions in both the horizontal and the
vertical planes.

The maximum altitude depends on the DNS beam geometry. Assuming the wind and wave
conditions are identical in the area with a side that does not exceed 15–20 km, the maximum altitudes
for the wind measurement at the mounting angle of the antenna beam axis in the vertical plane of 30◦

will be about 24 and 67 km at the mounting angles of the antenna beam axis in the horizontal plane
of 45◦ and 15◦, respectively (Figure 5). The maximum altitudes at the mounting angle of the antenna
beam axis in the vertical plane of 45◦ will be lower in 1.73 times than at 30◦.
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4. Conclusions

The study has shown explicitly that the DNS equipped with the fixed-antenna (or with the
track-stabilized antenna when current roll or pitch angles exceed maximum angles of stabilization)
with x-configuration of its beams and operated as a four-beam scatterometer at a rectilinear flight can
be used as a sea-wind sensor enhancing the DNS typical navigation functionality.

Since the wind scatterometer is well-calibrated, internal calibration should be implemented in the
DNS for the sea-wind retrieval mode. For that, typical scatterometer internal calibration procedure can
be used. The internal calibration can be achieved by coupling a small fraction of the transmitted signal
into the receiving channel. The current internal calibration precision is better than 0.15 dB that results
in the wind-speed error of around 0.1 m/s [32].

The horizontal transmit and receive polarization should be used, as it provides greater difference
between the down-wind and up-wind NRCSs as well as between the cross-wind and up-wind NRCSs
than at the vertical polarization. Increasing the mounting angle of the antenna beam axis in the vertical
plane from 30◦ to 45◦ allows for the better utilization of the anisotropy of the sea surface backscattering
and thus leads to providing better wind retrieval as well as allows widening the ranges of angles of
attack, pitch, and roll during wind measurement by DNS. Otherwise, the highest available mounting
angle of the antenna beam axis in the vertical plane from the range of its typical angles should be used.
The mounting angle of the antenna beam axis in the horizontal plane also should be tending to 45◦ to
provide NRCS sampling from significantly different directions.
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The concept, algorithm and measurement principle presented here can be applied for the DNS
functionality enhancement, for creating new airborne radar systems for operational measurement
of winds over water as well as for ensuring the safe landing of amphibious aircraft or seaplanes on
sea, especially during firefighting operations or search-and-rescue missions in the fire-risk regions or
coastal areas saving people and protecting the environment.
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